POPULATION STRUCTURE and BEHAVIOR of PACIFIC HALIBUT a THESIS Presented to the Faculty of the University of Alaska Fairbanks In

Total Page:16

File Type:pdf, Size:1020Kb

POPULATION STRUCTURE and BEHAVIOR of PACIFIC HALIBUT a THESIS Presented to the Faculty of the University of Alaska Fairbanks In Population Structure And Behavior Of Pacific Halibut Item Type Thesis Authors Seitz, Andrew C. Download date 26/09/2021 01:51:59 Link to Item http://hdl.handle.net/11122/8917 POPULATION STRUCTURE AND BEHAVIOR OF PACIFIC HALIBUT A THESIS Presented to the Faculty of the University of Alaska Fairbanks in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY By Andrew C. Seitz, B.S. Fairbanks, Alaska December 2006 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 3251429 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. ® UMI UMI Microform 3251429 Copyright 2007 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, Ml 48106-1346 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. POPULATION STRUCTURE AND BEHAVIOR OF PACIFIC HALIBUT By Andrew C. Seitz RECOMMENDED: f\\ T; (LV rH g; Advisory Committee Chair • ' / t r ' > /^ iA ^ TZj ~r;c~■■ Head, Program in Maj^ne Science and Limnology APPROVED: Dean, School of Fisheries and OcemNSciences Jean of the Graduate School / ~7y Z<3&<c> Date Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Abstract Pacific halibut (Hippoglossus stenolepis) is not managed on regional scales with separate population dynamics, but rather as a single, fully mixed population extending from California through the Bering Sea. However, some of the evidence from which this paradigm was established is questionable and I hypothesize that there are separate spawning populations of Pacific halibut in three regions, the Gulf of Alaska, Bering Sea and Aleutian Islands, because these regions are geographically separated by land masses and/or deep water passes that may prevent movement by adults. Pop-up Archival Transmitting (PAT) tags were attached to Pacific halibut in each region to examine their movement and behavior. First, geolocation by ambient light was able to discern basin- scale movements of demersal fishes in high latitudes and therefore this technique provided a feasible method for providing scientific inference on large-scale population structure in Pacific halibut. Second, because seasonally low ambient light levels and inhabitation of deep water (>200 m) restricted geolocation by light during winter, an alternative method, a minimum distance dispersal model, was developed for identifying migration pathways of demersal fish in the Gulf of Alaska based on daily maximum depth. Third, the PAT tags provided no evidence that Pacific halibut in the southeastern Bering Sea and Aleutian Islands moved among regions during the mid-winter spawning season, supporting my hypothesis of separate populations. Fourth, geographic landforms and discontinuities in the continental shelf appeared to limit the interchange of Pacific halibut among areas and possibly delineate the boundaries of potential populations in the Gulf of Alaska and eastern Bering Sea, with apparent smaller, localized populations Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. IV along the Aleutian Islands. This possible population structure may be reinforced by regional behavioral variation in response to the environment. Future research should be directed at quantifying the exchange of individual fish among regions for possible local area management plans that more accurately reflect population structure. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Table of Contents Page Signature Page............................................................................................................................i Title Page................................................................................................................................... ii Abstract ..................................................................................................................................... iii Table of Contents.......................................................................................................................v List of Figures.........................................................................................................................viii List of Tables.............................................................................................................................x List of Appendices................................................................................................................... xi Acknowledgements ................................................................................................................. xii Chapter 1: Introduction............................................................................................................. 1 Literature Cited .............................................................................................................4 Chapter 2: Evaluating light-based geolocation for estimating demersal fish movements in high latitudes ..........................................................................................................................6 Abstract ..........................................................................................................................6 Introduction................................................................................................................... 7 Materials and methods ..................................................................................................9 Results..........................................................................................................................13 Discussion....................................................................................................................16 Acknowledgements .....................................................................................................21 Literature Cited ...........................................................................................................26 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. VI Chapter 3: Minimum distance dispersal model of demersal fish in the Gulf of Alaska.. .29 Abstract ........................................................................................................................29 Introduction................................................................................................................. 30 Methods........................................................................................................................32 Results..........................................................................................................................36 Swimming speed ............................................................................................ 36 Dispersal distance ..........................................................................................37 Discussion................................................................................................................... 38 Acknowledgements .................................................................................................... 45 References................................................................................................................... 53 Chapter 4: Evidence of Pacific halibut Hippoglossus stenolepis population structure in the Bering Sea and Aleutian Islands .....................................................................................55 Abstract ........................................................................................................................55 Introduction................................................................................................................. 56 Materials and methods ............................................................................................... 59 Results..........................................................................................................................61 Behavior..........................................................................................................61 Attu Island Pacific halibut ............................................................................ 62 Atka Island Pacific halibut ............................................................................ 63 St. Paul Island Pacific halibut .......................................................................64 Discussion................................................................................................................... 66 Acknowledgements .................................................................................................... 73 Reproduced with permission of the copyright owner. Further reproduction prohibited without
Recommended publications
  • International Pacific Halibut Commission Fishery Regulations (2021)
    INTERNATIONAL PACIFIC HALIBUT COMMISSION FISHERY REGULATIONS (2021) Published 22 February 2021, superseding the version published on 03 February 2021 Commissioners Canada United States of America Paul Ryall Glenn Merrill Neil Davis Robert Alverson Peter DeGreef Richard Yamada Executive Director David T. Wilson, Ph.D. Page 1 of 22 IPHC Fishery Regulations (2021) INTERNATIONAL PACIFIC HALIBUT COMMISSION 2320 WEST COMMODORE WAY, SUITE 300 SEATTLE, WASHINGTON 98199-1287 PHONE: (206) 634-1838 FAX: (206) 632-2983 WEBSITE: www.iphc.int This document is intended for informational purposes only. Official regulations of the respective Contracting Parties can be found in: For Canada: The Canada Gazette and the Condition of Licence For the USA: The Federal Register Page 2 of 22 IPHC Fishery Regulations (2021) Contents 1. Short Title ......................................................................................................................................................................... 4 2. Application........................................................................................................................................................................ 4 3. Definitions ........................................................................................................................................................................ 4 4. IPHC Regulatory Areas .................................................................................................................................................... 5 5. Mortality
    [Show full text]
  • Annual Repor T 2014
    Annual Report 2014 2014 Highlights Forrest Steller sea lion, Eden, gave birth to a healthy male pup on July 20, 2014. Forrest is the first male Steller sea lion born in North American collections since the 1980s. This is the second pup for parents Woody and Eden. Eleanor, “Ellie,” was born on June 20, 2013. Eider Research 2014 brought the most successful breeding season for the Eider Research Program. For the first time since the program’s start, two female Steller’s eiders naturally incubated eggs and reared ducklings. The Alaska SeaLife Center is the only facility in North America to have Steller’s eiders naturally incubate and rear their young. Sea Otter BTS Another first for the Center: Sea Otter Behind-the-Scenes (BTS) Tours were offered to guests! The Sea Otter BTS provided a unique opportunity for guests to get paw-to-paw with three playful critters. New Ticketing Counter The ticketing counter got a makeover! Guests are now greeted with a harbor-themed front desk as they enter through the doors. Chiswell Island A record number of Steller sea lion births were recorded at Chiswell Island. Alaska SeaLife Center researchers confirmed 114 births as the highest number they’ve observed since research began in 1998. Family Science Night The Education Department implemented a new program for younger children and families in Seward. “Family Science Night” offers kids and adults of all ages fun and educational activities throughout the winter. 3 and its substantial research on the hearing capabilities of arctic seals. These vital connections with partner organizations enable the entire marine community to reach their goals, thereby creating sustainable marine From the President and CEO ecosystems the world over.
    [Show full text]
  • A Proposition for an Octopus Fishery in the Aleutian Islands
    Adams et. al., 1 A Proposition for an Octopus Fishery in the Aleutian Islands By: Aaron Adams, Jessica Andersen, Kevin Huynh, Valerie Sours, and Natalie Waldron. Unalaska City High School Unalaska Raiders (temporary) 55 East Broadway PO Box 570 Unalaska, AK 99685 Primary contact for the paper: Aaron Adams: [email protected] Adams et. al., 2 Abstract With global fisheries on the decline, fishermen have been forced to diversify their fishing efforts. Cephalopod resources are on the rise and may have a potential application to supplement the fishing industry. In many countries, octopuses are underutilized and may have the potential to become a profitable market. However, one exception to this rule is the octopus market in Japan has proven to be sustainable for over 50 years. We recommend a science-based approach to researching and managing an experimental North Pacific Giant Octopus fishery in the Aleutian Chain. Our ecosystem approach to managing this fishery will likely prove profitable to small communities throughout southwestern Alaska, thus providing security for commercial fishing longevity. Adams et. al., 3 Introduction With the onset of global climate change and diminishing marine resources from overfishing, many fishermen are wondering about their future. As fishery managers attempt to conservatively manage species, fishermen are finding that each year they are bringing home less and less catch. One solution to this problem is for fishermen to diversify their fishing efforts. This could mean fishing new areas, using new gear types and possibly fishing new species. While most established fisheries are fairly competitive, there may be a potential to gain a foothold in undeveloped or underutilized fisheries.
    [Show full text]
  • Alaska Park Science 19(1): Arctic Alaska Are Living at the Species’ Northern-Most to Identify Habitats Most Frequented by Bears and 4-9
    National Park Service US Department of the Interior Alaska Park Science Region 11, Alaska Below the Surface Fish and Our Changing Underwater World Volume 19, Issue 1 Noatak National Preserve Cape Krusenstern Gates of the Arctic Alaska Park Science National Monument National Park and Preserve Kobuk Valley Volume 19, Issue 1 National Park June 2020 Bering Land Bridge Yukon-Charley Rivers National Preserve National Preserve Denali National Wrangell-St Elias National Editorial Board: Park and Preserve Park and Preserve Leigh Welling Debora Cooper Grant Hilderbrand Klondike Gold Rush Jim Lawler Lake Clark National National Historical Park Jennifer Pederson Weinberger Park and Preserve Guest Editor: Carol Ann Woody Kenai Fjords Managing Editor: Nina Chambers Katmai National Glacier Bay National National Park Design: Nina Chambers Park and Preserve Park and Preserve Sitka National A special thanks to Sarah Apsens for her diligent Historical Park efforts in assembling articles for this issue. Her Aniakchak National efforts helped make this issue possible. Monument and Preserve Alaska Park Science is the semi-annual science journal of the National Park Service Alaska Region. Each issue highlights research and scholarship important to the stewardship of Alaska’s parks. Publication in Alaska Park Science does not signify that the contents reflect the views or policies of the National Park Service, nor does mention of trade names or commercial products constitute National Park Service endorsement or recommendation. Alaska Park Science is found online at https://www.nps.gov/subjects/alaskaparkscience/index.htm Table of Contents Below the Surface: Fish and Our Changing Environmental DNA: An Emerging Tool for Permafrost Carbon in Stream Food Webs of Underwater World Understanding Aquatic Biodiversity Arctic Alaska C.
    [Show full text]
  • Greenland Turbot Assessment
    6HFWLRQ STOCK ASSESSMENT OF GREENLAND TURBOT James N. Ianelli, Thomas K. Wilderbuer, and Terrance M. Sample 6XPPDU\ Changes to this year’s assessment in the past year include: 1. new summary estimates of retained and discarded Greenland turbot by different target fisheries, 2. update the estimated catch levels by gear type in recent years, and 3. new length frequency and biomass data from the 1998 NMFS eastern Bering Sea shelf survey. Conditions do not appear to have changed substantively over the past several years. For example, the abundance of Greenland turbot from the eastern Bering Sea (EBS) shelf-trawl survey has found only spotty quantities with very few small fish that were common in the late 1970s and early 1980s. The majority of the catch has shifted to longline gear in recent years. The assessment model analysis was similar to last year but with a slightly higher estimated overall abundance. We attribute this to a slightly improved fit to the longline survey data trend. The target stock size (B40%, female spawning biomass) is estimated at about 139,000 tons while the projected 1999 spawning biomass is about 110,000 tons. The adjusted yield projection from F40% computations is estimated at 20,000 tons for 1999, and increase of 5,000 from last year’s ABC. Given the continued downward abundance trend and no sign of recruitment to the EBS shelf, extra caution is warranted. We therefore recommend that the ABC be set to 15,000 tons (same value as last year). As additional survey information become available and signs of recruitment (perhaps from areas other than the shelf) are apparent, then we believe that the full ABC or increases in harvest may be appropriate for this species.
    [Show full text]
  • Halibut Assessment Report for 2017 Draft Paul J. Rago for New England Fishery Management Council Last Updated: December 1, 2017
    1 Halibut Assessment Report for 2017 Draft Paul J. Rago for New England Fishery Management Council Last updated: December 1, 2017 Executive Summary • Survey, landings and discard estimates were updated for the US stock area. • Alternative measures of abundance from Maine sources were considered as potential measures of stock trend. • A review of data poor methods suggests that most have limited utility for Atlantic halibut, however the DCAC model was considered further. • A ratio method (Rcrit) was developed using randomization methods. Simulation tests suggested that the method had utility as a robust measure of population change and the significance of these changes. • Application of the Rcrit method to the US and DFO stocks suggest comparable increases of about 9 to 12% per year since the early 2000’s • An “Envelope Method” was applied to estimate relative scale of the population. The Envelope consists of upper and lower bounds of relative abundance that jointly satisfy constraints on abundance based on a range of hypothesized historical fishing mortality and survey catchability estimates. • Results of the Rcrit and Envelope method were combined to improve the DCAC model but its overall performance is considered unreliable and still governed by strong assumptions. • A catch forecasting algorithm was developed based on the observed rates of change in one or more indices of relative abundance. The method resembles algorithms commonly used for control of linear systems in engineering applications. The magnitude of catch adjustment depends on the aggregate rate of change in one or more abundance indices in prior years. The method estimates the first and second derivative of population change using loglinear regression.
    [Show full text]
  • 1 Noaa /Aslc #18902 1
    1 NOAA /ASLC #18902 1 Alaska SeaLife Center Family At the end of the year, the Alaska SeaLife Center w as caring for 202 different species. This brings our grand total to 3,723 individuals. Birds Mammals 13 species, 142 individuals 4 species, 15 individuals --Aviary Birds-- 5 Steller Sea Lions 9 Tufted Puffins 3 Northern Sea Otters 15 Horned Puffins 3 Spotted Seals 2 Black Oystercatchers 4 Ringed Seals 3 Rhinoceros Auklets 4 King Eiders 4 Long-tailed Ducks Fish 2 Harlequin Ducks 62 species, 952 individuals 4 Pigeon Guillemots 2 Smews Invertebrates 14 Red-legged Kittiwakes 123 species, 2,614 individuals 10 Common Murres --Research Birds-- 14 Spectacled Eiders 59 Steller’s Eiders 2 2 From the President and CEO No one was prepared for what 2020 was going to were released at the same time, something never bring. It was the year of the pivot and a year of done at the Center before. extreme uncertainty. In an unprecedented fashion, we closed our doors for two months. Though the If we had a theme for 2020, it would be resiliency. world went into lockdown, the Alaska SeaLife Staff pulled together by cross training, minimizing Center still had animals to feed, a facility to costs, and provided mental support to each other maintain, and animals to rescue and rehabilitate. to get us through uncertain times. I couldn’t be Life behind inside the Center still went on but was prouder of this team. And we were awestruck by certainly different. When we closed our doors in the support of the people of Alaska.
    [Show full text]
  • Seward Historic Preservation Plan
    City of Seward City Council Louis Bencardino - Mayor Margaret Anderson Marianna Keil David Crane Jerry King Darrell Deeter Bruce Siemenski Ronald A. Garzini, City Manager Seward Historic Preservation Commissioners Doug Capra Donna Kowalski Virginia Darling Faye Mulholland Jeanne Galvano Dan Seavey Glenn Hart Shannon Skibeness Mike Wiley Project Historian - Anne Castellina Community Development Department Kerry Martin, Director Rachel James - Planning Assistant Contracted assistance by: Margaret Branson Tim Sczawinski Madelyn Walker Funded by: The City of Seward and the Alaska Office of History and Archaeology Recommended by: Seward Historic Preservation Commission Resolution 96-02 Seward Planning and Zoning Commission Resolution 96-11 Adopted by: Seward City Council Resolution 96-133 TABLE OF CONTENTS Introduction......................................................................................................................................1 Purpose of the Plan ..............................................................................................................1 Method .................................................................................................................................2 Goals for Historic Preservation............................................................................................3 Community History and Character ..................................................................................................4 Community Resources...................................................................................................................20
    [Show full text]
  • The Pacific Halibut: Biology, Fishery, and Management
    ISSN: 0579-3920 INTERNATIONAL PACIFIC HALIBUT COMMISSION ESTABLISHED BY A CONVENTION BETWEEN CANADA AND THE UNITED STATES OF AMERICA Technical Report No. 59 The Pacifi c Halibut: Biology, Fishery, and Management by IPHC Staff Editors: Stephen Keith, Thomas Kong, Lauri Sadorus, Ian Stewart, and Gregg Williams Cover artwork: Joan Forsberg SEATTLE, WASHINGTON 2014 The International Pacifi c Halibut Commission has three publications: Annual Reports (U.S. 0074-7238), Scientifi c Reports, and Technical Reports (U.S. ISSN 0579-3920). Until 1969, only one series was pub lished (U.S. ISSN 0074-7426). The numbering of the original series has been continued with the Sci en tifi c Re ports. Commissioners Robert Alverson Ted Assu James Balsiger David Boyes Donald Lane Paul Ryall Director Bruce M. Leaman Scientifi c Advisors Robyn Forrest Loh-Lee Low INTERNATIONAL PACIFIC HALIBUT COMMISSION 2320 WEST COMMODORE WAY, SUITE 300 SEATTLE, WASHINGTON 98199-1287, U.S.A. www.iphc.int The Pacifi c Halibut: Biology, Fishery, and Management Contents Introduction ..............................................................................................................4 History of the IPHC and Pacifi c halibut management .................................................5 Regulatory area descriptions ........................................................................................7 Fluctuations in abundance and the fi shery ...................................................................8 Biology .....................................................................................................................9
    [Show full text]
  • Economic Effects of Pacific Halibut Closures on Businesses on the North Coast and the Age, Growth, and Reproductive Status of Pa
    ECONOMIC EFFECTS OF PACIFIC HALIBUT CLOSURES ON BUSINESSES ON THE NORTH COAST AND THE AGE, GROWTH, AND REPRODUCTIVE STATUS OF PACIFIC HALIBUT IN NORTHERN CALIFORNIA AND CENTRAL OREGON By Miki Tajima Takada A Thesis Presented to The Faculty of Humboldt State University In Partial Fulfillment of the Requirements for the Degree Master of Science in Natural Resources: Fisheries Committee Membership Dr. Timothy Mulligan, Committee Chair Dr. Joe Tyburczy, Committee Member Dr. Laurie Richmond, Committee Member Dr. Alison O’Dowd, Graduate Coordinator December 2017 ABSTRACT ECONOMIC EFFECTS OF PACIFIC HALIBUT CLOSURES ON BUSINESSES ON THE NORTH COAST AND THE AGE, GROWTH, AND REPRODUCTIVE STATUS OF PACIFIC HALIBUT IN NORTHERN CALIFORNIA AND CENTRAL OREGON Miki Tajima Takada Traditionally, the recreational fishery for Pacific halibut has been open in California from 1 May through 31 October. In 2014, however, the Pacific halibut fishery was closed in California during the month of August for the first time in history in an effort to reduce harvest and bring total catch closer to what is allocated to our region by the Pacific Fisheries Management Council (PFMC) Catch Sharing Plan. To determine the effects that the closure had on businesses along the North Coast, I conducted an economic impact survey in 2014. The results of the survey showed that fishing-related businesses lost between zero percent and eight percent of their revenue in 2014, as a result of the closure; lodging and traveler service companies lost between 0.3 percent and one percent of their revenue in the same year. None of the businesses changed the number of employees as a result of the closure.
    [Show full text]
  • Pictorial Guide to the Gill Arches of Gadids and Pleuronectids in The
    Alaska Fisheries Science Center National Marine Fisheries Service U.S. DEPARTMENT OF COMMERCE AFSC PROCESSED REPORT 91.15 Pictorial Guide to the G¡ll Arches of Gadids and Pleuronectids in the Eastern Bering Sea May 1991 This report does not const¡Ute a publicalion and is for lnformation only. All data herein are to be considered provisional. ERRATA NOTICE This document is being made available in .PDF format for the convenience of users; however, the accuracy and correctness of the document can only be certified as was presented in the original hard copy format. Inaccuracies in the OCR scanning process may influence text searches of the .PDF file. Light or faded ink in the original document may also affect the quality of the scanned document. Pictorial Guide to the ciII Arches of Gadids and Pleuronectids in the Eastern Beri-ng Sea Mei-Sun Yang Alaska Fisheries Science Center National Marine Fisheries Se:nrice, NoAÀ 7600 Sand Point Way NE, BIN C15700 Seattle, lÍA 98115-0070 May 1991 11I ABSTRÀCT The strrrctures of the gill arches of three gadids and ten pleuronectids were studied. The purPose of this study is, by using the picture of the gill arches and the pattern of the gi[- rakers, to help the identification of the gadids and pleuronectids found Ín the stomachs of marine fishes in the eastern Bering Sea. INTRODUCTION One purjose of the Fish Food Habits Prograrn of the Resource Ecology and FisherY Managenent Division (REF![) is to estimate predation removals of cornmercially inportant prey species by predatory fish (Livingston et al. 1986).
    [Show full text]
  • 91St Running MOUNT MARATHON RACE 2018 Welcome to the Party!
    91st Running MOUNT MARATHON RACE 2018 Welcome to the Party! Some call it crazy. We call it crazy fun. Whether you’re racing up the mountain or cheering from the sidelines, we welcome you to Seward for the 91st running of the Mount Marathon Race and our Fourth of July festivities. While you’re here, enjoy the fresh ocean air, comb the beach, and check out our trails. Peruse the food, arts and vendor booths. Feel the energy rise as thousands pour into town. Grab yourself a spot on the beach to watch the midnight fireworks — a dazzling show against the mountain rimmed sky, doubled by its reflection on the bay. Then rest up for the real show — the Mount Marathon Race®. With race starts at 9 a.m., 11 a.m. and 2 p.m., there’s plenty of action througbout the day. They race up its flank in bright colors and descend in the mountain’s gritty brown badge of honor...then run, walk, hobble, stumble or crawl to the finish line. Good thing one of our leading partners, Advanced Physical Therapy, is in the wellness business! We are thrilled to have Altra as a Platinum Partner, serving as our first ever Alaska’s Focus Photography Official Footwear Sponsor. Check out page 32 for a full list of Fourth of July festivities — and help us celebrate our independence from the ordinary! Cover: 2017 Mt. Marathon Race Winner Allie Ostrander. Photo by Joel Krahn 2 3 2018 Partners The Mount Marathon Race® would not be possible without the generous support of our partners.
    [Show full text]