A New Hypothesis of Decapod Phylogeny

Total Page:16

File Type:pdf, Size:1020Kb

A New Hypothesis of Decapod Phylogeny ANEWHYPOTHESIS OF DECAPODPHYLOGENY BY CHRISTOPHER J.DIXON 1/,SHANE T.AHYONG 2/ andFREDERICK R.SCHRAM 1,3/ 1/ Institutefor Biodiversity and Ecosystem Dynamics, University of Amsterdam, Mauritskade 57, NL-1092AD Amsterdam,Netherlands 2/ AustralianMuseum, 6 CollegeStreet, Sydney, NSW 2010,Australia ABSTRACT Acladisticanalysis based on external morphology was carried out on 60 taxa of decapod crustaceans.An analysis with unordered characters and one with ordered characters were both in agreementregarding the major relationships. The ordered analysis gave better resolution of more advancedclades, while the unordered analysis gave better resolution of more basal clades. None ofthe traditional groups Palinura, Anomura, and Macrura is monophyletic. A newclassi cation of decapodcrustaceans is proposed.Homarida and Astacida are closely related, as shownby theunique processon the ischium of their rstpereiopods. Glypheoidea forms the sister group to Astacura, withinan enlarged Astacidea. Achelata is the sister group to Meiura (Anomala + Brachyura)in a newclade, Eurysternalia, characterized by auniqueantennular morphology and by theeponymous widesternum of its members. Thalassinida emerge as the sister group to Eurysternalia, in a new clade,Sterropoda, characterized by fusionof the rstsegments of the thoracic limbs. The fractostern isinterpreted to beaeureptantfeature, and a possibleburrowing habitus is positedfor the ancestral Eureptantia. RÉSUMÉ Uneanalyse cladistique fondé e surla morphologieexterne a étémené e sur60 taxons de Crustacés Décapodes. Les deux analyses, l’ uneutilisant les caractè res non ordonné s, l’ autreles caractè res ordonnés étaienttoutes les deux en accordsur les principales relations. L ’analyseordonné e aprésenté unemeilleure ré solution des clades les plus avancé s, tandis que l’ analyse non ordonné e adonnéune meilleureré solution des clades plus basaux. Aucun des groupes traditionnels Palinura, Anomura et Macruran’ estmonophylé tique. Une nouvelle classi cation des Crustacé s Décapodes est proposé e. LesHomarida et les Astacida sont é troitementapparenté s, comme dé jà montré par le processus uniquesur l’ ischium de leurspremiers pé ré iopodes. Les Glypheoidea constituent le groupe-frère des Astacura,à l’intérieur du groupe é largides Astacidea. Les Achelata sont le groupe-frère des Meiura (Anomala+ Brachyura)dans un nouveau clade, Eurysternalia, caracté risé par une morphologie uniquede l’ antennuleet par le large sternum é ponymede ses membres. Les Thalassinida é mergent commele groupe-frè re des Eurysternalia, au sein d’ un nouveau clade, les Sterropoda, caracté risé par 3/ Correspondingauthor; e-mail: [email protected] © KoninklijkeBrill NV ,Leiden,200 3 Crustaceana 76(8):935-975 Alsoavailable online: www.brill.nl 936 C.J.DIXON, S.T.AHYONG &F.R.SCHRAM lafusiondes premiers segments des appendices thoraciques. Le fractosterne est interpré té comme un caractère de vrairampant , etunhabitus fouisseur possible est supposé pour l’ Eureptantiaancestral. INTRODUCTION Theorder Decapoda is aremarkablydiverse groupof malacostracans, bothmor- phologicallyand ecologically, and is agroupof great economicand environmental importance.Gruner et al. (1993)estimate 10,000species in the group,but actual numbersmay be at least half againas large.The relationships within the order havebeen the subject ofdebatefor decades; opinionsdiffered in the early years as to whichcharacter(s) shouldbe usedto classify decapods,be it tail length(from Linnaeusuntil Boas,1880), gill type(Huxley, 1878), number of chelae (Beurlen &Glaessner, 1930),or modeof locomotion (Boas, 1880). These sometimes sim- plistic approacheshave now been replaced by moreholistic methodsusing a wider variety ofcharacters. DeSaint Laurent(1979) believed that “les seuls critères dela morphologieexterne : : : nepermettront pas derésoudre [les] relations phylétiques entre les différentes lignées deDécapodes” , butwe wouldargue that whilst larval, spermatozoal,and other characters are useful,external morphologycan be enough to workout such relationships. Wewill nonetheless makereference to otherchar- acters andtheir agreementor disagreement with the scheme weproposebased on external morphology. Boas in his seminal workof 1880divided Decapoda into Natantia forthe swim- mingforms, and Reptantia forthe walkingforms. Although Reptantia is amono- phyletic group,Natantia appearsto beless valid andas longago as 1907,Bor- radaile suggestedthat Natantia was actually paraphyletic.Burkenroad (1963) - nally deconstructedNatantia, recognizingthat the three groupsof natant decapods are notclosely related. AmongReptantia, Boas recognizedsix groups:Homari- dae,Loricata, Eryonidae, Thalassinidae, Anomala,and Brachyura. Although some names havechanged, all these groupsare generallyconceded to bemonophyletic (cf.Martin &Davis,2001). That belief will also betested bythis study. It is perhapsa shame that at the turnof the twentieth century,authors reverted to the oldersystem ofH. Milne Edwards(1834), dividing Reptantia into Palinura, Astacura,Anomura, and Brachyura, which have remained as traditional groups. Noneof the fourhas remainedunchallenged as amonophyletictaxon. Several authors(Abele, 1991; Forest &DeSaint Laurent,1989) have concluded that Palinura was untenableas agroup,and others haveconsidered the differences betweenThalassinida andAnomala (which collectively makeup Anomura)to be insurmountable(De Saint Laurent,1979; Martin &Abele,1986; Tudge, 1997). Scholtz &Richter (1995)separated the twoparts ofthe Astacura,and there has.
Recommended publications
  • How to Become a Crab: Phenotypic Constraints on a Recurring Body Plan
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 December 2020 doi:10.20944/preprints202012.0664.v1 How to become a crab: Phenotypic constraints on a recurring body plan Joanna M. Wolfe1*, Javier Luque1,2,3, Heather D. Bracken-Grissom4 1 Museum of Comparative Zoology and Department of Organismic & Evolutionary Biology, Harvard University, 26 Oxford St, Cambridge, MA 02138, USA 2 Smithsonian Tropical Research Institute, Balboa–Ancon, 0843–03092, Panama, Panama 3 Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06520-8109, USA 4 Institute of Environment and Department of Biological Sciences, Florida International University, Biscayne Bay Campus, 3000 NE 151 Street, North Miami, FL 33181, USA * E-mail: [email protected] Summary: A fundamental question in biology is whether phenotypes can be predicted by ecological or genomic rules. For over 140 years, convergent evolution of the crab-like body plan (with a wide and flattened shape, and a bent abdomen) at least five times in decapod crustaceans has been known as ‘carcinization’. The repeated loss of this body plan has been identified as ‘decarcinization’. We offer phylogenetic strategies to include poorly known groups, and direct evidence from fossils, that will resolve the pattern of crab evolution and the degree of phenotypic variation within crabs. Proposed ecological advantages of the crab body are summarized into a hypothesis of phenotypic integration suggesting correlated evolution of the carapace shape and abdomen. Our premise provides fertile ground for future studies of the genomic and developmental basis, and the predictability, of the crab-like body form. Keywords: Crustacea, Anomura, Brachyura, Carcinization, Phylogeny, Convergent evolution, Morphological integration 1 © 2020 by the author(s).
    [Show full text]
  • Short Note Records of Hippa Strigillata (Stimpson, 1860) (Crustacea: Decapoda: Hippidae) in the SE Gulf of California, Mexico
    Nauplius 22(1): 63-65, 2014 63 Short Note Records of Hippa strigillata (Stimpson, 1860) (Crustacea: Decapoda: Hippidae) in the SE Gulf of California, Mexico Daniela Ríos-Elósegui and Michel E. Hendrickx* (DRE) Posgrado en Ciencias del Mar y Limnología, Unidad Académica Mazatlán, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, P.O. Box 811, Mazatlán, Sinaloa 82000, Mexico. E-mail: [email protected] (DRE, MEH) Laboratorio de Invertebrados Bentónicos, Unidad Académica Mazatlán, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, P.O. Box 811, Mazatlán, Sinaloa 82000, Mexico. E-mail: [email protected]; *Corresponding author ABSTRACT - This paper presents details regarding the collections and records of H. strigillata in the Bay of Mazatlán, SE Gulf of California, Mexico. Samples of H. strigillata were obtained in this bay and suroundings area during different periods and deposited in the collection of UNAM, Mazatlán. Morphometric data, distribution, biological and ecological data were furnished. Key words: Distribution, Gulf of California, Hippa, mole crab Because they represent a very dynamic synonym of Remipes pacificus Dana, 1852) environment, often with high energy wave (Boyko, 2002, Boyko and McLaughlin, action, sandy beaches are considered low 2010) and H. strigillata (Stimpson, 1860) diversity habitats for macro and mega fauna (Hendrickx, 1995; Hendrickx and Harvey, (Tait, 1972). This is particularly true along the 1999). Hippa marmorata occurs from the west coast of Mexico (Dexter, 1976; Hendrickx, central Gulf of California to Colombia, 1996). The intertidal habitat is mostly including several oceanic islands of the eastern dominated by species of bivalve mollusks and Pacific (Revillagigedo, del Coco, Galapagos, small (Amphipoda, Isopoda) to medium size and Clipperton) (Hendrickx, 2005).
    [Show full text]
  • Autotomy in Porcelain Crabs Is an Effective Escape Mechanism from Rockfish Predation Matthew L
    Marine Ecology. ISSN 0173-9565 ORIGINAL ARTICLE Autotomy in porcelain crabs is an effective escape mechanism from rockfish predation Matthew L. Knope1 & Ralph J. Larson2 1 Department of Geological and Environmental Sciences, Stanford University, Stanford, CA, USA 2 Department of Biology, San Francisco State University, San Francisco, CA, USA Keywords Abstract Anti-predatory behavior; crabs; natural selection; porcellanidae; rockfish; sebastes. Porcelain crabs possess a ‘hair-trigger’ propensity to autotomize their chelipeds (claws), and laboratory studies have demonstrated that this ability is highly Correspondence effective in avoiding predation from other crabs. However, porcelain crabs are Matthew L. Knope, Department of also subject to predation from fishes, which use a very different means of cap- Geological and Environmental Sciences, ture. In this study, we investigated whether autotomy in porcelain crabs is also Stanford University, 385 Serra Mall, Stanford, effective against predation by fishes. To do this, we examined stomach-contents CA 94305, USA. data from four common species of kelp-forest rockfishes and determined the E-mail: [email protected] frequency of disassociated chelipeds (those with no associated bodies) in porce- Accepted: 8 August 2013 lain crabs and in brachyuran crabs, which do not readily autotomize their chelipeds. We found that disassociated chelipeds of porcelain crabs were six doi: 10.1111/maec.12103 times as common as those of brachyuran crabs (35% of the remains of all por- celain crabs versus 6% of the remains of all brachyuran crabs). We interpret this difference to be evidence that, through autotomy, porcelain crabs escaped ingestion of their entire bodies, and thus certain mortality, at a higher rate than did brachyuran crabs.
    [Show full text]
  • A Review of Worldwide Fisheries for Lithodid Crabs (Decapoda: Anomura: Lithodidae) and Their Fluctuations
    Bi ology ofAnomura II (A .Asakura ,e d.),Cr ustaceanR esearc h,Sp ec ialN umber6: 167-185,2006 A review of worldwide fisheries for lithodid crabs (Decapoda: Anomura: Lithodidae) and their fluctuations R obert S. Otto Abstra ct.-Lithodid crab fi sheries began species within these genera,trends in landings before1900 in Japan and spread across the and cu汀 ent status of major stocks contributing North Pacific Ocean by1940. Fisheries targeted to the world lithodid landings. lncidental or red kin gcrab (Paralithodes ca mtsc hati cus) with experimental fisheries for Neolithodes spp. and lesser amounts of blue king crab (P. platypus) for Lopholithodes spp. are omitt ed,because and brown king crab (P. brevip es) .Paralithod es documented landings are sporadic,trends spp.,es pec iall yred kin gcrabs ,h ave always are not evident and magnitudes negligible. dominated lithodid fisherie s. Golden king crab Likewise,1 have excluded recreational or (Lithodes aequispinus) becam eimportant in personal use fisheries,because statistics are North Pacific Ocean waters after major decline s frequently incomplete and known landings are in red king crab fisheries in the early 1980's. Southern kin gcrab (Lithodes sa ntolla) are fished generall ysm a ll relative to commercial白sheries. in so uthern South America along with softshell red crab (Paralomis granulosa). These five species DATASOURCES accounted for more than 89% of lithodid landings for 1984・2003. World lithodid landings pea ked at 1use United Nations Food and Agricultural 150,100 metric tons (t) in 1966 after development Organization (FAO) landing statistic sas a in pre-World War 11 Asia and rapid post-1950 starting point and more detai led publications ex pansion in A laskaand Asia.
    [Show full text]
  • Caridea, Polychelida, Anomura and Brachyura) Collected from the Nikko Seamounts, Mariana Arc, Using a Remotely Operated Vehicle “Hyper-Dolphin”
    Zootaxa 3764 (3): 279–316 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3764.3.3 http://zoobank.org/urn:lsid:zoobank.org:pub:F1B0E174-89C5-4A9E-B7DA-C5E27AF624D3 Deep-Sea decapod crustaceans (Caridea, Polychelida, Anomura and Brachyura) collected from the Nikko Seamounts, Mariana Arc, using a remotely operated vehicle “Hyper-Dolphin” TOMOYUKI KOMAI1 & SHINJI TSUCHIDA2 1Natural History Museum and Institute, Chiba, 955-2 Aoba-cho, Chuo-ku, Chiba, 260-8682 Japan. E-mail: [email protected] 2Japan Agency of Marine Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa, 237-0061. E-mail: [email protected] Abstract Samples and images of deep-water benthic decapod crustaceans were collected from the Nikko Seamounts, Mariana Arc, at depths of 520–680 m, by using the remotely operate vehicle “Hyper-Dolphin”, equipped with a high definition camera, digital camera, manipulators and slurp gun (suction sampler). The following seven species were collected, of which three are new to science: Plesionika unicolor n. sp. (Caridea: Pandalidae), Homeryon armarium Galil, 2000 (Polychelida: Poly- chelidae), Eumunida nikko n. sp. (Anomura: Eumunididae), Michelopagurus limatulus (Henderson, 1888) (Anomura: Paguridae), Galilia petricola n. sp. (Brachyura: Leucosiidae), Cyrtomaia micronesica Richer de Forges & Ng, 2007 (Brachyura: Inachidae), and Progeryon mus Ng & Guinot, 1999 (Brachyura: Progeryonidae). Affinities of these three new species are discussed. All but H. armarium are recorded from the Japanese Exclusive Economic Zone for the first time. Brief notes on ecology and/or behavior are given for each species.
    [Show full text]
  • Growth of Juvenile Golden King Crabs Lithodes Aequispinus in the Laboratory
    Growth of Juvenile Golden King Crabs in the Laboratory • Paul and Paul 133 Growth of Juvenile Golden King Crabs Lithodes aequispinus in the Laboratory A. J. Paul and J. M. Paul Reprinted from the Alaska Fishery Research Bulletin Vol. 8 No. 2, Winter 2001 The Alaska Fisheries Research Bulletin can be found on the World Wide Web at URL: http://www.state.ak.us/adfg/geninfo/pubs/afrb/afrbhome.htm 134 Notes GrowthAlaska Fishery of Juvenile Research Golden Bulletin King 8(2) Crabs 135–138. in the 2001.Laboratory • Paul and Paul Notes135 Copyright © 2001 by the Alaska Department of Fish and Game Growth of Juvenile Golden King Crabs Lithodes aequispinus in the Laboratory A. J. Paul and J. M. Paul ABSTRACT: Growth observations were made for juvenile male golden king crabs Lithodes aequispinus with carapace lengths (CL) of 2 to 35 mm to improve our understanding of the recruitment process. Gravid females were captured in Prince William Sound, Alaska, and juveniles were reared in the laboratory at 3°–10°C to obtain information on growth per molt and intermolt duration. The equation describing the increase in CL for crabs 2 to 35 mm CL was: New CL mm = Initial CL (1.25) + 0.14; r2 = 0.99, n = 76. The average increase in CL after molting was 28% (SD = 8%), and the corresponding value for chela height (CH) was 33% (SD = 17%). The intermolt duration, in units of degree days, of crabs 2 to 35 mm CL was described by the equation: Intermolt Duration = Initial CL mm (16.32) + 259; r2 = 0.76.
    [Show full text]
  • An Overview of the Decapoda with Glossary and References
    January 2011 Christina Ball Royal BC Museum An Overview of the Decapoda With Glossary and References The arthropods (meaning jointed leg) are a phylum that includes, among others, the insects, spiders, horseshoe crabs and crustaceans. A few of the traits that arthropods are characterized by are; their jointed legs, a hard exoskeleton made of chitin and growth by the process of ecdysis (molting). The Crustacea are a group nested within the Arthropoda which includes the shrimp, crabs, krill, barnacles, beach hoppers and many others. The members of this group present a wide range of morphology and life history, but they do have some unifying characteristics. They are the only group of arthropods that have two pairs of antenna. The decapods (meaning ten-legged) are a group within the Crustacea and are the topic of this key. The decapods are primarily characterized by a well developed carapace and ten pereopods (walking legs). The higher-level taxonomic groups within the Decapoda are the Dendrobranchiata, Anomura, Brachyura, Caridea, Astacidea, Axiidea, Gebiidea, Palinura and Stenopodidea. However, two of these groups, the Palinura (spiny lobsters) and the Stenopodidea (coral shrimps), do not occur in British Columbia and are not dealt with in this key. The remaining groups covered by this key include the crabs, hermit crabs, shrimp, prawns, lobsters, crayfish, mud shrimp, ghost shrimp and others. Arthropoda Crustacea Decapoda Dendrobranchiata – Prawns Caridea – Shrimp Astacidea – True lobsters and crayfish Thalassinidea - This group has recently
    [Show full text]
  • Anomura and Brachyura
    Canadian Technical Report of Fisheries and Aquatic Sciences 1771 December 1990 A GUIDE TO DECAPOD CRUSTACEA FROM THE CANADIAN ATLANTIC: ANOMURA AND BRACHYURA Gerhard W. Pohle' Biological Sciences Branch Department of Fisheries and Oceans Biological Station St. Andrews, New Brunswick EOG 2XO Canada ,Atlantic Reference Centre, Huntsman Marine Science Centre St. Andrews, New Brunswick EOG 2XO Canada This is the two hundred and eleventh Technical Report from the Biological Station, St. Andrews, N. B. ii . © Minister of Supply and Services Canada 1990 Cat. No. Fs 97-611771 ISSN 0706-6457 Correct citation for this publication: Pohle, G. W. _1990. A guide to decapod Crustacea from the Canadian Atlantic: Anorrora and Brachyura. Can. Tech. Rep. Fish. Aquat. SCi. 1771: iv + 30 p. iii TABLE OF CONTENTS Page Abstract ..............................................................." iv Introduction 1 How to use this guide " 2 General morphological description 3 How to distinguish anomuran and brachyuran decapods 5 How to distinguish the families of anornuran crabs 6 Family Paguridae Pagurus acadianus Benedict, 1901 ........................................ .. 7 Pagurus arcuatus Squires, 1964 .......................................... .. 8 Pagurus longicarpus Say, 1817 9 Pagurus politus (Smith, 1882) 10 Pagurus pubescens (Kmyer, 1838) 11 Family Parapaguridae P.arapagurus pilosimanus Smith, 1879 12 Family Lithodidae Lithodes maja (Linnaeus, 1758) 13 Neolithodes grimaldii (Milne-Edwards and Bouvier, 1894) 14 Neolithodes agassizii (Smith 1882) 14 How to distinguish the families of brachyuran crabs 15 Family Majidae Chionoecetes opilio (Fabricius, 1780) 17 Hyas araneus (Linnaeus, 1758) 18 Hyas coarctatus Leach, 1815 18 Libinia emarginata Leach, 1815 19 Family Cancridae Cancer borealis Stimpson, 1859 20 Cancer irroratus Say, 1817 20 Family Geryonidae Chaceon quinquedens (Smith, 1879) 21 Family Portunidae Ovalipes ocellatus (Herbst,- 1799) 22 Callinectes sapidus Rathbun, 1896 ...................................
    [Show full text]
  • Thalassinidea, Anomura and Brachyura (Crustacea: Decapoda
    Deep-sea Fauna and Pollutants off Pacifi c Coast of Northern Japan, edited by T. Fujita, National Museum of Nature and Science Monographs, No. 39, pp. 581-613, 2009 Thalassinidea, Anomura and Brachyura (Crustacea: Decapoda) from Northeastern Japan Collected during the “Research on Deep-sea Fauna and Pollutants off Pacifi c Coast of Northern Japan” Project Hironori Komatsu1 and Tomoyuki Komai2 1 Department of Zoology, National Museum of Nature and Science, 3̶23̶1 Hyakunincho, Shinjuku-ku, Tokyo, 169̶0073 Japan E-mail: [email protected] 2 Natural History Museum and Institute, Chiba, 955̶2 Aoba-cho, Chuo-ku, Chiba, 260̶8682 Japan E-mail: [email protected] Abstract: Reptantian decapod crustaceans (Thalassinidea, Anomura and Brachyura) from off the Pacifi c coast of northeastern Japan, collected during a four-year project of the National Museum of Nature and Science, “Research on Deep-sea Fauna and Pollutants off Pacifi c Coast of Northern Japan,” are reported. The collection consists of 26 species of 12 families. A new species of ethusid crab, Ethusina wakataka, is described and il- lustrated based on a male specimen from off Soma, Fukushima Prefecture, at depths of 1466̶1471 m. The new species can be distinguished from the known congeners primarily by the unique structure of the gonopods. The biogeography and the bathymetric distribution of the recorded species are briefl y discussed. Key words: Crustacea, Decapoda, Thalassinidea, Anomura, Brachyura, deep-sea, new species, Ethusina wakataka. Introduction Little has been published on the deep-water reptant decapods of the Pacifi c coast of northeast- ern Japan, although the area represents a major North Pacifi c fi shing ground.
    [Show full text]
  • Reappraisal of Hermit Crab Species (Crustacea: Anomura: Paguridea) Reported by Camill HELLER in 1861, 1862 and 1865
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Annalen des Naturhistorischen Museums in Wien Jahr/Year: 2001 Band/Volume: 103B Autor(en)/Author(s): Dworschak Peter C., McLaughlin Patsy A. Artikel/Article: Reappraisal of hermit crab species (Crustacea: Anomura: Paguridea) reported by Camill HELLER in 1861, 1862 and 1865. 135-176 ©Naturhistorisches Museum Wien, download unter www.biologiezentrum.at Ann. Naturhist. Mus. Wien 103 B 135- 176 Wien, Dezember 2001 Reappraisal of hermit crab species (Crustacea: Anomura: Paguridea) reported by Camill Heller in 1861,1862 and 1865 P.A. McLaughlin1 & P.C. Dworschak2 Abstract Redescriptions based on the type material are presented for 11 species of hermit crabs described as new by Camill Heller (HELLER 1861a, c, 1862, 1865): Coenobita violascens HELLER, 1862, Diogenes avarus HELLER, 1865 - for which a lectotype is designated, Diogenes senex HELLER, 1865, Pagurus varipes HELLER, 1861 [= Dardanus tinctor (FORSKÂL, 1775)], Pagurus depressus HELLER, 1861 [= Dardanus lago- podos (FORSKAL, 1775)], Calcinus rosaceus HELLER, 1861, Calcinus nitidus HELLER, 1865, Clibanarius carni/ex HELLER, 1861, Clibanarius signatus HELLER, 1861, Paguristes barbatus (HELLER, 1862) and Paguristes ciliatus HELLER, 1862. For 7 of those, detailed figures are provided. In addition, the material from the Red Sea along with the hermit crabs obtained during the circumnavigation of the earth by the fri- gate 'Novara' and identified by
    [Show full text]
  • A Checklist of the Species of Pelagic Shrimps (Penaeoidea and Caridea) from the Eastern Pacific, with Notes on Their Geographic and Depth Distribution Michel E
    HENDRICKX AND ESTRADA-NAVARRETE: PELAGIC SHRIMPS OF THE EASTERN PACIFIC CalCOFl Rep., Vol. 30,1989 A CHECKLIST OF THE SPECIES OF PELAGIC SHRIMPS (PENAEOIDEA AND CARIDEA) FROM THE EASTERN PACIFIC, WITH NOTES ON THEIR GEOGRAPHIC AND DEPTH DISTRIBUTION MICHEL E. HENDRICKX AND FLOR D. ESTRADA-NAVARRETE Estacidn Mazatlin Instituto de Ciencias del Mar y Limnologia, UNAM P.O. Box811 Mazatlin, Sinaloa, 82000 MCxico ABSTRACT 1250 Km mar afuera. Se consideran 86 especies (39 A checklist of the species of pelagic shrimps (Pen- Penaeoidea y 47 Caridea) y para cada una de ellas se aeoidea and Caridea) of the eastern Pacific based on hace referencia a la descripci6n original y a citas published information and collections made off the adicionales que incluyen observaciones recientes e coast of Mexico is presented. The list includes all ilustraciones de las mismas. Otros datos incluidos species known from this region, including some hacen referencia a la distribuci6n geogrifica y bati- records on seamounts 1250 km offshore. In total, 86 mktrica de cada especie, tal como se conoce actual- species have been considered (39 Penaeoidea and 47 mente. Se discuten brevemente las afinidades Caridea). For each species, references to the original zoogeogrificas de 10s camarones peligicos del Pa- description and to more recent records and illustra- cific~oriental con Cnfasis en la fauna mexicana. En tions of the species are provided. Other information total, 22 especies (9 Penaeoidea y 13 Caridea) son on geographic and bathymetrid distribution is in- endkmicas a1 Pacifico oriental, 24 (8 Penaeoidea y 16 cluded. The zoogeographic affinities of the pelagic Caridea) son consideradas cosmopolitas y 34 (20 shrimps of the eastern Pacific are briefly discussed, Penaeoidea y 14 Caridea) han sido encontradas en with emphasis on the Mexican fauna.
    [Show full text]
  • A Guide To, and Checklist For, the Decapoda of Namibia, South Africa and Mozambique (Volume 2)
    A Guide to, and Checklist for, the Decapoda of Namibia, South Africa and Mozambique (Volume 2) A Guide to, and Checklist for, the Decapoda of Namibia, South Africa and Mozambique (Volume 2) By W. D. Emmerson A Guide to, and Checklist for, the Decapoda of Namibia, South Africa and Mozambique (Volume 2) By W. D. Emmerson This book first published 2016 Cambridge Scholars Publishing Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Copyright © 2016 by W. D. Emmerson All rights for this book reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner. ISBN (10): 1-4438-9097-9 ISBN (13): 978-1-4438-9097-7 CONTENTS Volume 1 Acknowledgements .................................................................................. xiii Introduction .............................................................................................. xvi A History of Decapod Research in Southern Africa ............................. xxviii Decapod Biodiversity and Future Research Direction .......................... xxxiii Commercial and Artisanal Food Value of Decapods ........................... xxxix Classification Overview ............................................................................ lvi Suborder Dendrobranchiata ........................................................................
    [Show full text]