Greenland Turbot Assessment
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
International Pacific Halibut Commission Fishery Regulations (2021)
INTERNATIONAL PACIFIC HALIBUT COMMISSION FISHERY REGULATIONS (2021) Published 22 February 2021, superseding the version published on 03 February 2021 Commissioners Canada United States of America Paul Ryall Glenn Merrill Neil Davis Robert Alverson Peter DeGreef Richard Yamada Executive Director David T. Wilson, Ph.D. Page 1 of 22 IPHC Fishery Regulations (2021) INTERNATIONAL PACIFIC HALIBUT COMMISSION 2320 WEST COMMODORE WAY, SUITE 300 SEATTLE, WASHINGTON 98199-1287 PHONE: (206) 634-1838 FAX: (206) 632-2983 WEBSITE: www.iphc.int This document is intended for informational purposes only. Official regulations of the respective Contracting Parties can be found in: For Canada: The Canada Gazette and the Condition of Licence For the USA: The Federal Register Page 2 of 22 IPHC Fishery Regulations (2021) Contents 1. Short Title ......................................................................................................................................................................... 4 2. Application........................................................................................................................................................................ 4 3. Definitions ........................................................................................................................................................................ 4 4. IPHC Regulatory Areas .................................................................................................................................................... 5 5. Mortality -
Pleuronectidae, Poecilopsettidae, Achiridae, Cynoglossidae
1536 Glyptocephalus cynoglossus (Linnaeus, 1758) Pleuronectidae Witch flounder Range: Both sides of North Atlantic Ocean; in the western North Atlantic from Strait of Belle Isle to Cape Hatteras Habitat: Moderately deep water (mostly 45–330 m), deepest in southern part of range; found on mud, muddy sand or clay substrates Spawning: May–Oct in Gulf of Maine; Apr–Oct on Georges Bank; Feb–Jul Meristic Characters in Middle Atlantic Bight Myomeres: 58–60 Vertebrae: 11–12+45–47=56–59 Eggs: – Pelagic, spherical Early eggs similar in size Dorsal fin rays: 97–117 – Diameter: 1.2–1.6 mm to those of Gadus morhua Anal fin rays: 86–102 – Chorion: smooth and Melanogrammus aeglefinus Pectoral fin rays: 9–13 – Yolk: homogeneous Pelvic fin rays: 6/6 – Oil globules: none Caudal fin rays: 20–24 (total) – Perivitelline space: narrow Larvae: – Hatching occurs at 4–6 mm; eyes unpigmented – Body long, thin and transparent; preanus length (<33% TL) shorter than in Hippoglossoides or Hippoglossus – Head length increases from 13% SL at 6 mm to 22% SL at 42 mm – Body depth increases from 9% SL at 6 mm to 30% SL at 42 mm – Preopercle spines: 3–4 occur on posterior edge, 5–6 on lateral ridge at about 16 mm, increase to 17–19 spines – Flexion occurs at 14–20 mm; transformation occurs at 22–35 mm (sometimes delayed to larger sizes) – Sequence of fin ray formation: C, D, A – P2 – P1 – Pigment intensifies with development: 6 bands on body and fins, 3 major, 3 minor (see table below) Glyptocephalus cynoglossus Hippoglossoides platessoides Total myomeres 58–60 44–47 Preanus length <33%TL >35%TL Postanal pigment bars 3 major, 3 minor 3 with light scattering between Finfold pigment Bars extend onto finfold None Flexion size 14–20 mm 9–19 mm Ventral pigment Scattering anterior to anus Line from anus to isthmus Early Juvenile: Occurs in nursery habitats on continental slope E. -
Aspects of the Life History of Hornyhead Turbot, Pleuronichthys Verticalis, Off Southern California
Aspects of the Life History of Hornyhead Turbot, Pleuronichthys verticalis, off Southern California he hornyhead turbot T(Pleuronichthys verticalis) is a common resident flatfish on the mainland shelf from Magdalena Bay, Baja Califor- nia, Mexico to Point Reyes, California (Miller and Lea 1972). They are randomly distributed over the bottom at a density of about one fish per 130 m2 and lie partially buried in the sediment (Luckinbill 1969). Hornyhead turbot feed primarily on sedentary, tube-dwelling polychaetes (Luckinbill 1969, Allen 1982, Cross et al. 1985). They pull the tubes from the sediment, Histological section of a fish ovary. extract the polychaete, and then eject the tube (Luckinbill 1969). Hornyhead turbot are Orange County, p,p’-DDE Despite the importance of batch spawners and may averaged 362 μg/kg wet the hornyhead turbot in local spawn year round (Goldberg weight in hornyhead turbot monitoring programs, its life 1982). Their planktonic eggs liver and 5 μg/kg dry weight in history has received little are 1.00-1.16 mm diameter the sediments (CSDOC 1992). attention. The long-term goal (Sumida et al. 1979). Their In the same year in Santa of our work is to determine larvae occur in the nearshore Monica Bay, p,p’-DDE aver- how a relatively low trophic plankton throughout the year aged 7.8 mg/kg wet weight in level fish like the hornyhead (Gruber et al. 1982, Barnett et liver and 81 μg/kg dry weight turbot accumulates tissue al. 1984, Moser et al. 1993). in the sediments (City of Los levels of chlorinated hydrocar- Several agencies in South- Angeles 1992). -
A Proposition for an Octopus Fishery in the Aleutian Islands
Adams et. al., 1 A Proposition for an Octopus Fishery in the Aleutian Islands By: Aaron Adams, Jessica Andersen, Kevin Huynh, Valerie Sours, and Natalie Waldron. Unalaska City High School Unalaska Raiders (temporary) 55 East Broadway PO Box 570 Unalaska, AK 99685 Primary contact for the paper: Aaron Adams: [email protected] Adams et. al., 2 Abstract With global fisheries on the decline, fishermen have been forced to diversify their fishing efforts. Cephalopod resources are on the rise and may have a potential application to supplement the fishing industry. In many countries, octopuses are underutilized and may have the potential to become a profitable market. However, one exception to this rule is the octopus market in Japan has proven to be sustainable for over 50 years. We recommend a science-based approach to researching and managing an experimental North Pacific Giant Octopus fishery in the Aleutian Chain. Our ecosystem approach to managing this fishery will likely prove profitable to small communities throughout southwestern Alaska, thus providing security for commercial fishing longevity. Adams et. al., 3 Introduction With the onset of global climate change and diminishing marine resources from overfishing, many fishermen are wondering about their future. As fishery managers attempt to conservatively manage species, fishermen are finding that each year they are bringing home less and less catch. One solution to this problem is for fishermen to diversify their fishing efforts. This could mean fishing new areas, using new gear types and possibly fishing new species. While most established fisheries are fairly competitive, there may be a potential to gain a foothold in undeveloped or underutilized fisheries. -
POPULATION STRUCTURE and BEHAVIOR of PACIFIC HALIBUT a THESIS Presented to the Faculty of the University of Alaska Fairbanks In
Population Structure And Behavior Of Pacific Halibut Item Type Thesis Authors Seitz, Andrew C. Download date 26/09/2021 01:51:59 Link to Item http://hdl.handle.net/11122/8917 POPULATION STRUCTURE AND BEHAVIOR OF PACIFIC HALIBUT A THESIS Presented to the Faculty of the University of Alaska Fairbanks in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY By Andrew C. Seitz, B.S. Fairbanks, Alaska December 2006 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 3251429 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. ® UMI UMI Microform 3251429 Copyright 2007 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, Ml 48106-1346 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. POPULATION STRUCTURE AND BEHAVIOR OF PACIFIC HALIBUT By Andrew C. Seitz RECOMMENDED: f\\ T; (LV rH g; Advisory Committee Chair • ' / t r ' > /^ iA ^ TZj ~r;c~■■ Head, Program in Maj^ne Science and Limnology APPROVED: Dean, School of Fisheries and OcemNSciences Jean of the Graduate School / ~7y Z<3&<c> Date Reproduced with permission of the copyright owner. -
Food Choice of Different Size Classes of Flounder (Platichthys Flesus ) In
Food choice of different size classes of flounder ( Platichthys flesus ) in the Baltic Sea Jennie Ljungberg Degree project in biology, Master of science (2 years), 2014 Examensarbete i biologi 30 hp till masterexamen, 2014 Biology Education Centre Supervisor: Bertil Widbom Table of Contents ABSTRACT ............................................................................................................................................ 3 INTRODUCTION ................................................................................................................................... 4 Flounders in the Baltic Sea .................................................................................................................. 5 The diet of flounders ........................................................................................................................... 6 Blue mussel (Mytilus edulis) ............................................................................................................... 7 Blue mussels in the Baltic Sea............................................................................................................. 8 The nutritive value of blue mussels ..................................................................................................... 9 The condition of flounders in the Baltic Sea ....................................................................................... 9 Aims ................................................................................................................................................. -
Identification of Larvae of Three Arctic Species of Limanda (Family Pleuronectidae)
Identification of larvae of three arctic species of Limanda (Family Pleuronectidae) Morgan S. Busby, Deborah M. Blood & Ann C. Matarese Polar Biology ISSN 0722-4060 Polar Biol DOI 10.1007/s00300-017-2153-9 1 23 Your article is protected by copyright and all rights are held exclusively by 2017. This e- offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Polar Biol DOI 10.1007/s00300-017-2153-9 ORIGINAL PAPER Identification of larvae of three arctic species of Limanda (Family Pleuronectidae) 1 1 1 Morgan S. Busby • Deborah M. Blood • Ann C. Matarese Received: 28 September 2016 / Revised: 26 June 2017 / Accepted: 27 June 2017 Ó Springer-Verlag GmbH Germany 2017 Abstract Identification of fish larvae in Arctic marine for L. proboscidea in comparison to the other two species waters is problematic as descriptions of early-life-history provide additional evidence suggesting the genus Limanda stages exist for few species. Our goal in this study is to may be paraphyletic, as has been proposed in other studies. -
Alaska Park Science 19(1): Arctic Alaska Are Living at the Species’ Northern-Most to Identify Habitats Most Frequented by Bears and 4-9
National Park Service US Department of the Interior Alaska Park Science Region 11, Alaska Below the Surface Fish and Our Changing Underwater World Volume 19, Issue 1 Noatak National Preserve Cape Krusenstern Gates of the Arctic Alaska Park Science National Monument National Park and Preserve Kobuk Valley Volume 19, Issue 1 National Park June 2020 Bering Land Bridge Yukon-Charley Rivers National Preserve National Preserve Denali National Wrangell-St Elias National Editorial Board: Park and Preserve Park and Preserve Leigh Welling Debora Cooper Grant Hilderbrand Klondike Gold Rush Jim Lawler Lake Clark National National Historical Park Jennifer Pederson Weinberger Park and Preserve Guest Editor: Carol Ann Woody Kenai Fjords Managing Editor: Nina Chambers Katmai National Glacier Bay National National Park Design: Nina Chambers Park and Preserve Park and Preserve Sitka National A special thanks to Sarah Apsens for her diligent Historical Park efforts in assembling articles for this issue. Her Aniakchak National efforts helped make this issue possible. Monument and Preserve Alaska Park Science is the semi-annual science journal of the National Park Service Alaska Region. Each issue highlights research and scholarship important to the stewardship of Alaska’s parks. Publication in Alaska Park Science does not signify that the contents reflect the views or policies of the National Park Service, nor does mention of trade names or commercial products constitute National Park Service endorsement or recommendation. Alaska Park Science is found online at https://www.nps.gov/subjects/alaskaparkscience/index.htm Table of Contents Below the Surface: Fish and Our Changing Environmental DNA: An Emerging Tool for Permafrost Carbon in Stream Food Webs of Underwater World Understanding Aquatic Biodiversity Arctic Alaska C. -
Movements of a Deep-Water Fish: Establishing Marine Fisheries Management Boundaries in Coastal Arctic Waters
University of Windsor Scholarship at UWindsor Biological Sciences Publications Department of Biological Sciences 2017 Movements of a deep-water fish: Establishing marine fisheries management boundaries in coastal Arctic waters Nigel E. Hussey University of Windsor K. J. Hedges A. N. Barkley M. A. Treble I. Peklova See next page for additional authors Follow this and additional works at: https://scholar.uwindsor.ca/biologypub Part of the Biology Commons Recommended Citation Hussey, Nigel E.; Hedges, K. J.; Barkley, A. N.; Treble, M. A.; Peklova, I.; Webber, D. M.; Ferguson, S. H.; Yurkowski, D. J.; Kessel, S. T.; Bedard, J. M.; and Fisk, A. T., "Movements of a deep-water fish: Establishing marine fisheries management boundaries in coastal Arctic waters" (2017). Ecological Applications, 27, 3, 687-704. https://scholar.uwindsor.ca/biologypub/813 This Article is brought to you for free and open access by the Department of Biological Sciences at Scholarship at UWindsor. It has been accepted for inclusion in Biological Sciences Publications by an authorized administrator of Scholarship at UWindsor. For more information, please contact [email protected]. Authors Nigel E. Hussey, K. J. Hedges, A. N. Barkley, M. A. Treble, I. Peklova, D. M. Webber, S. H. Ferguson, D. J. Yurkowski, S. T. Kessel, J. M. Bedard, and A. T. Fisk This article is available at Scholarship at UWindsor: https://scholar.uwindsor.ca/biologypub/813 INVITED FEATURE Ecological Applications, 27(3), 2017, pp. 687–704 © 2016 by the Ecological Society of America Movements of a deep- water fish: establishing marine fisheries management boundaries in coastal Arctic waters NIGEL E. -
CHAPTER 3 FISH and CRUSTACEANS, MOLLUSCS and OTHER AQUATIC INVERTEBRATES I 3-L Note
)&f1y3X CHAPTER 3 FISH AND CRUSTACEANS, MOLLUSCS AND OTHER AQUATIC INVERTEBRATES I 3-l Note 1. This chapter does not cover: (a) Marine mammals (heading 0106) or meat thereof (heading 0208 or 0210); (b) Fish (including livers and roes thereof) or crustaceans, molluscs or other aquatic invertebrates, dead and unfit or unsuitable for human consumption by reason of either their species or their condition (chapter 5); flours, meals or pellets of fish or of crustaceans, molluscs or other aquatic invertebrates, unfit for human consumption (heading 2301); or (c) Caviar or caviar substitutes prepared from fish eggs (heading 1604). 2. In this chapter the term "pellets" means products which have been agglomerated either directly by compression or by the addition of a small quantity of binder. Additional U.S. Note 1. Certain fish, crustaceans, molluscs and other aquatic invertebrates are provided for in chapter 98. )&f2y3X I 3-2 0301 Live fish: 0301.10.00 00 Ornamental fish............................... X....... Free Free Other live fish: 0301.91.00 00 Trout (Salmo trutta, Salmo gairdneri, Salmo clarki, Salmo aguabonita, Salmo gilae)................................... X....... Free Free 0301.92.00 00 Eels (Anguilla spp.)..................... kg...... Free Free 0301.93.00 00 Carp..................................... X....... Free Free 0301.99.00 00 Other.................................... X....... Free Free 0302 Fish, fresh or chilled, excluding fish fillets and other fish meat of heading 0304: Salmonidae, excluding livers and roes: 0302.11.00 Trout (Salmo trutta, Salmo gairdneri, Salmo clarki, Salmo aguabonita, Salmo gilae)................................... ........ Free 2.2¢/kg 10 Rainbow trout (Salmo gairnderi), farmed.............................. kg 90 Other............................... kg 0302.12.00 Pacific salmon (Oncorhynchus spp.), Atlantic salmon (Salmo salar) and Danube salmon (Hucho hucho)............. -
Marine Ecology Progress Series 508:211
Vol. 508: 211–222, 2014 MARINE ECOLOGY PROGRESS SERIES Published August 4 doi: 10.3354/meps10874 Mar Ecol Prog Ser Seasonal migration, vertical activity, and winter temperature experience of Greenland halibut Reinhardtius hippoglossoides in West Greenland waters Jesper Boje1, Stefan Neuenfeldt1, Claus Reedtz Sparrevohn2, Ole Eigaard1, Jane W. Behrens1,* 1Technical University of Denmark, National Institute of Aquatic Resources, Kavalergaarden 6, 2920 Charlottenlund, Denmark 2Danish Pelagic Producers Organization, HC Andersens Boulevard 37, 1553 Copenhagen, Denmark ABSTRACT: The deep-water flatfish Greenland halibut Reinhardtius hippoglossoides (Walbaum) is common along the West Greenland coast. In the northwestern fjords, Greenland halibut is an important socio-economic resource for the Greenland community, but due to the deep and partly ice-covered environment, very little is known about its behavior and habitat characteristics. We tagged adult Greenland halibut in the waters off Ilulissat with electronic data storage tags that collected information on depth, temperature, and time. Although clear differences between individuals in migration and vertical behavior were present, we discovered a consistent seasonal migration from the relatively shallow-water Disko Bay area into the deep waters of the Ilulissat Icefjord, where the fish resided in the winter months before returning to Disko Bay. Vertical activity was pronounced at both locations, with fish covering vertical distances of up to 100 m within 15 min. During the winter months, the fish experienced temperatures between ca. 0 and 4°C, with most experiencing temperatures of 2 to 3°C. Irrespective of year and quarter of the year, the fish experienced warmer water and a broader range of temperatures when resident in Disko Bay (mean range 2.6°C) than when resident in the ice fjord (mean range 1.4°C). -
Fixed Gear Recommendations for the Cumberland Sound Greenland Halibut Fishery
Canadian Science Advisory Secretariat Central and Arctic Region Science Response 2008/011 FIXED GEAR RECOMMENDATIONS FOR THE CUMBERLAND SOUND GREENLAND HALIBUT FISHERY Context In a letter dated March 14, 2008, the Nunavut Wildlife Management Board (NWMB) requested Fisheries and Oceans Canada (DFO) Science advice on ways Greenland halibut fishing could be conducted in Cumberland Sound such that conservation concerns with non-directed by- catch of marine mammals and Greenland sharks are minimized or alleviated. On March 31, 2008, Fisheries and Aquaculture Management (FAM) submitted a request to Science for advice to address this request. Given the response was needed prior to the open-water fishing season (July 2008) and since the NWMB is the final advisory body for this request, DFO Central and Arctic Science determined that a Special Science Response Process would be used. Background The Cumberland Sound Greenland halibut (turbot) fishery began in 1986 and has been traditionally exploited during the winter months using longline gear set on the bottom through holes cut in the ice. Fishing typically takes place along a deep trench (>500 m) that extends toward Imigen Island and Drum Islands (Fig. 1). In 2005, a new management zone was established in Cumberland Sound with a Total Allowable Catch (TAC) of 500 t separate from the Northwest Atlantic Fisheries Organization (NAFO) Division 0B TAC. Catches in the winter fishery peaked in 1992 at 430 t then declined to levels below 100 t through the late 1990s and peaked again at 245 t in 2003. However, in recent years catches have declined significantly with harvests of 9 t, 70 t and 3 t for 2005, 2006 and 2007 respectively.