US Atlantic-Flatfish
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Redalyc.A Review of the Flatfish Fisheries of the South Atlantic Ocean
Revista de Biología Marina y Oceanografía ISSN: 0717-3326 [email protected] Universidad de Valparaíso Chile Díaz de Astarloa, Juan M. A review of the flatfish fisheries of the south Atlantic Ocean Revista de Biología Marina y Oceanografía, vol. 37, núm. 2, diciembre, 2002, pp. 113-125 Universidad de Valparaíso Viña del Mar, Chile Available in: http://www.redalyc.org/articulo.oa?id=47937201 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista de Biología Marina y Oceanografía 37 (2): 113 - 125, diciembre de 2002 A review of the flatfish fisheries of the south Atlantic Ocean Una revisión de las pesquerías de lenguados del Océano Atlántico sur Juan M. Díaz de Astarloa1 2 1CONICET, Departamento de Ciencias Marinas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, 7600 Mar del Plata, Argentina. [email protected] 2 Current address: Laboratory of Marine Stock-enhancement Biology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, kitashirakawa-oiwakecho, sakyo-ku, Kyoto, 606-8502 Japan. [email protected] Resumen.- Se describen las pesquerías de lenguados del Abstract.- The flatfish fisheries of the South Atlantic Atlántico sur sobre la base de series de valores temporales de Ocean are described from time series of landings between desembarcos pesqueros entre los años 1950 y 1998, e 1950 and 1998 and available information on species life información disponible sobre características biológicas, flotas, history, fleets and gear characteristics, and economical artes de pesca e importancia económica de las especies importance of commercial species. -
FISH LIST WISH LIST: a Case for Updating the Canadian Government’S Guidance for Common Names on Seafood
FISH LIST WISH LIST: A case for updating the Canadian government’s guidance for common names on seafood Authors: Christina Callegari, Scott Wallace, Sarah Foster and Liane Arness ISBN: 978-1-988424-60-6 © SeaChoice November 2020 TABLE OF CONTENTS GLOSSARY . 3 EXECUTIVE SUMMARY . 4 Findings . 5 Recommendations . 6 INTRODUCTION . 7 APPROACH . 8 Identification of Canadian-caught species . 9 Data processing . 9 REPORT STRUCTURE . 10 SECTION A: COMMON AND OVERLAPPING NAMES . 10 Introduction . 10 Methodology . 10 Results . 11 Snapper/rockfish/Pacific snapper/rosefish/redfish . 12 Sole/flounder . 14 Shrimp/prawn . 15 Shark/dogfish . 15 Why it matters . 15 Recommendations . 16 SECTION B: CANADIAN-CAUGHT SPECIES OF HIGHEST CONCERN . 17 Introduction . 17 Methodology . 18 Results . 20 Commonly mislabelled species . 20 Species with sustainability concerns . 21 Species linked to human health concerns . 23 Species listed under the U .S . Seafood Import Monitoring Program . 25 Combined impact assessment . 26 Why it matters . 28 Recommendations . 28 SECTION C: MISSING SPECIES, MISSING ENGLISH AND FRENCH COMMON NAMES AND GENUS-LEVEL ENTRIES . 31 Introduction . 31 Missing species and outdated scientific names . 31 Scientific names without English or French CFIA common names . 32 Genus-level entries . 33 Why it matters . 34 Recommendations . 34 CONCLUSION . 35 REFERENCES . 36 APPENDIX . 39 Appendix A . 39 Appendix B . 39 FISH LIST WISH LIST: A case for updating the Canadian government’s guidance for common names on seafood 2 GLOSSARY The terms below are defined to aid in comprehension of this report. Common name — Although species are given a standard Scientific name — The taxonomic (Latin) name for a species. common name that is readily used by the scientific In nomenclature, every scientific name consists of two parts, community, industry has adopted other widely used names the genus and the specific epithet, which is used to identify for species sold in the marketplace. -
Pleuronectidae, Poecilopsettidae, Achiridae, Cynoglossidae
1536 Glyptocephalus cynoglossus (Linnaeus, 1758) Pleuronectidae Witch flounder Range: Both sides of North Atlantic Ocean; in the western North Atlantic from Strait of Belle Isle to Cape Hatteras Habitat: Moderately deep water (mostly 45–330 m), deepest in southern part of range; found on mud, muddy sand or clay substrates Spawning: May–Oct in Gulf of Maine; Apr–Oct on Georges Bank; Feb–Jul Meristic Characters in Middle Atlantic Bight Myomeres: 58–60 Vertebrae: 11–12+45–47=56–59 Eggs: – Pelagic, spherical Early eggs similar in size Dorsal fin rays: 97–117 – Diameter: 1.2–1.6 mm to those of Gadus morhua Anal fin rays: 86–102 – Chorion: smooth and Melanogrammus aeglefinus Pectoral fin rays: 9–13 – Yolk: homogeneous Pelvic fin rays: 6/6 – Oil globules: none Caudal fin rays: 20–24 (total) – Perivitelline space: narrow Larvae: – Hatching occurs at 4–6 mm; eyes unpigmented – Body long, thin and transparent; preanus length (<33% TL) shorter than in Hippoglossoides or Hippoglossus – Head length increases from 13% SL at 6 mm to 22% SL at 42 mm – Body depth increases from 9% SL at 6 mm to 30% SL at 42 mm – Preopercle spines: 3–4 occur on posterior edge, 5–6 on lateral ridge at about 16 mm, increase to 17–19 spines – Flexion occurs at 14–20 mm; transformation occurs at 22–35 mm (sometimes delayed to larger sizes) – Sequence of fin ray formation: C, D, A – P2 – P1 – Pigment intensifies with development: 6 bands on body and fins, 3 major, 3 minor (see table below) Glyptocephalus cynoglossus Hippoglossoides platessoides Total myomeres 58–60 44–47 Preanus length <33%TL >35%TL Postanal pigment bars 3 major, 3 minor 3 with light scattering between Finfold pigment Bars extend onto finfold None Flexion size 14–20 mm 9–19 mm Ventral pigment Scattering anterior to anus Line from anus to isthmus Early Juvenile: Occurs in nursery habitats on continental slope E. -
Cynoglossus Westraliensis, a New Species of Tonguesole from Western Australia (Teleostei: Cynoglossidae)
FishTaxa (2019) 4(2): 31-40 Journal homepage: www.fishtaxa.com © 2019 FISHTAXA. All rights reserved Cynoglossus westraliensis, a new species of tonguesole from Western Australia (Teleostei: Cynoglossidae) Ronald FRICKE* Im Ramstal 76, 97922 Lauda-Königshofen, Germany. Corresponding author: *E-mail: [email protected] Abstract The Western Australian deep-water tonguesole Cynoglossus westraliensis n. sp. is described from off North West Cape, Western Australia, based on two specimens collected at a depth of 250 metres. The new species is characterised within the Cynoglossus carpenteri species group by the snout relatively long, bluntly rounded; head length 21-25% of SL, snout length 9.3-11.6% of SL (43.4-46.5% of HL); eyes not contiguous; corner of mouth nearer to posterior edge of opercle than to tip of snout; ocular side with 3 lateral lines, midlateral-line scales 111-115, scale rows between midlateral and dorsolateral lines 20, blind side without lateral lines; ctenoid scales on ocular side, cycloid scales on blind side; dorsal-fin-rays 120-126; anal-fin rays 105-106; caudal-fin rays 8; gill chamber and peritoneum black. A key to the species of the Cynoglossus carpenteri species-group is presented. Keywords: Tonguesole, Cynoglossidae, Western Australia, New species, Identification key, Distribution. Zoobank: urn:lsid:zoobank.org:pub:C72DC2E5-9875-4DA0-9313-7967FB81C5C9 urn:lsid:zoobank.org:act:97081CA2-8CBA-4D70-8732-8BEA54017555 Introduction Tonguesoles of the family Cynoglossidae are small to medium sized benthic fishes, which are common in marine waters from tidal pools to the continental shelf and upper slope to a maximum depth of 1,500 m (Munroe 2001). -
Taxonomical Identification and Diversity of Flat Fishes from Mudasalodai Fish Landing Centre (Trawl by Catch), South East Coast of India
ISSN: 2642-9020 Review Article Journal of Marine Science Research and Oceanography Taxonomical Identification and Diversity of Flat Fishes from Mudasalodai Fish Landing Centre (Trawl by Catch), South East Coast of India Gunalan B* and E Lavanya *Corresponding author B Gunalan, PG & Research Department of Zoology, Thiru Kollanjiyapar PG & Research Department of Zoology, Thiru Kollanjiyapar Government Arts College, Viruthachalam. Cuddalore-Dt, Tamilnadu, India Government Arts College, Viruthachalam Submitted: 31 Jan 2020 Accepted: 05 Feb 2020; Published: 07 Mar 2020 Abstract Bycatch and discards are common and pernicious problems faced by all fisheries globally. It is recognized as unavoidable in any kind of fishing but the quantity varies according to the gear operated. In tropical countries like India, bycatch issue is more complex due to the multi-species and multi-gear nature of the fisheries. Among the different fishing gears, trawling accounts for a higher rate of bycatch, due to comparatively low selectivity of the gear. A study was conducted during June 2018 - Dec 2019 in the Mudasalodai fish landing centre, southeast coast of India. During the study period six sp. of flat fishes collected and identified taxonomically. Keywords: Flat fish, tongue fish, sole fish, bycatch, fish landing, waters of Parangipettai. The study was conducted for a period of diversity, taxonomy one and half year (June 2018 - Dec 2019), no sampling was done in the month of May, due to the fishing holiday in the coast of Introduction Tamil Nadu. The collected flat fishes were kept in ice boxes and Fish forms an important source of food and is man’s important transferred to the laboratory and washed in tap water. -
The State of Mediterranean and Black Sea Fisheries 2018
Food and Agriculture General Fisheries Commission for the Mediterranean Organization of the Commission générale des pêches United Nations pour la Méditerranée ISSN 2413-6905 THE STATE OF MEDITERRANEAN AND BLACK SEA FISHERIES 2018 Reference: FAO. 2018. The State of Mediterranean and Black Sea Fisheries General Fisheries Commission for the Mediterranean. Rome, Italy. pp. 164. THE STATE OF MEDITERRANEAN AND BLACK SEA FISHERIES 2018 FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2018 Required citation: FAO. 2018. The State of Mediterranean and Black Sea Fisheries. General Fisheries Commission for the Mediterranean. Rome. 172 pp. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specifc companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily refect the views or policies of FAO. ISBN 978-92-5-131152-3 © FAO, 2018 Some rights reserved. This work is made available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo/legalcode/legalcode). -
Pleuronectidae
FAMILY Pleuronectidae Rafinesque, 1815 - righteye flounders [=Heterosomes, Pleronetti, Pleuronectia, Diplochiria, Poissons plats, Leptosomata, Diprosopa, Asymmetrici, Platessoideae, Hippoglossoidinae, Psettichthyini, Isopsettini] Notes: Hétérosomes Duméril, 1805:132 [ref. 1151] (family) ? Pleuronectes [latinized to Heterosomi by Jarocki 1822:133, 284 [ref. 4984]; no stem of the type genus, not available, Article 11.7.1.1] Pleronetti Rafinesque, 1810b:14 [ref. 3595] (ordine) ? Pleuronectes [published not in latinized form before 1900; not available, Article 11.7.2] Pleuronectia Rafinesque, 1815:83 [ref. 3584] (family) Pleuronectes [senior objective synonym of Platessoideae Richardson, 1836; family name sometimes seen as Pleuronectiidae] Diplochiria Rafinesque, 1815:83 [ref. 3584] (subfamily) ? Pleuronectes [no stem of the type genus, not available, Article 11.7.1.1] Poissons plats Cuvier, 1816:218 [ref. 993] (family) Pleuronectes [no stem of the type genus, not available, Article 11.7.1.1] Leptosomata Goldfuss, 1820:VIII, 72 [ref. 1829] (family) ? Pleuronectes [no stem of the type genus, not available, Article 11.7.1.1] Diprosopa Latreille, 1825:126 [ref. 31889] (family) Platessa [no stem of the type genus, not available, Article 11.7.1.1] Asymmetrici Minding, 1832:VI, 89 [ref. 3022] (family) ? Pleuronectes [no stem of the type genus, not available, Article 11.7.1.1] Platessoideae Richardson, 1836:255 [ref. 3731] (family) Platessa [junior objective synonym of Pleuronectia Rafinesque, 1815, invalid, Article 61.3.2 Hippoglossoidinae Cooper & Chapleau, 1998:696, 706 [ref. 26711] (subfamily) Hippoglossoides Psettichthyini Cooper & Chapleau, 1998:708 [ref. 26711] (tribe) Psettichthys Isopsettini Cooper & Chapleau, 1998:709 [ref. 26711] (tribe) Isopsetta SUBFAMILY Atheresthinae Vinnikov et al., 2018 - righteye flounders GENUS Atheresthes Jordan & Gilbert, 1880 - righteye flounders [=Atheresthes Jordan [D. -
Greenland Turbot Assessment
6HFWLRQ STOCK ASSESSMENT OF GREENLAND TURBOT James N. Ianelli, Thomas K. Wilderbuer, and Terrance M. Sample 6XPPDU\ Changes to this year’s assessment in the past year include: 1. new summary estimates of retained and discarded Greenland turbot by different target fisheries, 2. update the estimated catch levels by gear type in recent years, and 3. new length frequency and biomass data from the 1998 NMFS eastern Bering Sea shelf survey. Conditions do not appear to have changed substantively over the past several years. For example, the abundance of Greenland turbot from the eastern Bering Sea (EBS) shelf-trawl survey has found only spotty quantities with very few small fish that were common in the late 1970s and early 1980s. The majority of the catch has shifted to longline gear in recent years. The assessment model analysis was similar to last year but with a slightly higher estimated overall abundance. We attribute this to a slightly improved fit to the longline survey data trend. The target stock size (B40%, female spawning biomass) is estimated at about 139,000 tons while the projected 1999 spawning biomass is about 110,000 tons. The adjusted yield projection from F40% computations is estimated at 20,000 tons for 1999, and increase of 5,000 from last year’s ABC. Given the continued downward abundance trend and no sign of recruitment to the EBS shelf, extra caution is warranted. We therefore recommend that the ABC be set to 15,000 tons (same value as last year). As additional survey information become available and signs of recruitment (perhaps from areas other than the shelf) are apparent, then we believe that the full ABC or increases in harvest may be appropriate for this species. -
Atlantic Halibut of the Gulf of St. Lawrence (Divisions 4RST)
Fisheries and Oceans Pêches et Océans Canada Canada Science Sciences DFO Science Laurentian Region Stock Status Report A4-02 (2000) 52 3K Québec 50 4S 4R Terre-Neuve Québec 48 4T 3L Nouveau-Brunswick 3Pn 4Vn 3Ps Atlantic Halibut of the Gulf of 46 St. Lawrence (Divisions 4RST) 44 Background The Atlantic halibut of divisions 4RST can be found 4X 4W 4Vs 3O 42 throughout the Estuary and Gulf of St. Lawrence. In the 70 68 66 64 62 60 58 56 54 52 northern Gulf, they are more abundant in the Esquiman, Laurentian and Anticosti channels, at depths of 200 m and over. In the southern Gulf, the highest concentrations are Figure 1. Map of the Gulf of St. Lawrence and found in shallower water (less than 100 m) near the Miscou adjacent regions showing NAFO divisions 4RST. Bank, north of Prince Edward Island, northwest of Cape Breton Island and around the Magdalen Islands. This species grows fast and continuously, at a mean rate of Summary about 7.5–8.5 cm per year (Figure 2). The growth rate for • Since 1995, mean annual landings of males and females is comparable, although female halibut reach a larger maximum size than males. Based on Atlantic halibut have been around 275 t, observations made during scientific trawl surveys twice the mean annual landings for conducted in January and May, it appears that the Gulf 1992–95 (135 t), but comparable to those halibut is able to spawn during those periods. of the late 1980s. They are still well The high landings of Atlantic halibut made during the first below the values of 1000 t and over half of the 20th century indicate that the Gulf stock was regularly recorded during the first half of under very strong fishing pressure at the time. -
Fixed Gear Recommendations for the Cumberland Sound Greenland Halibut Fishery
Canadian Science Advisory Secretariat Central and Arctic Region Science Response 2008/011 FIXED GEAR RECOMMENDATIONS FOR THE CUMBERLAND SOUND GREENLAND HALIBUT FISHERY Context In a letter dated March 14, 2008, the Nunavut Wildlife Management Board (NWMB) requested Fisheries and Oceans Canada (DFO) Science advice on ways Greenland halibut fishing could be conducted in Cumberland Sound such that conservation concerns with non-directed by- catch of marine mammals and Greenland sharks are minimized or alleviated. On March 31, 2008, Fisheries and Aquaculture Management (FAM) submitted a request to Science for advice to address this request. Given the response was needed prior to the open-water fishing season (July 2008) and since the NWMB is the final advisory body for this request, DFO Central and Arctic Science determined that a Special Science Response Process would be used. Background The Cumberland Sound Greenland halibut (turbot) fishery began in 1986 and has been traditionally exploited during the winter months using longline gear set on the bottom through holes cut in the ice. Fishing typically takes place along a deep trench (>500 m) that extends toward Imigen Island and Drum Islands (Fig. 1). In 2005, a new management zone was established in Cumberland Sound with a Total Allowable Catch (TAC) of 500 t separate from the Northwest Atlantic Fisheries Organization (NAFO) Division 0B TAC. Catches in the winter fishery peaked in 1992 at 430 t then declined to levels below 100 t through the late 1990s and peaked again at 245 t in 2003. However, in recent years catches have declined significantly with harvests of 9 t, 70 t and 3 t for 2005, 2006 and 2007 respectively. -
Analysis of the Effects of Marine Stewardship Council Fishery Certification on Seabird Conservation
Analysis of the Effects of Marine Stewardship Council Fishery Certification on Seabird Conservation Fisheries Certified February 2012 – April 2013 Black-footed Albatross: George Wallace, ABC White-faced Storm-petrel: Luke Seitz Sooty Shearwater: Greg Lavaty Scripps’s Murrelets: Peter LaTourrette David A. Wiedenfeld, Ph.D. American Bird Conservancy 646;"Nqwfqwp"Cxg0"̋"R0Q0"Dqz"46; The Plains, VA 20198 USA Vgn<"762/475/79:2"̋"Hcz<"762/475/79:4 www.abcbirds.org 25 April 2013 Table of Contents INTRODUCTION......................................................................................................................... 5 METHODS .................................................................................................................................... 5 CONCLUSIONS ........................................................................................................................... 7 RECOMMENDATIONS .............................................................................................................. 8 ACKNOWLEDGMENTS ............................................................................................................ 9 POTENTIALLY HIGH RISK FISHERIES ............................................................................ 11 British Columbia Chum Salmon Fisheries ......................................................................... 13 FIUN Barents and Norwegian Seas Cod and Haddock Fishery ......................................... 17 POTENTIALLY MEDIUM RISK FISHERIES ..................................................................... -
Plaice (Pleuronectes Platessä) Contents
1-group plaice (Pleuronectes platessä) Contents Acknowledgements:............................................................................................................ 1 Abstract:.............................................................................................................................3 Chapter 1: General introduction.....................................................................................................4 Chapter 2: Fin-ray count variation in 0-group flatfish: plaice (Pleuronectesplatessa (L.)) and flounder (Platichthys flesus ( L.)) on the west coast of Ireland..............................15 Chapter 3: Variation in the fin ray counts of 0-group turbot (Psetta maxima L.) and brill (Scophthalmus rhombus L.) on the west coast of Ireland: 2006-2009.......................... 28 Chapter 4: Annual and spatial variation in the abundance length and condition of turbot (.Psetta maxima L.) on nursery grounds on the west coast of Ireland: 2000-2007.........41 Chapter 5: Variability in the early life stages of juvenile plaice (.Pleuronectes platessa L.) on west of Ireland nursery grounds; 2000 - 2007........................................................64 Chapter 6: The early life history of turbot (Psetta maxima L.) on nursery grounds along the west coast of Ireland: 2007 -2009, as described by otolith microstructure.............85 Chapter 7: The feeding ecology of 0-group turbot (Psetta maxima L.) and brill (Scophthalmus rhombus L.) on Irish west coast nursery grounds.................................96 Chapter