A New Mangrove-Inhabiting Porcelain Crab of the Genus <I>Enosteoides</I

Total Page:16

File Type:pdf, Size:1020Kb

A New Mangrove-Inhabiting Porcelain Crab of the Genus <I>Enosteoides</I Bull Mar Sci. 90(3):865–872. 2014 new taxa paper http://dx.doi.org/10.5343/bms.2013.1079 A new mangrove-inhabiting porcelain crab of the genus Enosteoides (Crustacea: Decapoda: Anomura) from Puerto Princesa Bay, Palawan, the Philippines 1 * 1 College of Fisheries and Aquatic Roger G Dolorosa Sciences, Western Philippines Bernd Werding 2 University-Puerto Princesa Campus, Palawan, Republic of the Philippines. 2 Department of Animal Ecology, ABSTRACT.—A mangrove-inhabiting porcelain crab, Justus-Liebig University, Enosteoides philippinensis sp. nov., is described based on Giessen, Germany. material collected from Palawan Island, the Philippines. It is the fifth species of the genus and different from its congeners * Corresponding author email: <[email protected]>. in having an extremely setose body, one to five spines on the proximal half of the outer margin of the chela, two lobes on the anterior margin of the basal article of the antennular Date Submitted: 16 May, 2013. peduncle, and two to four strong spines on the mesobranchial Date Accepted: 5 February, 2014. regions. Available Online: 28 April, 2014. Enosteoides was first established by Johnson (1970) as a subgenus of Porcellana Lamarck, 1801 and later raised to a generic rank by Haig (1978). The genus currently contains four Indo-West Pacific species: Enosteoides ornatus (Stimpson, 1858), Enosteoides melissa (Miyake, 1942), Enosteoides palauensis (Nakasone and Miyake, 1968), and Enosteoides lobatus Osawa, 2009. During study by the first author on the biology of mangrove-inhabiting porcelain crabs in Puerto Princesa Bay, Palawan, the Philippines, an unusual species of porce- lain crab was encountered. Detailed examination of the specimens revealed that it is an undescribed species of the genus Enosteoides. The present study describes the new species as the fifth in the genus. Methods Porcelain crabs were collected in a mangrove forest in the city of Puerto Princesa between January 2003 and June 2004. Microhabitats such as undersides of stones, spaces between mangrove roots, decaying mangrove trunks, and sponges were care- fully searched for the crabs. To minimize habitat disturbance, traps made of bundles of firewood were set among mangrove roots and were retrieved after two months. At the first retrieval of traps, two unidentified porcelain crabs were collected. Subsequent continuous trapping resulted in the capture of 19 additional individuals. Collected specimens were preserved in 95% ethanol and stored in a refrigerator until further examination. The carapace length (cl) and carapace width (cw) were measured with Vernier calipers to the nearest 0.1 mm. The holotype and one paratype are deposited at Forschungsinstitut und Naturmuseum Senckenberg, Frankfurt am Main (SMF), Bulletin of Marine Science 865 © 2014 Rosenstiel School of Marine & Atmospheric Science of the University of Miami 866 Bulletin of Marine Science. Vol 90, No 3. 2014 Germany, and other paratypes are kept in the Western Philippines University-Puerto Princesa Campus (WPU-PPC). Results Family Porcellanidae Haworth, 1825 Genus Enosteoides Johnson, 1970 Enosteoides philippinensis new species urn:lsid:zoobank.org:act:08967713-C134-4125-BCDB-AF90398D462B (Figs. 1–5) Material Examined.—Holotype.—♀, Puerto Princesa, Palawan, the Philippines, mangrove forest, intertidal, 9°46.886´N and 118°43.365´E, coll. R Dolorosa, 14 June, 2004, SMF 45447. Paratypes.—1♂, same data as holotype, SMF 45448; 1♂, same data as holotype, 7 August, 2003, WPU-PPC 1.01; 1♂, same data as holotype, 14 June, 2004, WPU-PPC 1.02; 1♀, parasitized with bopyrid, same data as holotype, 7 August, 2003, WPU-PPC 1.03; 1♀, parasitized with bopyrid, same data as holotype, 14 June, 2004, WPU-PPC 1.04; 6♀♀, parasitized with bopyrids, same data as holotype, 14 June, 2004, WPU- PPC 1.05–1.10. Measurements.—Largest male cl 9.3 mm, cw 8.3 mm; largest female cl 10.0 mm, cw 9.5 mm. Description.—Carapace (Figs. 1, 2A, 4A) nearly as long as broad or slightly lon- ger than broad, dorsal surface convex, sparsely setose except posterior branchial regions; regions distinctly separated. Protogastric ridge bilobed, each with median cristate tubercle. Anterior branchial regions with some blunt spines or tubercles. Cardiac and gastric regions with sparse ridges. Epibranchial spines absent. Branchial margins convex anteriorly, bordered by an elevated crest, mesobranchial margins subparallel or slightly convex, with two strong spines. Rostrum (Fig. 2B) trilobate, median lobe broader and exceeding lateral lobes, anterior margin emarginated in dorsal view, with apex strongly bent downwards; lateral lobes rounded in dorsal view. Orbits shallow, outer orbital angle weakly produced. Lateral margins of carapace and pterygostomian region (Fig. 2A,D) densely setose. Thoracic sternum setose on surface. Third thoracic sternite (Fig. 2C) trilobate, median lobe very broad, anteriorly rounded; lateral lobes narrow, slightly exceeding median lobe. Forth thoracic sternite anteriorly with dense long setae, overreaching anterior margin of third thoracic sternite. Telson (Fig. 2E) seven-plated. Eyes (Figs. 1, 2A) small, peduncle hardly visible from dorsal view. Basal article of antennule (Fig. 2F) rounded with two lobes mesially on anterior margin. Chelipeds (Figs. 1, 2H, 4A,B) subequal, densely setose on dorsal surface but smooth on ventral surface. Carpus about twice as long as broad, with three blunt low teeth on proximal half of anterior margin; posterior margin with distal edge produced to a spine, followed by second one at one third of distance; dorsal surface Dolorosa and Werding: Enostenoides philippinensis from the Philippines 867 Figure 1. Enosteoides philippinensis sp. nov. Holotype. Female (cl 8.1 mm, cw 7.8 mm). SMF 45447. Entire animal, dorsal view. with longitudinal ridge along midline; outer margin of palm with 3 or 4 irregularly set spines at proximal half. Ambulatory legs (L1–L3) (Figs. 3, 4A, B) slender, decreasing in length posteriorly, first leg longest. Meri densely setose; anterior margin unarmed in L1, with vestigial blunt spine near distal end in L2 and L3. Carpi without spines. Propodi ventrally with triplet of movable distal spines, one additional subdistal spine in L2 and L3. Dactyli with 3 or 4 spinules on posterior margin. Variation.—The number of teeth on the anterior margin of the carpus of the cheli- ped ranges from two or three, the most proximal tooth is sometimes absent or blunt. The number of proximal spines on the outer margin of the palm ranges from one to five. The spines at the mesobranchial margins of carapace range from two to four. The granulation on the anterior margin of the basal antennular article is relatively more prominent in larger individuals. Color.—In life, the dorsal surfaces of the carapace and pereopods are pale pink to pale brown, thick setae are dark brown. In preservative, carapace generally light pink, reddish, or brownish mottled with white or pale pink. Etymology.—The new species is named after the Republic of the Philippines, the country where the type locality of E. philippinensis is situated. 868 Bulletin of Marine Science. Vol 90, No 3. 2014 Figure 2. Enosteoides philippinensis sp. nov. Paratype male (cl 5.5 mm, cw 5.5 mm) WPU-PPC 1.01. (A) carapace, dorsal view; (B) front, anterior view; (C) third thoracic sternite, ventral view; (D) left pterygostomian flap, lateral view; (E) telson, external view; (F) basal article of the right antennule, ventral view; (G) endopod of left third maxilliped; (H) right cheliped, dorsal view. Scale bars: 1 mm. Dolorosa and Werding: Enostenoides philippinensis from the Philippines 869 Figure 3. Enosteoides philippinensis sp. nov. Paratype male (cl 5.5 mm, cw 5.5 mm) WPU-PPC 1.01. Right ambulatory legs, lateral view, (A) first leg (L1); (B) second leg (L2); (C) third leg (L3). Scale bar: 1 mm. Figure 4. Enosteoides philippinensis sp. nov. Holotype. Female (cl 8.1 mm, cw 7.8 mm). SMF 45447. (A) Entire animal, dorsal view; (B) entire animal, ventral view. Setae were cleaned and some setae were removed to reveal the surface features of the specimen. 870 Bulletin of Marine Science. Vol 90, No 3. 2014 Figure 5. The basal article of the antennules of Enosteoides spp. (A) Enosteoides ornatus; (B) Enosteoides palauensis; (C) Enosteoides melissa; (D) Enosteoides philippinensis; and (E) Enosteoides lobatus). Scale bars: 0.5 mm. Ecology.—The new species inhabits the intertidal in the outer most part of man- grove forest with rocky or coral rubble substrate. Some individuals were collected together with Petrolisthes bifidus Werding and Hiller, 2004 and Petrolisthes teres Melin, 1939 in a bundle of wood, which was set among the prop roots of mangrove trees of the genus Rhizophora. Of the 19 previously available specimens (a number were damaged during the first author’s years of absence from the university), four (50%) of the eight males and six (54.55%) of the 11 females were infested with isopods. Discussion Some similarities and differences between Enosteoides philippinensis sp. nov. and its congeners are reflected in Table 1 (see Miyake 1943, Nakasone and Miyake 1968, Haig 1992, Hsieh et al. 1997, Osawa 2009): The percentage of parasitism of bopyrids on E. philippinensis sp. nov. is much high- er compared with other mangrove associated porcelain crabs such as P. teres (0.04 %), P. bifidus (2.53%), and Petrolisthes kranjiensis Johnson, 1970 (9.85%) (Dolorosa 2005). It remains uncertain whether or not the same species of parasite infests the four Dolorosa and Werding: Enostenoides philippinensis
Recommended publications
  • Stimulation of Filter Feeding by Amino Acids in Three Porcelain Crab Species: Petrolisthes Cinctipes, Petrolisthes Eriomerus, and Pachycheles Rudis
    Stimulation of filter feeding by amino acids in three porcelain crab species: Petrolisthes cinctipes, Petrolisthes eriomerus, and Pachycheles rudis Sarah Green Exploratory 2, Adaptations ofMarine Mammals, Prof. Charlie Hunter Oregon Institute ofMarine Biology, University of Oregon, Charleston, Oregon 97420 Introduction Petrolisthes cinctipes, a species ofporcelain crab, is commonly found in the higher to mid-intertidal zones ofthe rocky shores ofOregon (Wicksten, 1973). Petrolisthes eriomerus and Pachycheles rudis, the other two species ofporcelain crab found on the Oregon coast can be found in the low intertidal zone. All three species can be found under rocks and among mussels in mussel beds (Sept, 1999). The three species ofporcelain crab filter feed, fanning plankton and detritus (Petrolisthes cinctipes and Pachycheles rudis) from the water, or pelagic diatoms, benthic diatoms, and green algal filaments from the water (Petrolisthes eriomerus) (MagGinite, 1937; Wicksten, 1973). The mechanics offilter feeding in porcelain crabs has been thoroughly documented by Wicksten (1973). Food particles can be trapped by alternately flexing the endopodites ofthe third maxillapeds. The food particles are then removed from the setae on the third maxillapeds by the setose ends ofthe second maxillapeds. Food particles are then selected and sorted by the inner mouth parts. Little research has been reported on compounds promoting feeding behavior in porcelain crabs. L-tyrosine has been shown to elicit a feeding response in Petrolisthes cinctipes, as have other amino acids. As there are no particles in the water when testing an amino acid, chemoreception ofsmall compounds must stimulate the feeding response (Hartman et aI., 1977). I hypothesize that the stimulation ofthe feeding response in Petrolisthes cinctipes, Petrolisthes eriomerus, and Pachycheles rudis will differ in response to various amino acids because ofthe their location in the intertidal.
    [Show full text]
  • How to Become a Crab: Phenotypic Constraints on a Recurring Body Plan
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 December 2020 doi:10.20944/preprints202012.0664.v1 How to become a crab: Phenotypic constraints on a recurring body plan Joanna M. Wolfe1*, Javier Luque1,2,3, Heather D. Bracken-Grissom4 1 Museum of Comparative Zoology and Department of Organismic & Evolutionary Biology, Harvard University, 26 Oxford St, Cambridge, MA 02138, USA 2 Smithsonian Tropical Research Institute, Balboa–Ancon, 0843–03092, Panama, Panama 3 Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06520-8109, USA 4 Institute of Environment and Department of Biological Sciences, Florida International University, Biscayne Bay Campus, 3000 NE 151 Street, North Miami, FL 33181, USA * E-mail: [email protected] Summary: A fundamental question in biology is whether phenotypes can be predicted by ecological or genomic rules. For over 140 years, convergent evolution of the crab-like body plan (with a wide and flattened shape, and a bent abdomen) at least five times in decapod crustaceans has been known as ‘carcinization’. The repeated loss of this body plan has been identified as ‘decarcinization’. We offer phylogenetic strategies to include poorly known groups, and direct evidence from fossils, that will resolve the pattern of crab evolution and the degree of phenotypic variation within crabs. Proposed ecological advantages of the crab body are summarized into a hypothesis of phenotypic integration suggesting correlated evolution of the carapace shape and abdomen. Our premise provides fertile ground for future studies of the genomic and developmental basis, and the predictability, of the crab-like body form. Keywords: Crustacea, Anomura, Brachyura, Carcinization, Phylogeny, Convergent evolution, Morphological integration 1 © 2020 by the author(s).
    [Show full text]
  • A Comparative Analysis of Morphological, Physiological, And
    AN ABSTRACT OF THE THESIS OF Jonathon Harris Stillman for the degree of Doctor of Philosophy in Zoology presented on December 4, 1998. Title: A Comparative Analysis of Morphological, Physiological, and Biochemical Adaptation to Abiotic Stress in Intertidal Porcelain Crabs, Genus Petrolisthes. Redacted for Privacy Abstract approved: George N. Somero Organismal tolerance to abiotic environmental stresses contributes significantly to setting the distribution limits of organisms, as demonstrated by vertical zonation patterns in the marine intertidal zone. In this thesis, the ultimate (evolutionary) and proximate (mechanistic) causes of tolerance to temperature and emersion stresses associated with the intertidal zone were examined using porcelain crabs, genus Petrolisthes. Species of Petrolisthes from intertidal and subtidal microhabitats of four biogeographic regions of the Eastern Pacific were used in phylogenetically-based comparative analyses of morphological, physiological, and biochemical adaptation to environmental stress. A phylogenetic tree based on the sequence of the 16sRNA gene was developed to facilitate these analyses. Organismal thermal tolerance limits are adapted to match maximal microhabitat temperatures. Acclimation of thermal tolerance limits suggests that temperate intertidal zone species are living close to their thermal maximum in nature. Respiratory responses to emersion vary among species from different vertical zones. Experimental examination of oxygen consumption rates and lactate accumulation during emersion suggests that intertidal species are able to respire in air using thin membranous regions on the ventral meral segments of their legs (leg membranes). Leg membrane size is positively correlated with body size across species, but not within a single species. Evolutionary analyses indicate that leg membranes may not have evolved for purposes of aerial respiration, but their presence may have allowed intertidal and subtidal species to achieve larger body sizes and higher metabolic rates.
    [Show full text]
  • The Porcelain Crab Transcriptome and PCAD, the Porcelain Crab Microarray and Sequence Database
    The Porcelain Crab Transcriptome and PCAD, the Porcelain Crab Microarray and Sequence Database Abderrahmane Tagmount1, Mei Wang2, Erika Lindquist2, Yoshihiro Tanaka1, Kristen S. Teranishi1, Shinichi Sunagawa3, Mike Wong4, Jonathon H. Stillman1,5* 1 Romberg Tiburon Center and Department of Biology, San Francisco State University, Tiburon, California, United States of America, 2 Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America, 3 School of Natural Sciences, University of California Merced, Merced, California, United States of America, 4 Center for Computing in the Life Sciences, San Francisco State University, San Francisco, California, United States of America, 5 Department of Integrative Biology, University of California, Berkeley, California, United States of America Abstract Background: With the emergence of a completed genome sequence of the freshwater crustacean Daphnia pulex, construction of genomic-scale sequence databases for additional crustacean sequences are important for comparative genomics and annotation. Porcelain crabs, genus Petrolisthes, have been powerful crustacean models for environmental and evolutionary physiology with respect to thermal adaptation and understanding responses of marine organisms to climate change. Here, we present a large-scale EST sequencing and cDNA microarray database project for the porcelain crab Petrolisthes cinctipes. Methodology/Principal Findings: A set of ,30K unique sequences (UniSeqs) representing ,19K clusters were generated from ,98K high quality ESTs from a set of tissue specific non-normalized and mixed-tissue normalized cDNA libraries from the porcelain crab Petrolisthes cinctipes. Homology for each UniSeq was assessed using BLAST, InterProScan, GO and KEGG database searches. Approximately 66% of the UniSeqs had homology in at least one of the databases.
    [Show full text]
  • Short Note Records of Hippa Strigillata (Stimpson, 1860) (Crustacea: Decapoda: Hippidae) in the SE Gulf of California, Mexico
    Nauplius 22(1): 63-65, 2014 63 Short Note Records of Hippa strigillata (Stimpson, 1860) (Crustacea: Decapoda: Hippidae) in the SE Gulf of California, Mexico Daniela Ríos-Elósegui and Michel E. Hendrickx* (DRE) Posgrado en Ciencias del Mar y Limnología, Unidad Académica Mazatlán, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, P.O. Box 811, Mazatlán, Sinaloa 82000, Mexico. E-mail: [email protected] (DRE, MEH) Laboratorio de Invertebrados Bentónicos, Unidad Académica Mazatlán, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, P.O. Box 811, Mazatlán, Sinaloa 82000, Mexico. E-mail: [email protected]; *Corresponding author ABSTRACT - This paper presents details regarding the collections and records of H. strigillata in the Bay of Mazatlán, SE Gulf of California, Mexico. Samples of H. strigillata were obtained in this bay and suroundings area during different periods and deposited in the collection of UNAM, Mazatlán. Morphometric data, distribution, biological and ecological data were furnished. Key words: Distribution, Gulf of California, Hippa, mole crab Because they represent a very dynamic synonym of Remipes pacificus Dana, 1852) environment, often with high energy wave (Boyko, 2002, Boyko and McLaughlin, action, sandy beaches are considered low 2010) and H. strigillata (Stimpson, 1860) diversity habitats for macro and mega fauna (Hendrickx, 1995; Hendrickx and Harvey, (Tait, 1972). This is particularly true along the 1999). Hippa marmorata occurs from the west coast of Mexico (Dexter, 1976; Hendrickx, central Gulf of California to Colombia, 1996). The intertidal habitat is mostly including several oceanic islands of the eastern dominated by species of bivalve mollusks and Pacific (Revillagigedo, del Coco, Galapagos, small (Amphipoda, Isopoda) to medium size and Clipperton) (Hendrickx, 2005).
    [Show full text]
  • The Stimulation of Filter Feeding in the Porcelain Crab Petrolisthes Cinctipes Randall by Amino Acids and Sugars
    Camp.Biochem. Physioi.. 1977, Vol. 56A,pp. 19 IO 22. Pergamon Press. Printed tn Great Britain THE STIMULATION OF FILTER FEEDING IN THE PORCELAIN CRAB PETROLISTHES CINCTIPES RANDALL BY AMINO ACIDS AND SUGARS H. BERNARD HARTMAN AND MAKIKO S. HARTMAN Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, U.S.A. and Oregon Institute of Marine Biology, Charleston, OR 97420, U.S.A. (Received 29 March 1976) Abstract-l. The porcelain crab Petrolisthes cinctipes Randall is stimulated to filter feed by amino acids and sugars. 2. The most stimulatory amino acids are L-tyrosine > glycine > L-proline > L- and D-glumatic acid > y-amino-n-butyric acid. 3. The most stimulatory sugars are trehalose and glucose. 4. Glutathione. peptides of glycine, and peptides of glycine and tyrosine are weakly stimulatory. stock of about 200 animals, 5 randomly selected P. cinc- tipes were placed in each of 4 large finger bowls. The bowls There is a growing literature describing the electro- contained 5OOml of filtered fresh sea water at 1@14”C physiology of chemoreception and the anatomy of with a pH ranging from 7.4-8.0. Small stones were intro- chemoreceptive structures in Crustacea. Hodgson duced into the bowls to provide a natural substrate for (1958) recorded electrical activity from neurons of the animals to grip; the room was darkened and the ani- setae on the chelae and walking legs of crayfish using mals allowed to acclimate for l&l5 min. amino acids as stimuli. Case & Gwilliam (1961) and A typical experimental run included a blank control, a glycine control, and 2 different compounds for assay.
    [Show full text]
  • Autotomy in Porcelain Crabs Is an Effective Escape Mechanism from Rockfish Predation Matthew L
    Marine Ecology. ISSN 0173-9565 ORIGINAL ARTICLE Autotomy in porcelain crabs is an effective escape mechanism from rockfish predation Matthew L. Knope1 & Ralph J. Larson2 1 Department of Geological and Environmental Sciences, Stanford University, Stanford, CA, USA 2 Department of Biology, San Francisco State University, San Francisco, CA, USA Keywords Abstract Anti-predatory behavior; crabs; natural selection; porcellanidae; rockfish; sebastes. Porcelain crabs possess a ‘hair-trigger’ propensity to autotomize their chelipeds (claws), and laboratory studies have demonstrated that this ability is highly Correspondence effective in avoiding predation from other crabs. However, porcelain crabs are Matthew L. Knope, Department of also subject to predation from fishes, which use a very different means of cap- Geological and Environmental Sciences, ture. In this study, we investigated whether autotomy in porcelain crabs is also Stanford University, 385 Serra Mall, Stanford, effective against predation by fishes. To do this, we examined stomach-contents CA 94305, USA. data from four common species of kelp-forest rockfishes and determined the E-mail: [email protected] frequency of disassociated chelipeds (those with no associated bodies) in porce- Accepted: 8 August 2013 lain crabs and in brachyuran crabs, which do not readily autotomize their chelipeds. We found that disassociated chelipeds of porcelain crabs were six doi: 10.1111/maec.12103 times as common as those of brachyuran crabs (35% of the remains of all por- celain crabs versus 6% of the remains of all brachyuran crabs). We interpret this difference to be evidence that, through autotomy, porcelain crabs escaped ingestion of their entire bodies, and thus certain mortality, at a higher rate than did brachyuran crabs.
    [Show full text]
  • ปูฤาษีshielded Box Crab ปูโคลน ปูโคลน ปูเสฉวนลายส้ม Orange Striped
    คลังความรู้ดิจิทัล มหาวิทยาลัยเกษตรศาสตร์ 1 cm 1 cm 1 cm 5 mm 1 cm 1 cm 1 cm 5 mm 1 cm 1 cm 1 cm 1 cm ปูฟองน ้า Sponge crab ปูเป้ใหญ่ Carrier crab ปูเป้เล็ก Carrier crab ปูเป้ Carrier crab ปูฤาษี Shielded box crab ปูหนุมานลายดอก Flower moon crab ปูหนุมานหกตุ่ม Spotted moon crab ปูกระดุม Pebble crab ปูกระดุม Pebble crab ปูกระดุม Pebble crab ปูกระดุม Pebble crab ปูจาน Buckler crab Conchoecetes sp. Dorippe quadridens Dorippoides facchino Neodorippe callida Calappa clypeata Matuta planipes Matuta victor Arcania novemspinosa Myra hainanica Lyphira ovata Philyra sp. Cryptopodia fornicate 2 cm 1 cm 5 cm 2 cm 2 cm 3 cm 1 cm 1 cm 1 cm 2 cm 5 cm 2 cm ปูก้ามยาว Elbow crab ปูก้ามยาว Elbow crab ปูบึ ง Spider crab ปูบึ ง Spider crab ปูบึ ง Spider crab ปูแมงมุม Spider crab ปูแมงมุมหน้าหัก Majid crab ปูกะตอย Swimming crab ปูกะตอยเขียว Swimming crab ปูกางเขน Cross-marked swimming crab ปูม้าเหล็กไฟ Indo-Pacific swimming crab ปูม้าก้ามลีบ Swimimg crab Enoplolambrus echinatus Rhinolambrus longispinus Doclea armata Doclea cannalifera Doclea rissoni Hyastenus diacanthus Micippa thalia Charybdis affinis Charybdis anisodon Charybdis feriatus Charybdis hellerii Lupocycloporus gracilimanus 5 cm 5 cm 1 cm 5 mm 2 cm 5 cm 2 cm 5 mm 5 mm 5 mm 2 cm 2 cm ปูเรดาห์ Long-eyed swimming crab ปูม้า Blue swimming crab ปูด้า Orange mud crab ปูหิน ปูม้า Swimimg crab ปูใบ้ ปูใบ้กระดองพัด ปูใบ้ลายตาข่าย Mosaic reef crab ปูใบ้ ปูใบ้ ปูใบ้ Stone crab ปูใบ้ Stone crab Podophthalmus vigil Portunus pelagicus Scylla olivacea Thalamita sima Xiphonectes hastatoides Actaea savignii Leptodius affinis Lophozozymus pictor Medaeops sp. Paramedaeus sp. Menippe rumphii Myomenippe hardwickii 5 mm 2 cm 1 cm 5 cm 1 cm 5 cm 1 cm 5 mm 1 cm 2 cm 5 mm 1 cm Trichiine crab Euryplacid crab Euryplacid crab Euryplacid crab ปูใบ้ก้ามขาว Square-shelled crab ปูใบ้ปม ปูใบ้ ปูใบ้ ปูใบ้ขน ปูใบ้ ปูใบ้ ปูลม Horneye ghost crab Trichia sakaii Eucrate alcocki Eucrate tripunctata Eucrate crenata Galene bispinosa Halimede ochtodes Sphaerozius nitidus Benthopanope eucratoides Heteropilumnus sp.
    [Show full text]
  • <I>Petrolisthes Armatus</I>
    Clemson University TigerPrints Publications Biological Sciences 10-2017 Reproductive performance of the marine green porcelain crab Petrolisthes armatus Gibbes, 1850 in its introduced range favors further range expansion Ann Wassick College of Charleston J. Antonio Baeza Clemson University, [email protected] Amy Fowler George Mason University Dara Wilber College of Charleston Follow this and additional works at: https://tigerprints.clemson.edu/bio_pubs Part of the Biology Commons Recommended Citation Please use the publisher's recommended citation. http://www.aquaticinvasions.net/index.html This Article is brought to you for free and open access by the Biological Sciences at TigerPrints. It has been accepted for inclusion in Publications by an authorized administrator of TigerPrints. For more information, please contact [email protected]. Aquatic Invasions (2017) Volume 12, Issue 4: 469–485 DOI: https://doi.org/10.3391/ai.2017.12.4.05 Open Access © 2017 The Author(s). Journal compilation © 2017 REABIC Research Article Reproductive performance of the marine green porcelain crab Petrolisthes armatus Gibbes, 1850 in its introduced range favors further range expansion Ann Wassick1,*, J. Antonio Baeza2,3,4, Amy Fowler5,6 and Dara Wilber1 1Grice Marine Laboratory, College of Charleston, 205 Ft. Johnson Road, Charleston, South Carolina, 29412 USA 2Department of Biological Sciences, 132 Long Hall, Clemson University, Clemson, South Carolina, 29634 USA 3Smithsonian Marine Station at Fort Pierce, 701 Seaway Drive, Fort Pierce, Florida 34949 USA 4Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile 5Department of Environmental Science and Policy, George Mason University, 400 University Drive, Fairfax, VA 22030 USA 6Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, MD 21037 USA *Corresponding author E-mail: [email protected] Received: Received: 21 February 2017 / Accepted: 1 August 2017 / Published online: 6 October 2017 Handling editor: April M.H.
    [Show full text]
  • Article ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (Online Edition)
    Zootaxa 3150: 1–35 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (online edition) Recent and fossil Isopoda Bopyridae parasitic on squat lobsters and porcelain crabs (Crustacea: Anomura: Chirostyloidea and Galatheoidea), with notes on nomenclature and biogeography CHRISTOPHER B. BOYKO1, 2, 5, JASON D. WILLIAMS3 & JOHN C. MARKHAM4 1Department of Biology, Dowling College, 150 Idle Hour Boulevard, Oakdale, NY 11769, USA 2Division of Invertebrate Zoology, American Museum of Natural History, Central Park West @79th St., New York, NY 10024, USA. E-mail: [email protected] 3Department of Biology, Hofstra University, Hempstead, NY 11549, USA. E-mail: [email protected] 4Arch Cape Marine Laboratory, Arch Cape, OR 97102, USA. E-mail: [email protected] 5Corresponding author Table of contents Abstract . 1 Material and methods . 3 Results and discussion . 3 Nomenclatural issues . 26 Aporobopyrus Nobili, 1906 . 26 Aporobopyrus dollfusi Bourdon, 1976 . 26 Parionella Nierstrasz & Brender à Brandis, 1923. 26 Pleurocrypta Hesse, 1865 . 26 Pleurocrypta porcellanaelongicornis Hesse, 1876 . 26 Pleurocrypta strigosa Bourdon, 1968 . 27 Names in synonymy . 27 Acknowledgements . 28 References . 28 Abstract The parasitic isopod family Bopyridae contains approximately 600 species that parasitize calanoid copepods as larvae and decapod crustaceans as adults. In total, 105 species of these parasites (~18% of all bopyrids) are documented from Recent squat lobsters and porcelain crabs in the superfamilies Chirostyloidea and Galatheoidea. Aside from one endoparasite, all the bopyrids reported herein belong to the branchially infesting subfamily Pseudioninae. Approximately 29% (67 of 233 species) of pseudionine species parasitize squat lobsters and 16% (38 of 233 species) parasitize porcelain crabs.
    [Show full text]
  • A Review of Worldwide Fisheries for Lithodid Crabs (Decapoda: Anomura: Lithodidae) and Their Fluctuations
    Bi ology ofAnomura II (A .Asakura ,e d.),Cr ustaceanR esearc h,Sp ec ialN umber6: 167-185,2006 A review of worldwide fisheries for lithodid crabs (Decapoda: Anomura: Lithodidae) and their fluctuations R obert S. Otto Abstra ct.-Lithodid crab fi sheries began species within these genera,trends in landings before1900 in Japan and spread across the and cu汀 ent status of major stocks contributing North Pacific Ocean by1940. Fisheries targeted to the world lithodid landings. lncidental or red kin gcrab (Paralithodes ca mtsc hati cus) with experimental fisheries for Neolithodes spp. and lesser amounts of blue king crab (P. platypus) for Lopholithodes spp. are omitt ed,because and brown king crab (P. brevip es) .Paralithod es documented landings are sporadic,trends spp.,es pec iall yred kin gcrabs ,h ave always are not evident and magnitudes negligible. dominated lithodid fisherie s. Golden king crab Likewise,1 have excluded recreational or (Lithodes aequispinus) becam eimportant in personal use fisheries,because statistics are North Pacific Ocean waters after major decline s frequently incomplete and known landings are in red king crab fisheries in the early 1980's. Southern kin gcrab (Lithodes sa ntolla) are fished generall ysm a ll relative to commercial白sheries. in so uthern South America along with softshell red crab (Paralomis granulosa). These five species DATASOURCES accounted for more than 89% of lithodid landings for 1984・2003. World lithodid landings pea ked at 1use United Nations Food and Agricultural 150,100 metric tons (t) in 1966 after development Organization (FAO) landing statistic sas a in pre-World War 11 Asia and rapid post-1950 starting point and more detai led publications ex pansion in A laskaand Asia.
    [Show full text]
  • Caridea, Polychelida, Anomura and Brachyura) Collected from the Nikko Seamounts, Mariana Arc, Using a Remotely Operated Vehicle “Hyper-Dolphin”
    Zootaxa 3764 (3): 279–316 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3764.3.3 http://zoobank.org/urn:lsid:zoobank.org:pub:F1B0E174-89C5-4A9E-B7DA-C5E27AF624D3 Deep-Sea decapod crustaceans (Caridea, Polychelida, Anomura and Brachyura) collected from the Nikko Seamounts, Mariana Arc, using a remotely operated vehicle “Hyper-Dolphin” TOMOYUKI KOMAI1 & SHINJI TSUCHIDA2 1Natural History Museum and Institute, Chiba, 955-2 Aoba-cho, Chuo-ku, Chiba, 260-8682 Japan. E-mail: [email protected] 2Japan Agency of Marine Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa, 237-0061. E-mail: [email protected] Abstract Samples and images of deep-water benthic decapod crustaceans were collected from the Nikko Seamounts, Mariana Arc, at depths of 520–680 m, by using the remotely operate vehicle “Hyper-Dolphin”, equipped with a high definition camera, digital camera, manipulators and slurp gun (suction sampler). The following seven species were collected, of which three are new to science: Plesionika unicolor n. sp. (Caridea: Pandalidae), Homeryon armarium Galil, 2000 (Polychelida: Poly- chelidae), Eumunida nikko n. sp. (Anomura: Eumunididae), Michelopagurus limatulus (Henderson, 1888) (Anomura: Paguridae), Galilia petricola n. sp. (Brachyura: Leucosiidae), Cyrtomaia micronesica Richer de Forges & Ng, 2007 (Brachyura: Inachidae), and Progeryon mus Ng & Guinot, 1999 (Brachyura: Progeryonidae). Affinities of these three new species are discussed. All but H. armarium are recorded from the Japanese Exclusive Economic Zone for the first time. Brief notes on ecology and/or behavior are given for each species.
    [Show full text]