Stock Assessment of Lemon Sole (Microstomus Kitt) in Icelandic Waters Using a Gadget Model

Total Page:16

File Type:pdf, Size:1020Kb

Stock Assessment of Lemon Sole (Microstomus Kitt) in Icelandic Waters Using a Gadget Model grocentre.is/ftp Final Project 2019 STOCK ASSESSMENT OF LEMON SOLE (MICROSTOMUS KITT) IN ICELANDIC WATERS USING A GADGET MODEL Huixia Chen College of Fisheries and Life Science Dalian Ocean University, China No. 52, Heishijiao Street, Shahekou District, Dalian, China Email: [email protected] Supervisors: Guðjón Már Sigurðsson: [email protected] Pamela J. Woods: [email protected] ABSTRACT The Gadget modelling framework was used to build a stock assessment model to analyze lemon sole population dynamics in Icelandic waters and establish its trends in recruitment and fishing mortality. Both age and length estimation by the model fit well with the observed data. Most fish caught were between age 5 to 10, and of length between 25 cm to 40 cm. The highest proportion of the catch was between age 6 and 7. The estimation of the length-age growth curve fit well with the observed commercial data for most of the years. However, the fit was not as good for the survey data, especially for the older fish. The simulated abundance trends showed that the amount of smaller fish has been stable recent years, while the amount of bigger fish (35 cm and larger) has increased in last five years. The simulated trends of the abundance of younger fish did not fit well at the highest abundance values while the fit is better for older fish. The abundances indices of fish between 10-35 cm length were relatively stable, while larger fish (between 35-60 cm) increased noticeably between 2010 to 2018. Estimated fishing mortality had fluctuated between 1990 to 2005 while it has been relatively stable for the last five years around 0.25-0.3. The biomass of mature lemon sole increased from 2,500 tonnes in 1990 to 11,000 tonnes in 2018. Since 1997, recruitment has been variable between 10 to 17 million fish per year. This paper should be cited as: Chen, H. 2020. Stock assessment of Lemon sole (Microstomus kitt) in Icelandic waters using a gadget model. UNESCO GRÓ Fisheries Training Programme, Iceland. Final project. http://www.grocentre.is/ftp/static/fellows/document/Huixia19prf.pdf Chen TABLE OF CONTENTS List of Figures ................................................................................................................ 4 1 Introduction ............................................................................................................ 6 1.1 Icelandic fisheries ............................................................................................ 6 1.2 Lemon sole (Microstomus kitt) fishery in Iceland .......................................... 6 1.3 Objective ......................................................................................................... 8 1.3.1 Specific objectives ................................................................................... 8 2 Literature review ..................................................................................................... 8 2.1 Fisheries management ..................................................................................... 8 2.2 Stock assessment methods .............................................................................. 9 2.3 Gadget model .................................................................................................. 9 2.4 Lemon sole (Microstomus kitt) biology ........................................................ 10 3 Methodology ......................................................................................................... 11 3.1 Study area ...................................................................................................... 11 3.2 Data collection............................................................................................... 11 3.3 Setup of a Gadget run .................................................................................... 12 3.4 Operating model ............................................................................................ 14 3.4.1 General gadget model framework .......................................................... 14 3.4.2 Specifications of the lemon sole model ................................................. 15 3.4.3 Growth ................................................................................................... 16 3.4.4 Natural mortality .................................................................................... 16 3.4.5 Fishing Selectivity ................................................................................. 16 3.4.6 Maturation .............................................................................................. 16 3.4.7 Recruitment ............................................................................................ 17 3.4.8 Likelihood .............................................................................................. 18 3.4.9 Optimization .......................................................................................... 19 4 Results .................................................................................................................. 19 4.1 Population indices ......................................................................................... 19 4.2 Likelihood score ............................................................................................ 20 4.3 Age distribution ............................................................................................. 21 4.4 Length distribution ........................................................................................ 24 4.5 Growth ........................................................................................................... 27 UNESCO GRÓ – Fisheries Training Programme 2 Chen 4.6 Stock proportion ............................................................................................ 30 4.7 Age composition ........................................................................................... 30 4.8 Fishing mortality ........................................................................................... 31 4.9 Biomass ......................................................................................................... 32 4.10 Catch.............................................................................................................. 33 4.11 Recruitment ................................................................................................... 33 5 Discussion ............................................................................................................. 34 5.1 Effectiveness of Gadget in analyzing lemon sole population dynamics in Iceland ...................................................................................................................... 34 5.2 Population dynamics of Icelandic lemon sole ............................................... 35 5.3 Applicability for developing fisheries research in China .............................. 35 Acknowledgement ....................................................................................................... 37 References .................................................................................................................... 38 UNESCO GRÓ – Fisheries Training Programme 3 Chen LIST OF FIGURES Figure 1. Total catch (landings) of lemon sole by fishing gear since 1994 in Icelandic waters. Taken from (MFRI, Lemon sole, MFRI Assessment Reports , 2019). .............................................................................................. 7 Figure 2. The Icelandic ecoregion and subareas (MFRI, ICES Ecosystem Overviews Icelandic Waters Ecoregion, 2017). .......................................... 11 Figure 3. Schematic description of the Gadget model for lemon sole.Lines represent flow from one model component to the other. Red lines represent the flow of model predictions and observations which are utilized in the likelihood. Black lines indicate the consumption of the mature and immature stock components by fleets. Orange line represents the growth from immature to mature stock components. Grey lines indicate the predictions from survey indices to likelihood. .................................................................................... 13 Figure 4. Estimates of the abundance trends of different length bins fish. The dot points are the observed data and the black line is the simulated value. ....... 20 Figure 5. Weighted likelihood score of age-length distribution and length distribution of bottom trawls, demersal seines and survey respectively, and the likelihood of mature proportion of survey. ............................................ 21 Figure 6. Age composition from bottom trawl. The grey lines are the observed data and the simulated age structures are the black lines. ................................... 22 Figure 7. Age composition from the demersal seines. The grey lines are the observed data and the simulated age structure are the black lines. .............. 23 Figure 8. Age composition from the survey. The grey lines are the observed data and the simulated age structure are the black lines. ..................................... 23 Figure 9. Residual bubble plots for predication of age distributions by bottom trawls (the left one), demersal seines (the middle one) and survey fleets (the right one). The red bubble means the positive prediction, the blue bubbles means the negative prediction. ..................................................................... 24 Figure 10. Length composition from the catch of bottom trawls.
Recommended publications
  • Age, Growth and Population Dynamics of Lemon Sole Microstomus Kitt(Walbaum 1792)
    Age, growth and population dynamics of lemon sole Microstomus kitt (Walbaum 1792) sampled off the west coast of Ireland By Joan F. Hannan Masters Thesis in Fish Biology Galway-Mayo Institute of Technology Supervisors of Research Dr. Pauline King and Dr. David McGrath Submitted to the Higher Education and Training Awards Council July 2002 Age, growth and population dynamics of lemon sole Microstomus kitt (Walbaum 1792) sampled off the west coast of Ireland Joan F. Hannan ABSTRACT The age, growth, maturity and population dynamics o f lemon sole (Microstomus kitt), captured off the west coast o f Ireland (ICES division Vllb), were determined for the period November 2000 to February 2002. The maximum age recorded was 14 years. Males o f the population were dominated by 4 year olds, while females were dominated by 5 year olds. Females dominated the sex ratio in the overall sample, each month sampled, at each age and from 22cm in total length onwards (when N > 20). Possible reasons for the dominance o f females in the sex ratio are discussed. Three models were used to obtain the parameters o f the von Bertalanfly growth equation. These were the Ford-Walford plot (Beverton and Holt 1957), the Gulland and Holt plot (1959) and the Rafail (1973) method. Results o f the fitted von Bertalanffy growth curves showed that female lemon sole o ff the west coast o f Ireland grew faster than males and attained a greater size. Male and female lemon sole mature from 2 years o f age onwards. There is evidence in the population o f a smaller asymptotic length (L«, = 34.47cm), faster growth rate (K = 0.1955) and younger age at first maturity, all o f which are indicative o f a decrease in population size, when present results are compared to data collected in the same area 22 years earlier.
    [Show full text]
  • Fish Bulletin 161. California Marine Fish Landings for 1972 and Designated Common Names of Certain Marine Organisms of California
    UC San Diego Fish Bulletin Title Fish Bulletin 161. California Marine Fish Landings For 1972 and Designated Common Names of Certain Marine Organisms of California Permalink https://escholarship.org/uc/item/93g734v0 Authors Pinkas, Leo Gates, Doyle E Frey, Herbert W Publication Date 1974 eScholarship.org Powered by the California Digital Library University of California STATE OF CALIFORNIA THE RESOURCES AGENCY OF CALIFORNIA DEPARTMENT OF FISH AND GAME FISH BULLETIN 161 California Marine Fish Landings For 1972 and Designated Common Names of Certain Marine Organisms of California By Leo Pinkas Marine Resources Region and By Doyle E. Gates and Herbert W. Frey > Marine Resources Region 1974 1 Figure 1. Geographical areas used to summarize California Fisheries statistics. 2 3 1. CALIFORNIA MARINE FISH LANDINGS FOR 1972 LEO PINKAS Marine Resources Region 1.1. INTRODUCTION The protection, propagation, and wise utilization of California's living marine resources (established as common property by statute, Section 1600, Fish and Game Code) is dependent upon the welding of biological, environment- al, economic, and sociological factors. Fundamental to each of these factors, as well as the entire management pro- cess, are harvest records. The California Department of Fish and Game began gathering commercial fisheries land- ing data in 1916. Commercial fish catches were first published in 1929 for the years 1926 and 1927. This report, the 32nd in the landing series, is for the calendar year 1972. It summarizes commercial fishing activities in marine as well as fresh waters and includes the catches of the sportfishing partyboat fleet. Preliminary landing data are published annually in the circular series which also enumerates certain fishery products produced from the catch.
    [Show full text]
  • Recycled Fish Sculpture (.PDF)
    Recycled Fish Sculpture Name:__________ Fish: are a paraphyletic group of organisms that consist of all gill-bearing aquatic vertebrate animals that lack limbs with digits. At 32,000 species, fish exhibit greater species diversity than any other group of vertebrates. Sculpture: is three-dimensional artwork created by shaping or combining hard materials—typically stone such as marble—or metal, glass, or wood. Softer ("plastic") materials can also be used, such as clay, textiles, plastics, polymers and softer metals. They may be assembled such as by welding or gluing or by firing, molded or cast. Researched Photo Source: Alaskan Rainbow STEP ONE: CHOOSE one fish from the attached Fish Names list. Trout STEP TWO: RESEARCH on-line and complete the attached K/U Fish Research Sheet. STEP THREE: DRAW 3 conceptual sketches with colour pencil crayons of possible visual images that represent your researched fish. STEP FOUR: Once your fish designs are approved by the teacher, DRAW a representational outline of your fish on the 18 x24 and then add VALUE and COLOUR . CONSIDER: Individual shapes and forms for the various parts you will cut out of recycled pop aluminum cans (such as individual scales, gills, fins etc.) STEP FIVE: CUT OUT using scissors the various individual sections of your chosen fish from recycled pop aluminum cans. OVERLAY them on top of your 18 x 24 Representational Outline 18 x 24 Drawing representational drawing to judge the shape and size of each piece. STEP SIX: Once you have cut out all your shapes and forms, GLUE the various pieces together with a glue gun.
    [Show full text]
  • WINTER FLOUNDER / Pseudopleuronectes Americanus (Walbaum 1792) / Blackback, Georges Bank Flounder, Lemon Sole, Rough Flounder / Bigelow and Schroeder 1953:276-283
    WINTER FLOUNDER / Pseudopleuronectes americanus (Walbaum 1792) / Blackback, Georges Bank Flounder, Lemon Sole, Rough Flounder / Bigelow and Schroeder 1953:276-283 Description. Body oval, about two and a quarter times as long to base of caudal fin as it is wide, thick-bodied, and with a proportionately broader caudal peduncle and tail than any of the other local small flatfishes (Fig. 305). Mouth small, not gaping back to eye, lips thick and fleshy. Blind side of each jaw armed with one series of close-set incisor-like teeth. Eyed side with only a few teeth, or even toothless. Dorsal fin originates opposite forward edge of upper eye, of nearly equal height throughout its length. Anal fin highest about midway, preceded by a short, sharp spine (postabdominal bone). Pelvic fins alike on both sides of body, separated from long anal fin by a considerable gap. Gill rakers short and conical. Lateral line nearly straight, with a slight bow above pectoral fin. Scales rough on eyed side, including interorbital space; smooth on blind side in juveniles and mature females, rough in mature males when rubbed Georges Bank fish of 63.5 cm, weighing 3.6 kg. The NEFSC from caudal peduncle toward head. An occasional large adult female groundfish bottom trawl survey collected two 64-cm females, one on may also be rough ventrally. 22 October 1986 at 42°67' N, 67°32' W and a second on 15 Apri11997 at 41°01' N, 68°25'W (R. Brown, pers. comm., 25 Sept. Meristics. Dorsal fin rays 59-76; anal fin rays 44-58; pectoral fin 1998).
    [Show full text]
  • Intrinsic Vulnerability in the Global Fish Catch
    The following appendix accompanies the article Intrinsic vulnerability in the global fish catch William W. L. Cheung1,*, Reg Watson1, Telmo Morato1,2, Tony J. Pitcher1, Daniel Pauly1 1Fisheries Centre, The University of British Columbia, Aquatic Ecosystems Research Laboratory (AERL), 2202 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada 2Departamento de Oceanografia e Pescas, Universidade dos Açores, 9901-862 Horta, Portugal *Email: [email protected] Marine Ecology Progress Series 333:1–12 (2007) Appendix 1. Intrinsic vulnerability index of fish taxa represented in the global catch, based on the Sea Around Us database (www.seaaroundus.org) Taxonomic Intrinsic level Taxon Common name vulnerability Family Pristidae Sawfishes 88 Squatinidae Angel sharks 80 Anarhichadidae Wolffishes 78 Carcharhinidae Requiem sharks 77 Sphyrnidae Hammerhead, bonnethead, scoophead shark 77 Macrouridae Grenadiers or rattails 75 Rajidae Skates 72 Alepocephalidae Slickheads 71 Lophiidae Goosefishes 70 Torpedinidae Electric rays 68 Belonidae Needlefishes 67 Emmelichthyidae Rovers 66 Nototheniidae Cod icefishes 65 Ophidiidae Cusk-eels 65 Trachichthyidae Slimeheads 64 Channichthyidae Crocodile icefishes 63 Myliobatidae Eagle and manta rays 63 Squalidae Dogfish sharks 62 Congridae Conger and garden eels 60 Serranidae Sea basses: groupers and fairy basslets 60 Exocoetidae Flyingfishes 59 Malacanthidae Tilefishes 58 Scorpaenidae Scorpionfishes or rockfishes 58 Polynemidae Threadfins 56 Triakidae Houndsharks 56 Istiophoridae Billfishes 55 Petromyzontidae
    [Show full text]
  • An Industrial Survey for Associated Species
    FISHING FOR KNOWLEDGE An industrial survey for associated species Report of Project Phase I by Anne Doeksen and Karin van der Reijden A collaboration between The North Sea Foundation & IMARES Commissioned by EKOFISH Group June 2014 Content 1 Introduction ......................................................................................................................... 3 2 Fisheries Management for associated stocks ............................................................................. 4 2.1 Management of associated species ................................................................................. 4 2.2 Managing associated species under the new CFP .............................................................. 8 2.3 Key insights and Conclusive points ............................................................................... 10 3 Stock assessments ............................................................................................................. 12 3.1 How to do a stock assessment ..................................................................................... 12 3.2 Surveys for stock assessment ...................................................................................... 13 3.3 Data availability and knowledge gaps for associated species ............................................. 14 3.4 Key insights and concluding points ............................................................................... 15 4 References .......................................................................................................................
    [Show full text]
  • Determining the Diet of New Zealand King Shag Using DNA Metabarcoding
    BCBC2019-05 Occurrence of prey species identified from remains in regurgitated pellets from king shags in 2019 and 2020 Progress report Chris Lalas & Rob Schuckard Bird photos – Rob Schuckard Fish photos – The fishes of NZ New Zealand king shag – designated as Nationally Endangered Very small distribution: restricted to Marlborough Sounds Very small but fairly stable population size: estimates from 2020 = 815 individuals and 277 nests 7 sites sampled in 2019 and/or 2020 (red) 6 of the 9 colonies and (green) ADMIRALTY BAY the only roost with ≥ 10 individuals PELORUS SOUND QUEEN CHARLOTTE SOUND Foraging behaviour • Exclusively marine • Solitary • Typical depths 20 – 60 m • Demersal • Target flatfish Source of prey remains: regurgitated pellets Shags regurgitate one pellet daily Pellets contain robust/undigestible prey remains One published king shag diet study: Comprehensive analysis of 22 pellets Diet dominated by witch (Arnoglossus scapha) Our present analysis for 215 pellets Purpose: for comparison with DNA diet analysis Method: restricted to frequency of occurrence = presence/absence of species in pellets Frequency of occurrence overestimates importance of • relatively small species • species taken in relatively small amounts Analysis of prey remains in pellets Mantis shrimp - entire ‘Prey remains analysis’ = ‘Hard parts analysis’ plus soft bits Swimming crab Here examples of Mantis shrimp – claw claw and and 2 phyllopoda carapace decalcified crustacean exoskeletons Theme: broad range in type of prey remains 6 families occur in ≥ 20%
    [Show full text]
  • F Latfishes Families Bothidae, Cvnoalossidae, and F'leuronectidae
    NORTHEAST PAC IF IC F latfishes Families Bothidae, Cvnoalossidae, and F'leuronectidae Ponald E, Kramer a i@i!liam H. Bares Brian C. F'aust + Barry E. Bracken illustrated by Terry Josey Alaska 5ea Grant Col/egeProgram Universityor Alaska Fa>rbanks P.O.Pox 755040 Fairbanks,Aiaska 99775-5040 907! 474-6707 ~ Fax 907! 47a 5285 Alaska Rshenes0eveioprnent Foundation 508 West seoono'Avenue, suite 212 Anonorage.Alaska 99501-2208 Marine Advisory Bulletin No. 47 a 1995 a $20.00 ElmerE. RasmusonLibrary Cataloging-in-Publication Data Guide to northeast Pacific flatfishes: families Bothidae, Cynoglossidae, and Pleuronectidae/by Donald E. Kramer ... Iet al,l Marine advisory bulletin; no. 47! 1. Flatfishes Identification. 2. Flattishes North Pacific Ocean. 3. Bothidae. 4. Cynoglossidae.5, Pleuronectidae. I. Kramer,Donald E. II. AlaskaSea Grant College Program. III. AlaskaFisheries Development Foundation. IV, Series. QL637.9.PSG85 1995 ISBN 1-5 !t2-032-2 Credits Thisbook is the resultof work sponsoredby the Universityof AlaskaSea GrantCollege Program, which is cooperativelysupported by the U.S,Depart- mentof Commerce,NOAA Office of SeaGrant and ExtramuralPrograms, undergrant no. NA4f! RG0104, projects A/7 I -01and A/75-01, and by the Universityof Alaskawith statefunds. The Universityof Alaskais an affirma- tive action/equal opportunity employer and educational institution. SeaGrant is a unique partnership with public and private sectors com- bining research,education, and technologytransfer for public service,This national network of universities meets
    [Show full text]
  • 190913 James Knight Fish Guide CS4
    F I S H G U I D E I N T R O D U C T I O N We've been supplying London's & The South's finest catering establishments for over 108 years and we are now the largest independent fishmonger in London and the South of England. The secret to our success? Doing things right, and doing the right things… This includes building long term relationships with the best fishing fleets and shippers to bring to you the freshest & tastiest seafood, employing class-leading hygiene and temperature control, topped off with the accumulation of over 180 years of combined fish cutting expertise. We are also proud to offer superior and consistently high levels of service to our customers including chef and menu support, advice on sustainability & seasonality, plus adherence to reputation-protecting catch methods. We are also proud to hold a Royal Warrant and in recent customer research 100% of customers of James Knight would recommend us to a valued colleague. Here is our latest Guide to Responsibly Sourced Seafood. We hope you find it useful. F L A T F I S H A flatfish is a member of the order Pleuronectiformes of ray-finned demersal fishes, also called the Heterosomata, sometimes classified as a suborder of Perciformes. In many species, both eyes lie on one side of the head, one or the other migrating through or around the head during development. Some species face their left sides upward, some face their right sides upward, and others face either side upward. Many important food fish are in this order, including the flounders, soles, turbot, plaice, and halibut.
    [Show full text]
  • Kosher Fish List
    Kosher Fish List Cichlids Including: Tilapias Mozambique mouthbrooder Tilapia mossambica; Cichlios; Rio Grande perch This is a consolidated list of the more common Cigarfish See: Jacks varieties, additional types with their latin species Cisco See Trouts name at the JSOR office and at www.jsor.org Coalfish See: Codfish Cobia, cabio, or black bonito Cod, cultus, black, blue, Albacore See: Mackerels or ling. See: Greenlings, Sablefish Amberjack See: Jacks Codfish, Including: Cod, Haddock, Pacific cod; Pollock, Anchovies Including: European anchovy, North of saithe, or coalfish; Walleye Pollock, Hakes; Whiting; California anchovy Blue whiting or poutassou Tomcods or frostfish Angelfish and butterfly fish Coho salmon See: Trouts Barracudas Corbina or Corvina, See: Drums Bass See Sea Basses. Temperate basses, Sunfish, Drums Crapplie See: Sunfish Blackfish See: Carps, Wrasses Blacksmith See: Damselfish Crucian carp See: Carps Blueback See: Flounders, Herrings, Trouts Dolphin fish or mahimahis Not to be confused with the Bluefish or snapper blue Mammal called Dolphin or Porpoise, which is non kosher. Bluegill See: Sunfish Drums and croakers, Including: Seatrouts and Bocaccio See: Scorpionfish carvinas; Weakfish, White seabass, Croakers, Silver Bonefish perch, White or King croaker; Black croaker Spotfin Bonito See: Cobia, Mackerels croaker); Yellowfin croaker, Drums; Red drum or channel bass Freshwater drum, Kingfish or king Bowfin Bowfish, Freshwater dogfish, or grindle whitings California corbina, spot or lafayette; Queenfish Bream See: Carps, Atlantic Pomfret, P Cubbyu or ribbon fish Brill See: Flounder Flounders Including: Summer flounder or fluke, Yellowtail flounder, Winter flounder, lemon sole, Buffalo Fishes See: Suckers Halibuts; "Dover" sole, "English" sole, Yellowfin sole Burbot See: Codfish Pacific turbots, Curlfin turbot or Diamond turbot, ButterFish Pacific pompano, harvestfish Greenland turbot or halibut Brill (scophthalmus rhomus).
    [Show full text]
  • Kosher Fish List.Xlsx
    Below is a comprehensive list of Kosher fish. A Albacore See: Mackerel Alewife See: Herring Amberjack See: Jack Anchovies (Family Engraulidae). Including: European anchovy (Engraulis encrasciolus), North Angelfish and butterfly fish (Family Chaetodontidae). Including: Angelfish (Holacanthus Atlantic Pomfret or Ray's Bream (Brama brama) B Ballyhoo See: Flyingfish Barracuda (Family Sphyraenidae) Including: Barracuda and kakus (Sphyraena species). Bass, Sea Bass Temperate bass, Sunfish, Drums Bigeye (Family Priacanthidae). Including: Bigeyes or aweoweos (Priacanthus species). Blackfish See: Carp, Wrass Blacksmith See: Damselfish Blueback See: Flounder, Herring, Trout Bluefish or snapper blue (Pomatomus saltarix) Bluegill See: Sunfish Bocaccio See: Scorpionfish Bombay duck (Harpadeon nehereus) Bonefish (Albula vulpes) Bonito See: Cobia, Mackerel Bowfin Freshwater dogfish, or grindle (Amia calva) Bream See: Carp, Atlantic pomfret, Porgie Brill See: Flounder Buffalo fish See: Sucker ButterFish (Family Stromateidae), Including: Butterfish (Peprilus tracanthus); Pacific pompano (Peprilus similimus); harvestfish (Peprilus species) Butterfly fish See: Angelfish C http://www.kashrut.com/articles/fish/ Cabrilla See: Sea Bass Calico bass See: Sunfish Capelin See: Smelt Carp and minnow (Family Cyprinidae), Including: the carp, leather carp, mirror carp (Cyprinus carpio); Crucian carp (Carassius carassius); Goldfish (Carassius auratus); tench (Tinca tinca); Splittail (Pogonichthys macrolepidotus); Squawfish (Ptychocheilus species); Scramento Carosucker
    [Show full text]
  • Two Sides to Every Flatfish
    Sherkin Comment 2003 - Issue No. 35....................................................................................................................................................................Page 11 Two Sides to Every Flatfish are placed (ocular side) is usually of abnormalities from a significant Photos: © Declan Quigley By Declan T. Quigley Figure 1: Partial albinism in Black Sole coloured, while the opposite side area of Irish coastal waters. (ocular side) MORE than 600 species of flatfish (blind side) is usually unpigmented. Albinism, which appears to be (Order: Pleuronectiformes) have In general, the percentage of con- relatively uncommon, is usually been described. The group has been genital abnormalities occurring in incomplete (partial albinism); part remarkably successful in colonising a fish is considered to be highest of the ocular side retaining its nor- wide range of habitats, from Arctic among the Pleuronectiformes, possi- mal colour. The condition appears to seas to the tropics, and from shallow bly due to the complex occur most frequently in black sole estuarine waters (including freshwa- morphological changes which occur (Figure 1) in Irish waters. Albinism, ter) down to considerable ocean during larval metamorphosis. How- and particularly partial albinism depths (≥1830m). However, they ever, it should be noted that several (13.6%), has accounted for about appear to be absent from the deeper other factors can give rise to abnor- 16% of all the anomalous flatfish abyssal and hadal zones. malities e.g. disease, nutritional known to have been recorded in Figure 4: Partially ambicoloured turbot, Only 22 species of flatfish have deficiencies, injury and pollution. Irish waters to date (44). blind side above and ocular side below been recorded from Irish waters Some species of flatfish appear to More commonly, the blind side (Table 1).
    [Show full text]