Pleuronectidae

Total Page:16

File Type:pdf, Size:1020Kb

Pleuronectidae FAMILY Pleuronectidae Rafinesque, 1815 - righteye flounders [=Heterosomes, Pleronetti, Pleuronectia, Diplochiria, Poissons plats, Leptosomata, Diprosopa, Asymmetrici, Platessoideae, Hippoglossoidinae, Psettichthyini, Isopsettini] Notes: Hétérosomes Duméril, 1805:132 [ref. 1151] (family) ? Pleuronectes [latinized to Heterosomi by Jarocki 1822:133, 284 [ref. 4984]; no stem of the type genus, not available, Article 11.7.1.1] Pleronetti Rafinesque, 1810b:14 [ref. 3595] (ordine) ? Pleuronectes [published not in latinized form before 1900; not available, Article 11.7.2] Pleuronectia Rafinesque, 1815:83 [ref. 3584] (family) Pleuronectes [senior objective synonym of Platessoideae Richardson, 1836; family name sometimes seen as Pleuronectiidae] Diplochiria Rafinesque, 1815:83 [ref. 3584] (subfamily) ? Pleuronectes [no stem of the type genus, not available, Article 11.7.1.1] Poissons plats Cuvier, 1816:218 [ref. 993] (family) Pleuronectes [no stem of the type genus, not available, Article 11.7.1.1] Leptosomata Goldfuss, 1820:VIII, 72 [ref. 1829] (family) ? Pleuronectes [no stem of the type genus, not available, Article 11.7.1.1] Diprosopa Latreille, 1825:126 [ref. 31889] (family) Platessa [no stem of the type genus, not available, Article 11.7.1.1] Asymmetrici Minding, 1832:VI, 89 [ref. 3022] (family) ? Pleuronectes [no stem of the type genus, not available, Article 11.7.1.1] Platessoideae Richardson, 1836:255 [ref. 3731] (family) Platessa [junior objective synonym of Pleuronectia Rafinesque, 1815, invalid, Article 61.3.2 Hippoglossoidinae Cooper & Chapleau, 1998:696, 706 [ref. 26711] (subfamily) Hippoglossoides Psettichthyini Cooper & Chapleau, 1998:708 [ref. 26711] (tribe) Psettichthys Isopsettini Cooper & Chapleau, 1998:709 [ref. 26711] (tribe) Isopsetta SUBFAMILY Atheresthinae Vinnikov et al., 2018 - righteye flounders GENUS Atheresthes Jordan & Gilbert, 1880 - righteye flounders [=Atheresthes Jordan [D. S.] & Gilbert [C. H.], 1880:51] Notes: [ref. 2366]. Fem. Platysomatichthys stomias Jordan & Gilbert, 1880. Type by original designation (also monotypic). Sometimes misspelled Atherestes. •Valid as Atheresthes Jordan & Gilbert, 1880 -- (Norman 1934:286 [ref. 6893], Ahlstrom et al. 1984:643 [ref. 13641], Sakamoto 1984:208 [ref. 5273], Sakamoto in Masuda et al. 1984:351 [ref. 6441], Lindberg & Fedorov 1993:69 [ref. 21500], Suzuki et al. 2001:39 [ref. 25386], Mecklenburg et al. 2002:820 [ref. 25968], Evseenko 2003:S59 [ref. 28535], Evseenko 2004:3 [ref. 27606], Mecklenburg et al. 2011:131 [ref. 31212], Parin et al. 2014:527 [ref. 33547]). Current status: Valid as Atheresthes Jordan & Gilbert, 1880. Pleuronectidae: Atheresthinae Species Atheresthes evermanni Jordan & Starks, 1904 - Kamchatka flounder [=Atheresthes evermanni Jordan [D. S.] & Starks [E. C.], 1904:621, Pl. 5 (fig. 1), Reinhardtius oleosus Tanaka [S.], 1918:226] Notes: [Bulletin of the U. S. Fish Commission v. 22 [1902]; ref. 2526] Matsushima Bay, Japan. Current status: Valid as Atheresthes evermanni Jordan & Starks, 1904. Pleuronectidae: Atheresthinae. Distribution: North Pacific. Habitat: marine. (oleosus) [Dobutsugaku Zasshi = Zoological Magazine Tokyo v. 30 (no. 356); ref. 17357] Tokyo fish market, probably from Iwate [Ibaraki] Prefecture, Japan. Current status: Synonym of Atheresthes evermanni Jordan & Starks, 1904. Pleuronectidae: Atheresthinae. Habitat: marine. Species Atheresthes stomias (Jordan & Gilbert, 1880) - arrowtooth flounder [=Platysomatichthys stomias Jordan [D. S.] & Gilbert [C. H.], 1880:301] Notes: [Proceedings of the United States National Museum v. 3 (no. 152); ref. 10581] Just outside the Golden Gate Bridge (obtained at San Francisco market), California, U.S.A. Current status: Valid as Atheresthes stomias (Jordan & Gilbert, 1880). Pleuronectidae: Atheresthinae. Distribution: North Pacific. Habitat: marine. ********************************************************************************************************************************************** SUBFAMILY Pleuronichthyinae Vinnikov et al., 2018 - righteye flounders GENUS Pleuronichthys Girard, 1854 - righteye flounders [=Pleuronichthys Girard [C. F.], 1854:139, Heteroprosopon Bleeker [P.], 1862:429, Hypsopsetta Gill [T. N.], 1862:330] Notes: [ref. 1817]. Masc. Pleuronichthys coenosus Girard, 1854. Type by monotypy. •Valid as Pleuronichthys Girard, 1854 -- (Norman 1934:317 [ref. 6893], Fitch 1963 [ref. 21219], Ahlstrom et al. 1984:643 [ref. 13641], Sakamoto 1984:209 [ref. 5273], Sakamoto in Masuda et al. 1984:352 [ref. 6441], Lindberg & Fedorov 1993:152 [ref. 21500], Li & Wang 1995:238 [ref. 16193], Cooper & Chapleau 1998:711 [ref. 26711], Mecklenburg et al. 2002:821 [ref. 25968], Evseenko 2003:S68 [ref. 28535], Evseenko 2004:12 [ref. 27606], Suzuki et al. 2009:276[ref. 30301], Yokogawa & Watanabe 2011:24 [ref. 31146], Parin et al. 2014:544 [ref. 33547]). Current status: Valid as Pleuronichthys Girard, 1854. Pleuronectidae: Pleuronichthyinae. (Heteroprosopon) [ref. 388]. Neut. Platessa cornuta Temminck & Schlegel, 1846. Type by monotypy. •Synonym of Pleuronichthys Girard, 1854 -- (Norman 1934:317 [ref. 6893], Lindberg & Fedorov 1993:152 [ref. 21500], Li & Wang 1995:238 [ref. 16193], Evseenko 2003:S68 [ref. 28535], Evseenko 2004:12 [ref. 27606], Parin et al. 2014:544 [ref. 33547]). Current status: Synonym of Pleuronichthys Girard, 1854. Pleuronectidae: Pleuronichthyinae. (Hypsopsetta) [Proceedings of the Academy of Natural Sciences of Philadelphia v. 14; ref. 1668] Fem. Pleuronichthys guttulatus Girard, 1856. Type by monotypy. •Valid as Hypsopsetta Gill, 1862 -- (Norman 1934:315 [ref. 6893], Ahlstrom et al. 1984:643 [ref. 13641], Sakamoto 1984:209 [ref. 5273], Lindberg & Fedorov 1993:69 [ref. 21500], Evseenko 2004:7 [ref. 27606]). •Synonym of Pleuronichthys Girard, 1854 -- (Vinnikov et al. 2018:159 [ref. 35844]). Current status: Synonym of Pleuronichthys Girard, 1854. Pleuronectidae: Pleuronichthyinae. Species Pleuronichthys coenosus Girard, 1854 - C-O sole [=Pleuronichthys coenosus Girard [C. F.], 1854:139, Pleuronichthys nephelus Starks [E. C.] & Thompson [W. F.], 1910:282, Fig. 1] Notes: [Proceedings of the Academy of Natural Sciences of Philadelphia v. 7; ref. 1817] San Francisco, California, U.S.A. Current status: Valid as Pleuronichthys coenosus Girard, 1854. Pleuronectidae: Pleuronichthyinae. Distribution: Eastern North Pacific. Habitat: marine. (nephelus) [Proceedings of the United States National Museum v. 38 (no. 1744); ref. 10117] San Juan Islands, Puget Sound, Washington, U.S.A. Current status: Synonym of Pleuronichthys coenosus Girard, 1854. Pleuronectidae: Pleuronichthyinae. Habitat: marine. Species Pleuronichthys cornutus (Temminck & Schlegel, 1846) - ridge-eyed flounder [=Platessa cornuta Temminck [C. J.] & Schlegel [H.], 1846:179, Pl. 92 (fig. 1), Pleuronichthys japonicus Suzuki [S.], Kawashima [T.] & Nakabo [T.], 2009:277, Figs. 1a-c, e, f, 2a-e] Pleuronichthys lighti Wu [H.-W.], 1929:66, Fig. 54] Notes: [Fauna Japonica Parts 10-14; ref. 4374] Japan. Current status: Valid as Pleuronichthys cornutus (Temminck & Schlegel, 1846). Pleuronectidae: Pleuronichthyinae. Distribution: Western North Pacific. Habitat: marine. (japonicus) [Ichthyological Research v. 56 (no. 3); ref. 30301] Off Hamada, ca. 35°22'N, 132°15'E, Shimane Prefecture, Japan. Current status: Synonym of Pleuronichthys cornutus (Temminck & Schlegel, 1846). Pleuronectidae: Pleuronichthyinae. Distribution: Sea of Japan and Pacific coast of Japan, to southern East China Sea and Seto Inland Sea [if valid]. Habitat: marine. Species Pleuronichthys decurrens Jordan & Gilbert, 1881 - curlfin flounder [=Pleuronichthys decurrens Jordan [D. S.] & Gilbert [C. H.] 1881:453] Notes: [Proceedings of the United States National Museum v. 3 (no. 173) [v. for 1880]; ref. 12598] Point Reyes and the Farallons, California, U.S.A. Current status: Valid as Pleuronichthys decurrens Jordan & Gilbert 1881. Pleuronectidae: Pleuronichthyinae. Distribution: Eastern North Pacific. Habitat: marine. Species Pleuronichthys guttulatus Girard, 1856 - guttulatus righteye flounder [=Pleuronichthys guttulatus Girard [C. F.], 1856:137, Parophrys ayresii Günther [A.], 1862:456] Notes: [Proceedings of the Academy of Natural Sciences of Philadelphia v. 8; ref. 1809] Tomales Bay, California, U.S.A. Current status: Valid as Pleuronichthys guttulatus (Girard, 1856). Pleuronectidae: Pleuronichthyinae. Distribution: Eastern Pacific. Habitat: brackish, marine. Species Pleuronichthys lighti Wu, 1929 - Light's flounder [=Pleuronichthys lighti Wu [H.-W.], 1929:66, Fig. 54] Notes: [Contributions from the Biological Laboratory of the Science Society of China. (Zoological Series) v. 5 (no. 4); ref. 17843] Island of Amoy or vicinity. Current status: Valid as Pleuronichthys lighti Wu, 1929. Pleuronectidae: Pleuronichthyinae. Distribution: East Asia. Habitat: marine. Species Pleuronichthys ocellatus Starks & Thompson, 1910 - ocellated turbot [=Pleuronichthys ocellatus Starks [E. C.] & Thompson [W. F.], 1910:285, Fig. 2] Notes: [Proceedings of the United States National Museum v. 38 (no. 1744); ref. 10117] 31°21'N, 113°49'W, Gulf of California, Mexico, Albatross station 3024, depth 11 fathoms. Current status: Valid as Pleuronichthys ocellatus Starks & Thompson, 1910. Pleuronectidae: Pleuronichthyinae. Distribution: Eastern Pacific. Habitat: marine. Species Pleuronichthys ritteri Starks & Morris, 1907 - spotted turbot [=Pleuronichthys ritteri Starks [E. C.] & Morris [E. L.], 1907:243, Pl. 21] Notes: [University of California Publications in Zoology v. 3 (no. 11); ref. 10118]
Recommended publications
  • Fish and Fishery Products Hazards and Controls Guidance Fourth Edition – APRIL 2011
    SGR 129 Fish and Fishery Products Hazards and Controls Guidance Fourth Edition – APRIL 2011 DEPARTMENT OF HEALTH AND HUMAN SERVICES PUBLIC HEALTH SERVICE FOOD AND DRUG ADMINISTRATION CENTER FOR FOOD SAFETY AND APPLIED NUTRITION OFFICE OF FOOD SAFETY Fish and Fishery Products Hazards and Controls Guidance Fourth Edition – April 2011 Additional copies may be purchased from: Florida Sea Grant IFAS - Extension Bookstore University of Florida P.O. Box 110011 Gainesville, FL 32611-0011 (800) 226-1764 Or www.ifasbooks.com Or you may download a copy from: http://www.fda.gov/FoodGuidances You may submit electronic or written comments regarding this guidance at any time. Submit electronic comments to http://www.regulations. gov. Submit written comments to the Division of Dockets Management (HFA-305), Food and Drug Administration, 5630 Fishers Lane, Rm. 1061, Rockville, MD 20852. All comments should be identified with the docket number listed in the notice of availability that publishes in the Federal Register. U.S. Department of Health and Human Services Food and Drug Administration Center for Food Safety and Applied Nutrition (240) 402-2300 April 2011 Table of Contents: Fish and Fishery Products Hazards and Controls Guidance • Guidance for the Industry: Fish and Fishery Products Hazards and Controls Guidance ................................ 1 • CHAPTER 1: General Information .......................................................................................................19 • CHAPTER 2: Conducting a Hazard Analysis and Developing a HACCP Plan
    [Show full text]
  • Disease List for Aquaculture Health Certificate
    Quarantine Standard for Designated Species of Imported/Exported Aquatic Animals [Attached Table] 4. Listed Diseases & Quarantine Standard for Designated Species Listed disease designated species standard Common name Disease Pathogen 1. Epizootic haematopoietic Epizootic Perca fluviatilis Redfin perch necrosis(EHN) haematopoietic Oncorhynchus mykiss Rainbow trout necrosis virus(EHNV) Macquaria australasica Macquarie perch Bidyanus bidyanus Silver perch Gambusia affinis Mosquito fish Galaxias olidus Mountain galaxias Negative Maccullochella peelii Murray cod Salmo salar Atlantic salmon Ameirus melas Black bullhead Esox lucius Pike 2. Spring viraemia of Spring viraemia of Cyprinus carpio Common carp carp, (SVC) carp virus(SVCV) Grass carp, Ctenopharyngodon idella white amur Hypophthalmichthys molitrix Silver carp Hypophthalmichthys nobilis Bighead carp Carassius carassius Crucian carp Carassius auratus Goldfish Tinca tinca Tench Sheatfish, Silurus glanis European catfish, wels Negative Leuciscus idus Orfe Rutilus rutilus Roach Danio rerio Zebrafish Esox lucius Northern pike Poecilia reticulata Guppy Lepomis gibbosus Pumpkinseed Oncorhynchus mykiss Rainbow trout Abramis brama Freshwater bream Notemigonus cysoleucas Golden shiner 3.Viral haemorrhagic Viral haemorrhagic Oncorhynchus spp. Pacific salmon septicaemia(VHS) septicaemia Oncorhynchus mykiss Rainbow trout virus(VHSV) Gadus macrocephalus Pacific cod Aulorhynchus flavidus Tubesnout Cymatogaster aggregata Shiner perch Ammodytes hexapterus Pacific sandlance Merluccius productus Pacific
    [Show full text]
  • (Sea of Okhotsk, Sakhalin Island): 2. Cyclopteridae−Molidae Families
    ISSN 0032-9452, Journal of Ichthyology, 2018, Vol. 58, No. 5, pp. 633–661. © Pleiades Publishing, Ltd., 2018. An Annotated List of the Marine and Brackish-Water Ichthyofauna of Aniva Bay (Sea of Okhotsk, Sakhalin Island): 2. Cyclopteridae−Molidae Families Yu. V. Dyldina, *, A. M. Orlova, b, c, d, A. Ya. Velikanove, S. S. Makeevf, V. I. Romanova, and L. Hanel’g aTomsk State University (TSU), Tomsk, Russia bRussian Federal Research Institute of Fishery and Oceanography (VNIRO), Moscow, Russia cInstitute of Ecology and Evolution, Russian Academy of Sciences (IPEE), Moscow, Russia d Dagestan State University (DSU), Makhachkala, Russia eSakhalin Research Institute of Fisheries and Oceanography (SakhNIRO), Yuzhno-Sakhalinsk, Russia fSakhalin Basin Administration for Fisheries and Conservation of Aquatic Biological Resources—Sakhalinrybvod, Aniva, Yuzhno-Sakhalinsk, Russia gCharles University in Prague, Prague, Czech Republic *e-mail: [email protected] Received March 1, 2018 Abstract—The second, final part of the work contains a continuation of the annotated list of fish species found in the marine and brackish waters of Aniva Bay (southern part of the Sea of Okhotsk, southern part of Sakhalin Island): 137 species belonging to three orders (Perciformes, Pleuronectiformes, Tetraodon- tiformes), 31 family, and 124 genera. The general characteristics of ichthyofauna and a review of the commer- cial fishery of the bay fish, as well as the final systematic essay, are presented. Keywords: ichthyofauna, annotated list, conservation status, commercial importance, marine and brackish waters, Aniva Bay, southern part of the Sea of Okhotsk, Sakhalin Island DOI: 10.1134/S0032945218050053 INTRODUCTION ANNOTATED LIST OF FISHES OF ANIVA BAY The second part concludes the publication on the 19.
    [Show full text]
  • Supplementary Tales
    Metabarcoding reveals different zooplankton communities in northern and southern areas of the North Sea Jan Niklas Macher, Berry B. van der Hoorn, Katja T. C. A. Peijnenburg, Lodewijk van Walraven, Willem Renema Supplementary tables 1-5 Table S1: Sampling stations and recorded abiotic variables recorded during the NICO 10 expedition from the Dutch Coast to the Shetland Islands Sampling site name Coordinates (°N, °E) Mean remperature (°C) Mean salinity (PSU) Depth (m) S74 59.416510, 0.499900 8.2 35.1 134 S37 58.1855556, 0.5016667 8.7 35.1 89 S93 57.36046, 0.57784 7.8 34.8 84 S22 56.5866667, 0.6905556 8.3 34.9 220 S109 56.06489, 1.59652 8.7 35 79 S130 55.62157, 2.38651 7.8 34.8 73 S156 54.88581, 3.69192 8.3 34.6 41 S176 54.41489, 4.04154 9.6 34.6 43 S203 53.76851, 4.76715 11.8 34.5 34 Table S2: Species list and read number per sampling site Class Order Family Genus Species S22 S37 S74 S93 S109 S130 S156 S176 S203 Copepoda Calanoida Acartiidae Acartia Acartia clausi 0 0 0 72 0 170 15 630 3995 Copepoda Calanoida Acartiidae Acartia Acartia tonsa 0 0 0 0 0 0 0 0 23 Hydrozoa Trachymedusae Rhopalonematidae Aglantha Aglantha digitale 0 0 0 0 1870 117 420 629 0 Actinopterygii Trachiniformes Ammodytidae Ammodytes Ammodytes marinus 0 0 0 0 0 263 0 35 0 Copepoda Harpacticoida Miraciidae Amphiascopsis Amphiascopsis cinctus 344 0 0 992 2477 2500 9574 8947 0 Ophiuroidea Amphilepidida Amphiuridae Amphiura Amphiura filiformis 0 0 0 0 219 0 0 1470 63233 Copepoda Calanoida Pontellidae Anomalocera Anomalocera patersoni 0 0 586 0 0 0 0 0 0 Bivalvia Venerida
    [Show full text]
  • Age, Growth and Population Dynamics of Lemon Sole Microstomus Kitt(Walbaum 1792)
    Age, growth and population dynamics of lemon sole Microstomus kitt (Walbaum 1792) sampled off the west coast of Ireland By Joan F. Hannan Masters Thesis in Fish Biology Galway-Mayo Institute of Technology Supervisors of Research Dr. Pauline King and Dr. David McGrath Submitted to the Higher Education and Training Awards Council July 2002 Age, growth and population dynamics of lemon sole Microstomus kitt (Walbaum 1792) sampled off the west coast of Ireland Joan F. Hannan ABSTRACT The age, growth, maturity and population dynamics o f lemon sole (Microstomus kitt), captured off the west coast o f Ireland (ICES division Vllb), were determined for the period November 2000 to February 2002. The maximum age recorded was 14 years. Males o f the population were dominated by 4 year olds, while females were dominated by 5 year olds. Females dominated the sex ratio in the overall sample, each month sampled, at each age and from 22cm in total length onwards (when N > 20). Possible reasons for the dominance o f females in the sex ratio are discussed. Three models were used to obtain the parameters o f the von Bertalanfly growth equation. These were the Ford-Walford plot (Beverton and Holt 1957), the Gulland and Holt plot (1959) and the Rafail (1973) method. Results o f the fitted von Bertalanffy growth curves showed that female lemon sole o ff the west coast o f Ireland grew faster than males and attained a greater size. Male and female lemon sole mature from 2 years o f age onwards. There is evidence in the population o f a smaller asymptotic length (L«, = 34.47cm), faster growth rate (K = 0.1955) and younger age at first maturity, all o f which are indicative o f a decrease in population size, when present results are compared to data collected in the same area 22 years earlier.
    [Show full text]
  • Preliminary Mass-Balance Food Web Model of the Eastern Chukchi Sea
    NOAA Technical Memorandum NMFS-AFSC-262 Preliminary Mass-balance Food Web Model of the Eastern Chukchi Sea by G. A. Whitehouse U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Alaska Fisheries Science Center December 2013 NOAA Technical Memorandum NMFS The National Marine Fisheries Service's Alaska Fisheries Science Center uses the NOAA Technical Memorandum series to issue informal scientific and technical publications when complete formal review and editorial processing are not appropriate or feasible. Documents within this series reflect sound professional work and may be referenced in the formal scientific and technical literature. The NMFS-AFSC Technical Memorandum series of the Alaska Fisheries Science Center continues the NMFS-F/NWC series established in 1970 by the Northwest Fisheries Center. The NMFS-NWFSC series is currently used by the Northwest Fisheries Science Center. This document should be cited as follows: Whitehouse, G. A. 2013. A preliminary mass-balance food web model of the eastern Chukchi Sea. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-262, 162 p. Reference in this document to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA. NOAA Technical Memorandum NMFS-AFSC-262 Preliminary Mass-balance Food Web Model of the Eastern Chukchi Sea by G. A. Whitehouse1,2 1Alaska Fisheries Science Center 7600 Sand Point Way N.E. Seattle WA 98115 2Joint Institute for the Study of the Atmosphere and Ocean University of Washington Box 354925 Seattle WA 98195 www.afsc.noaa.gov U.S. DEPARTMENT OF COMMERCE Penny. S. Pritzker, Secretary National Oceanic and Atmospheric Administration Kathryn D.
    [Show full text]
  • Identification of Larvae of Three Arctic Species of Limanda (Family Pleuronectidae)
    Identification of larvae of three arctic species of Limanda (Family Pleuronectidae) Morgan S. Busby, Deborah M. Blood & Ann C. Matarese Polar Biology ISSN 0722-4060 Polar Biol DOI 10.1007/s00300-017-2153-9 1 23 Your article is protected by copyright and all rights are held exclusively by 2017. This e- offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Polar Biol DOI 10.1007/s00300-017-2153-9 ORIGINAL PAPER Identification of larvae of three arctic species of Limanda (Family Pleuronectidae) 1 1 1 Morgan S. Busby • Deborah M. Blood • Ann C. Matarese Received: 28 September 2016 / Revised: 26 June 2017 / Accepted: 27 June 2017 Ó Springer-Verlag GmbH Germany 2017 Abstract Identification of fish larvae in Arctic marine for L. proboscidea in comparison to the other two species waters is problematic as descriptions of early-life-history provide additional evidence suggesting the genus Limanda stages exist for few species. Our goal in this study is to may be paraphyletic, as has been proposed in other studies.
    [Show full text]
  • Why Are There So Many Flatfishes? Jaw Asymmetry, Diet, and Diversification in the Pleuronectiformes
    Why are there so many flatfishes? Jaw asymmetry, diet, and diversification in the Pleuronectiformes Jonathan Chang1 Functional Morphology and Ecology of Fishes Summer 2014 1Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA. Contact information: Jonathan Chang 610 Charles E. Young Drive S Los Angeles CA 90095 [email protected] Keywords: flatfish, Pleuronectidae, Paralichthyidae, Bothidae, asymmetry, geometric morphometrics, comparative methods, functional morphology Chang 1 Abstract Flatfishes (Actinopterygii: Pleuronectiformes) are a diverse group of teleost fishes, with over 700 species in the order. Jaw asymmetry and diet have been thought to contribute to flatfish diversity but this has not yet been tested in a comparative framework. Here I use geometric morphometric and comparative methods to test whether ocular-blind side asymmetry in flatfish head morphology contributed to flatfish diversification. I find that the repeated convergent evolution of similar morphology, jaw function, and diet likely contribute to the high diversity of flatfishes. Introduction Pleuronectiform fishes are highly diverse, with over 700 described species (Froese and Pauly, 2014). These fishes are characterized by their unique bilateral asymmetry and their benthic ecology. Flatfishes also generally consume one of three main types of prey: buried infauna, pelagic fishes and crustaceans, and a third type intermediate to the first two (de Groot 1971, Tsuruta & Omori 1976). I hypothesize that this specialization into different prey types has driven the diversification and morphological disparity in asymmetry of flatfish species. Methods 12 species of flatfish comprising of 11 genera and 2 families (Table 1) were collected via trawl and seine at these sites: Jackson Beach, [48°31'13.0"N 123°00'35.1"W] and Orcas – Eastsound [48°38'26.9"N 122°52'14.0"W].
    [Show full text]
  • INVERTEBRATE SPECIES in the EASTERN BERING SEA By
    Effects of areas closed to bottom trawling on fish and invertebrate species in the eastern Bering Sea Item Type Thesis Authors Frazier, Christine Ann Download date 01/10/2021 18:30:05 Link to Item http://hdl.handle.net/11122/5018 e f f e c t s o f a r e a s c l o s e d t o b o t t o m t r a w l in g o n fish a n d INVERTEBRATE SPECIES IN THE EASTERN BERING SEA By Christine Ann Frazier RECOMMENDED: — . /Vj Advisory Committee Chair Program Head / \ \ APPROVED: M--- —— [)\ Dean, School of Fisheries and Ocean Sciences • ~7/ . <-/ / f a Dean of the Graduate Sch6oI EFFECTS OF AREAS CLOSED TO BOTTOM TRAWLING ON FISH AND INVERTEBRATE SPECIES IN THE EASTERN BERING SEA A THESIS Presented to the Faculty of the University of Alaska Fairbanks in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE 6 By Christine Ann Frazier, B.A. Fairbanks, Alaska December 2003 UNIVERSITY OF ALASKA FAIRBANKS ABSTRACT The Bering Sea is a productive ecosystem with some of the most important fisheries in the United States. Constant commercial fishing for groundfish has occurred since the 1960s. The implementation of areas closed to bottom trawling to protect critical habitat for fish or crabs resulted in successful management of these fisheries. The efficacy of these closures on non-target species is unknown. This study determined if differences in abundance, biomass, diversity and evenness of dominant fish and invertebrate species occur among areas open and closed to bottom trawling in the eastern Bering Sea between 1996 and 2000.
    [Show full text]
  • Witch Flounder, Glyptocephalus Cynoglossus, Life History and Habitat Characteristics
    NOAA Technical Memorandum NMFS-NE-139 Essential Fish Habitat Source Document: Witch Flounder, Glyptocephalus cynoglossus, Life History and Habitat Characteristics U. S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Northeast Region Northeast Fisheries Science Center Woods Hole, Massachusetts September 1999 Recent Issues 105. Review of American Lobster (Homarus americanus) Habitat Requirements and Responses to Contaminant Exposures. By Renee Mercaldo-Allen and Catherine A. Kuropat. July 1994. v + 52 p., 29 tables. NTIS Access. No. PB96-115555. 106. Selected Living Resources, Habitat Conditions, and Human Perturbations of the Gulf of Maine: Environmental and Ecological Considerations for Fishery Management. By Richard W. Langton, John B. Pearce, and Jon A. Gibson, eds. August 1994. iv + 70 p., 2 figs., 6 tables. NTIS Access. No. PB95-270906. 107. Invertebrate Neoplasia: Initiation and Promotion Mechanisms -- Proceedings of an International Workshop, 23 June 1992, Washington, D.C. By A. Rosenfield, F.G. Kern, and B.J. Keller, comps. & eds. September 1994. v + 31 p., 8 figs., 3 tables. NTIS Access. No. PB96-164801. 108. Status of Fishery Resources off the Northeastern United States for 1994. By Conservation and Utilization Division, Northeast Fisheries Science Center. January 1995. iv + 140 p., 71 figs., 75 tables. NTIS Access. No. PB95-263414. 109. Proceedings of the Symposium on the Potential for Development of Aquaculture in Massachusetts: 15-17 February 1995, Chatham/Edgartown/Dartmouth, Massachusetts. By Carlos A. Castro and Scott J. Soares, comps. & eds. January 1996. v + 26 p., 1 fig., 2 tables. NTIS Access. No. PB97-103782. 110. Length-Length and Length-Weight Relationships for 13 Shark Species from the Western North Atlantic.
    [Show full text]
  • Bering Sea Climate Vulnerability Assessment Species-Specific Results: Arrowtooth Flounder − Atheresthes Stomias
    Arrowtooth flounder − Atheresthes stomias Overall Vulnerability Rank = Low Biological Sensitivity = Low Climate Exposure = Low Sensitivity Data Quality = 92% of scores ≥ 2 Exposure Data Quality = 56% of scores ≥ 2 Expert Data Expert Scores Plots Atheresthes stomias Scores Quality (Portion by Category) Low Habitat Specificity 1.1 3.0 Moderate High Prey Specificity 1.6 2.6 Very High Adult Mobility 1.7 2.0 Dispersal of Early Life Stages 1.4 2.0 Early Life History Survival and Settlement Requirements 2.0 2.0 Complexity in Reproductive Strategy 1.8 1.8 Spawning Cycle 2.3 2.0 Sensitivity to Temperature 1.7 2.8 Sensitivity attributes Sensitivity to Ocean Acidification 2.0 2.8 Population Growth Rate 3.0 3.0 Stock Size/Status 1.0 3.0 Other Stressors 1.1 2.8 Sensitivity Score Low Sea Surface Temperature 2.0 2.5 Sea Surface Temperature (variance) 1.6 2.5 Bottom Temperature 2.1 3.0 Bottom Temperature (variance) 2.1 3.0 Salinity 1.2 2.0 Salinity (variance) 2.3 2.0 Ocean Acidification 4.0 3.0 Ocean Acidification (variance) 1.4 3.0 Phytoplankton Biomass 1.4 1.2 Phytoplankton Biomass (variance) 1.3 1.2 Plankton Bloom Timing 1.5 1.0 Plankton Bloom Timing (variance) 2.2 1.0 Large Zooplankton Biomass 1.2 1.0 Large Zooplanton Biomass (variance) 1.3 1.0 Exposure factors Exposure factors Mixed Layer Depth 1.5 1.0 Mixed Layer Depth (variance) 2.3 1.0 Currents 1.4 2.0 Currents (variance) 1.6 2.0 Air Temperature NA NA Air Temperature (variance) NA NA Precipitation NA NA Precipitation (variance) NA NA Sea Surface Height NA NA Sea Surface Height (variance) NA NA Exposure Score Low Overall Vulnerability Rank Low For assistance with this document, please contact NOAA Fisheries Office of Science and Technology at (301) 427-8100 or visit https://www.fisheries.noaa.gov/contact/office-science-and-technology Arrowtooth Flounder (Astheresthes stomias) Overall Climate Vulnerability Rank: Low.
    [Show full text]
  • NOAA Technical Report NMFS SSRF-691
    % ,^tH^ °^Co NOAA Technical Report NMFS SSRF-691 Seasonal Distributions of Larval Flatfishes (Pleuronectiformes) on the Continental Shelf Between Cape Cod, Massachusetts, and Cape Lookout, North Carolina, 1965-66 W. G. SMITH, J. D. SIBUNKA, and A. WELLS SEATTLE, WA June 1975 ATMOSPHERIC ADMINISTRATION / Fisheries Service NOAA TECHNICAL REPORTS National Marine Fisheries Service, Special Scientific Report—Fisheries Series The majnr responsibilities of the National Marine Fisheries Service (NMFS) are to monitor and assess the abundance and geographic distribution of fishery resources, to understand and predict fluctuations in the quantity and distribution of these resources, and to establish levels for optimum use of the resources. NMFS is also charged with the development and implementation of policies for managing national fishing grounds, development and enforcement of domestic fisheries regulations, surveillance of foreign fishing off United States coastal waters, and the development and enforcement of international fishery agreements and policies. NMFS also assists the fishing industry through- marketing service and economic analysis programs, and mortgage insurance and vessel construction subsidies. It collects, analyzes, and publishes statistics on various phases of the industry. The Special Scientific Report—Fisheries series was established in 1949. The series carries reports on scientific investigations that document long-term continuing programs of NMFS. or intensive scientific reports on studies of restricted scope. The reports may deal with applied fishery problems. The series is also used as a medium for the publica- tion of bibliographies of a specialized scientific nature. NOAA Technical Reports NMFS SSRF are available free in limited numbers to governmental agencies, both Federal and State. They are also available in exchange for other scientific and technical publications in the marine sciences.
    [Show full text]