ปูฤาษีshielded Box Crab ปูโคลน ปูโคลน ปูเสฉวนลายส้ม Orange Striped

Total Page:16

File Type:pdf, Size:1020Kb

ปูฤาษีshielded Box Crab ปูโคลน ปูโคลน ปูเสฉวนลายส้ม Orange Striped คลังความรู้ดิจิทัล มหาวิทยาลัยเกษตรศาสตร์ 1 cm 1 cm 1 cm 5 mm 1 cm 1 cm 1 cm 5 mm 1 cm 1 cm 1 cm 1 cm ปูฟองน ้า Sponge crab ปูเป้ใหญ่ Carrier crab ปูเป้เล็ก Carrier crab ปูเป้ Carrier crab ปูฤาษี Shielded box crab ปูหนุมานลายดอก Flower moon crab ปูหนุมานหกตุ่ม Spotted moon crab ปูกระดุม Pebble crab ปูกระดุม Pebble crab ปูกระดุม Pebble crab ปูกระดุม Pebble crab ปูจาน Buckler crab Conchoecetes sp. Dorippe quadridens Dorippoides facchino Neodorippe callida Calappa clypeata Matuta planipes Matuta victor Arcania novemspinosa Myra hainanica Lyphira ovata Philyra sp. Cryptopodia fornicate 2 cm 1 cm 5 cm 2 cm 2 cm 3 cm 1 cm 1 cm 1 cm 2 cm 5 cm 2 cm ปูก้ามยาว Elbow crab ปูก้ามยาว Elbow crab ปูบึ ง Spider crab ปูบึ ง Spider crab ปูบึ ง Spider crab ปูแมงมุม Spider crab ปูแมงมุมหน้าหัก Majid crab ปูกะตอย Swimming crab ปูกะตอยเขียว Swimming crab ปูกางเขน Cross-marked swimming crab ปูม้าเหล็กไฟ Indo-Pacific swimming crab ปูม้าก้ามลีบ Swimimg crab Enoplolambrus echinatus Rhinolambrus longispinus Doclea armata Doclea cannalifera Doclea rissoni Hyastenus diacanthus Micippa thalia Charybdis affinis Charybdis anisodon Charybdis feriatus Charybdis hellerii Lupocycloporus gracilimanus 5 cm 5 cm 1 cm 5 mm 2 cm 5 cm 2 cm 5 mm 5 mm 5 mm 2 cm 2 cm ปูเรดาห์ Long-eyed swimming crab ปูม้า Blue swimming crab ปูด้า Orange mud crab ปูหิน ปูม้า Swimimg crab ปูใบ้ ปูใบ้กระดองพัด ปูใบ้ลายตาข่าย Mosaic reef crab ปูใบ้ ปูใบ้ ปูใบ้ Stone crab ปูใบ้ Stone crab Podophthalmus vigil Portunus pelagicus Scylla olivacea Thalamita sima Xiphonectes hastatoides Actaea savignii Leptodius affinis Lophozozymus pictor Medaeops sp. Paramedaeus sp. Menippe rumphii Myomenippe hardwickii 5 mm 2 cm 1 cm 5 cm 1 cm 5 cm 1 cm 5 mm 1 cm 2 cm 5 mm 1 cm Trichiine crab Euryplacid crab Euryplacid crab Euryplacid crab ปูใบ้ก้ามขาว Square-shelled crab ปูใบ้ปม ปูใบ้ ปูใบ้ ปูใบ้ขน ปูใบ้ ปูใบ้ ปูลม Horneye ghost crab Trichia sakaii Eucrate alcocki Eucrate tripunctata Eucrate crenata Galene bispinosa Halimede ochtodes Sphaerozius nitidus Benthopanope eucratoides Heteropilumnus sp. Pilumnopeus makianus Pilumnus sp. Ocypode ceratophthalmus 5 mm 5 mm 5 mm 5 mm 5 mm 1 cm 1 cm 1 cm 1 cm 5 mm 5 mm 5 mm ปูก้ามดาบก้ามขาว Fiddler crab ปูก้ามดาบก้ามคีบ Fiddler crab ปูก้ามดาบก้ามยาว Fiddler crab Soldier crab ปูโบกก้าม Semaphore crab Sand bubbler crab ปูโคลน ปูก้ามดาบก้ามยาว Fiddler crab ปูทหาร ปูปั้นทราย Crevice crab Mortensenella forceps ปูโคลน Xenophthalmus pinnotheroides Austruca perplexa Tubuca forcipata Tubuca paradussumieri Tubaca urvillei Dotilla wichmanni Llyoplax orientalis Scopimera intermedia Baruna socialis Camptandrium sexdentatum Paracleistostoma eriophorum 1 cm 1 cm 1 cm 5 mm 1 cm 1 cm 2 cm 2 cm 1 cm 1 cm 1 cm 1 cm ปูแสมหิน Purple climber crab ปูก้ามหัก Sentinel crab ปูก้ามหัก Sentinel crab ปูก้ามหัก Sentinel crab ปูก้ามหัก Sentinel crab ปูก้ามหัก Sentinel crab ปูก้ามหัก Sentinel crab ปูแสมก้ามยาว Signaller crab ปูแสมก้ามยาว Orange signaller crab ปูแสมก้ามยาว Signaller crab ปูแป้น Paddler crab ปูแสมด้า Sesarmine crab Metopograpsus latifrons Macrophthalmus erato Macrophthalmus laevimanus Macrophthalmus malaccensis Macrophthalmus pacificus Macrophthalmus teschi Macrophthalmus tomentosus Metaplax longipes Metaplax elegans Metaplax sheni Varuna yui Clistocoeloma sp. 1 cm 2 cm 2 cm 1 cm 1 cm 5 mm 5 mm 1 cm 1 cm 1 cm 1 cm 2 cm ปูแสมก้ามแดง Tree climbing crab ปูแสมก้ามม่วง Tree climbing crab ปูแสมขน Hairy mangrove crab ปูแสมโป่งจาก Nipah crab ปูแสมจิ๋ว ปูแสมจิ๋ว ปูแสมจิ๋ว ปูแสมก้ามแดง Face banded mangrove crab ปูแสมกรวด ปูแสมก้ามส้ม Orange claw marsh crab ปูแสมก้ามแดง ปูแสม Swamp crab Episesarma mederi Episesarma versicolor Fasciarma fasciatum Labuanium politum Nanosesarma andersoni Nanosesarma minutum Nanosesarma pontianacensis Parasesarma eumolpe Parasesarma pictum Parasesama plicatum Parasesarma lanchesteri Pseudosesarma bocourti 1 mm 1 cm 1 cm 1 cm 1 cm 5 mm 2 cm 2 cm 1 cm 1 cm 5 mm 2 cm ปูแสมก้ามแดง ปูแสมก้ามแดง ปูแสม Mound crab ปูแสม Mangrove tree-dwelling crab ปูแมงมุม False spider crab ปูแมงมุม False spider crab ปูตัวแบน Porcelain crab ปูตัวแบน Porcelain crab ปูเสฉวนลายส้ม Orange striped hermit crab ปูเสฉวนเล็บยาว Blue striped hermit crab ปูเสฉวน hermit crab ปูเสฉวน hermit crab Pseudosesarma crassimanum Pseudosesarma moeschii Sarmatium crassum Selatium brockii Elamena soonthronkitti Elamena sp. Petrolisthes lamarckii Porcellanidae Clibanarius infraspinatus Clibanarius longitasus Diogenes mixtus Pagurus kulkarnii.
Recommended publications
  • Stimulation of Filter Feeding by Amino Acids in Three Porcelain Crab Species: Petrolisthes Cinctipes, Petrolisthes Eriomerus, and Pachycheles Rudis
    Stimulation of filter feeding by amino acids in three porcelain crab species: Petrolisthes cinctipes, Petrolisthes eriomerus, and Pachycheles rudis Sarah Green Exploratory 2, Adaptations ofMarine Mammals, Prof. Charlie Hunter Oregon Institute ofMarine Biology, University of Oregon, Charleston, Oregon 97420 Introduction Petrolisthes cinctipes, a species ofporcelain crab, is commonly found in the higher to mid-intertidal zones ofthe rocky shores ofOregon (Wicksten, 1973). Petrolisthes eriomerus and Pachycheles rudis, the other two species ofporcelain crab found on the Oregon coast can be found in the low intertidal zone. All three species can be found under rocks and among mussels in mussel beds (Sept, 1999). The three species ofporcelain crab filter feed, fanning plankton and detritus (Petrolisthes cinctipes and Pachycheles rudis) from the water, or pelagic diatoms, benthic diatoms, and green algal filaments from the water (Petrolisthes eriomerus) (MagGinite, 1937; Wicksten, 1973). The mechanics offilter feeding in porcelain crabs has been thoroughly documented by Wicksten (1973). Food particles can be trapped by alternately flexing the endopodites ofthe third maxillapeds. The food particles are then removed from the setae on the third maxillapeds by the setose ends ofthe second maxillapeds. Food particles are then selected and sorted by the inner mouth parts. Little research has been reported on compounds promoting feeding behavior in porcelain crabs. L-tyrosine has been shown to elicit a feeding response in Petrolisthes cinctipes, as have other amino acids. As there are no particles in the water when testing an amino acid, chemoreception ofsmall compounds must stimulate the feeding response (Hartman et aI., 1977). I hypothesize that the stimulation ofthe feeding response in Petrolisthes cinctipes, Petrolisthes eriomerus, and Pachycheles rudis will differ in response to various amino acids because ofthe their location in the intertidal.
    [Show full text]
  • How to Become a Crab: Phenotypic Constraints on a Recurring Body Plan
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 December 2020 doi:10.20944/preprints202012.0664.v1 How to become a crab: Phenotypic constraints on a recurring body plan Joanna M. Wolfe1*, Javier Luque1,2,3, Heather D. Bracken-Grissom4 1 Museum of Comparative Zoology and Department of Organismic & Evolutionary Biology, Harvard University, 26 Oxford St, Cambridge, MA 02138, USA 2 Smithsonian Tropical Research Institute, Balboa–Ancon, 0843–03092, Panama, Panama 3 Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06520-8109, USA 4 Institute of Environment and Department of Biological Sciences, Florida International University, Biscayne Bay Campus, 3000 NE 151 Street, North Miami, FL 33181, USA * E-mail: [email protected] Summary: A fundamental question in biology is whether phenotypes can be predicted by ecological or genomic rules. For over 140 years, convergent evolution of the crab-like body plan (with a wide and flattened shape, and a bent abdomen) at least five times in decapod crustaceans has been known as ‘carcinization’. The repeated loss of this body plan has been identified as ‘decarcinization’. We offer phylogenetic strategies to include poorly known groups, and direct evidence from fossils, that will resolve the pattern of crab evolution and the degree of phenotypic variation within crabs. Proposed ecological advantages of the crab body are summarized into a hypothesis of phenotypic integration suggesting correlated evolution of the carapace shape and abdomen. Our premise provides fertile ground for future studies of the genomic and developmental basis, and the predictability, of the crab-like body form. Keywords: Crustacea, Anomura, Brachyura, Carcinization, Phylogeny, Convergent evolution, Morphological integration 1 © 2020 by the author(s).
    [Show full text]
  • A Comparative Analysis of Morphological, Physiological, And
    AN ABSTRACT OF THE THESIS OF Jonathon Harris Stillman for the degree of Doctor of Philosophy in Zoology presented on December 4, 1998. Title: A Comparative Analysis of Morphological, Physiological, and Biochemical Adaptation to Abiotic Stress in Intertidal Porcelain Crabs, Genus Petrolisthes. Redacted for Privacy Abstract approved: George N. Somero Organismal tolerance to abiotic environmental stresses contributes significantly to setting the distribution limits of organisms, as demonstrated by vertical zonation patterns in the marine intertidal zone. In this thesis, the ultimate (evolutionary) and proximate (mechanistic) causes of tolerance to temperature and emersion stresses associated with the intertidal zone were examined using porcelain crabs, genus Petrolisthes. Species of Petrolisthes from intertidal and subtidal microhabitats of four biogeographic regions of the Eastern Pacific were used in phylogenetically-based comparative analyses of morphological, physiological, and biochemical adaptation to environmental stress. A phylogenetic tree based on the sequence of the 16sRNA gene was developed to facilitate these analyses. Organismal thermal tolerance limits are adapted to match maximal microhabitat temperatures. Acclimation of thermal tolerance limits suggests that temperate intertidal zone species are living close to their thermal maximum in nature. Respiratory responses to emersion vary among species from different vertical zones. Experimental examination of oxygen consumption rates and lactate accumulation during emersion suggests that intertidal species are able to respire in air using thin membranous regions on the ventral meral segments of their legs (leg membranes). Leg membrane size is positively correlated with body size across species, but not within a single species. Evolutionary analyses indicate that leg membranes may not have evolved for purposes of aerial respiration, but their presence may have allowed intertidal and subtidal species to achieve larger body sizes and higher metabolic rates.
    [Show full text]
  • Identifikasi Spesies Sand Bubbler Crabs Di Pantai Camplong Madura
    Stigma 11(1): 52-61; April 2018 ISSN: 1412 – 1840 © 2018 Prodi Biologi FMIPA UNIPA Surabaya IDENTIFIKASI SPESIES SAND BUBBLER CRABS DI PANTAI CAMPLONG MADURA Safirah N. Adhani 1, Vania N. Azizah 2, Muhlas 3, Reni Ambarwati 4, Erlix R. Purnama 5 Jurusan Biologi FMIPA Universitas Negeri Surabaya Jalan Ketintang, Surabaya 60231 Co-author: [email protected] ABSTRAK Pantai Camplong memiliki karakter yang dapat digunakan sebagai daya tarik wisatawan yaitu fenomena sand balls . Hal ini terjadi karena ada aktivitas makan kepiting pantai disetiap kondisi air laut surut. Beberapa dari jenis kepiting pantai tergolong dalam sand bubbler crabs yang merupakan kepiting-kepiting kecil yang hidup pada ekosistem tropis di pesisir pantai berpasir. Tujuan penelitian ini adalah untuk mengidentifikasi spesies kepiting yang tergolong sand bubbler crabs dan mengetahui kelimpahan relatifnya di Pantai Camplong Madura. Pengambilan sample dilakukan dengan metode sampling mengikuti arah pasang-surut air laut dengan menggunakan sepuluh plot yang berukuran 2x2 m dan berjarak 10 m antar plot. Identifikasi dilakukan dengan mengukur dimensi karapaks pada beberapa kepiting yang ditemukan disetiap plot lalu dibandingkan antara warna kaki dan karapaksnya. Hasil identifikasi diketahui ada lima spesies kepiting dengan dua diantaranya merupakan spesies yang tergolong sand bubbler crabs yaitu Scopimera globosa , dan Scopimera intermediata. Kedua spesies tersebut ditemukan dengan kelimpahan relatif yang secara berurutan yaitu 36,4%, dan 38,1% dari total seluruh spesies kepiting yang ditemukan. Tiga spesies kepiting pantai lainnya yang teridentifikasi adalah Mictyris longicarpus, Thalamita spinimana dan Asthoret lunaris dengan kelimpahan relatif total sebesar 25,5%. Simpulan yang dapat diambil adalah spesies yang tergolong sand bubbler crabs di Pantai Camplong Madura terdiri dari dua spesies berbeda yaitu Scopimera globosa dan Scopimera intermediata.
    [Show full text]
  • Growth and Population Biology of the Sand-Bubbler Crab Scopimera
    Sharifian et al. The Journal of Basic and Applied Zoology (2021) 82:21 The Journal of Basic https://doi.org/10.1186/s41936-021-00218-x and Applied Zoology RESEARCH Open Access Growth and population biology of the sand-bubbler crab Scopimera crabricauda Alcock 1900 (Brachyura: Dotillidae) from the Persian Gulf, Iran Sana Sharifian1* , Vahid Malekzadeh2, Ehsan Kamrani2 and Mohsen Safaie2 Abstract Background: Dotillid crabs are introduced as one common dwellers of sandy shores. We studied the ecology and growth of the sand bubbler crab Scopimera crabricauda Alcock, 1900, in the Persian Gulf, Iran. Crabs were sampled monthly by excavating nine quadrats at three intertidal levels during spring low tides from January 2016 to January 2017. Results: Population data show unimodal size-frequency distributions in both sexes. The Von Bertalanffy function was calculated at CWt = 8.76 [1 − exp (− 0.56 (t + 0.39))], CWt = 7.90 [1 − exp (− 0.59 (t + 0.40))] and CWt = 9.35 [1 − exp (− 0.57 (t + 0.41))] for males, females, and both sexes, respectively. The life span appeared to be 5.35, 5.07, and 5.26 years for males, females, and both sexes, respectively. The cohorts were identified as two age continuous groups, with the mean model carapace width 5.39 and 7.11 mm for both sexes. The natural mortality (M) coefficients stood at 1.72 for males, 1.83 for females, and 1.76 years−1 for both sexes, respectively. The overall sex ratio (1:0.4) was significantly different from the expected 1:1 proportion with male-biased.
    [Show full text]
  • The Porcelain Crab Transcriptome and PCAD, the Porcelain Crab Microarray and Sequence Database
    The Porcelain Crab Transcriptome and PCAD, the Porcelain Crab Microarray and Sequence Database Abderrahmane Tagmount1, Mei Wang2, Erika Lindquist2, Yoshihiro Tanaka1, Kristen S. Teranishi1, Shinichi Sunagawa3, Mike Wong4, Jonathon H. Stillman1,5* 1 Romberg Tiburon Center and Department of Biology, San Francisco State University, Tiburon, California, United States of America, 2 Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America, 3 School of Natural Sciences, University of California Merced, Merced, California, United States of America, 4 Center for Computing in the Life Sciences, San Francisco State University, San Francisco, California, United States of America, 5 Department of Integrative Biology, University of California, Berkeley, California, United States of America Abstract Background: With the emergence of a completed genome sequence of the freshwater crustacean Daphnia pulex, construction of genomic-scale sequence databases for additional crustacean sequences are important for comparative genomics and annotation. Porcelain crabs, genus Petrolisthes, have been powerful crustacean models for environmental and evolutionary physiology with respect to thermal adaptation and understanding responses of marine organisms to climate change. Here, we present a large-scale EST sequencing and cDNA microarray database project for the porcelain crab Petrolisthes cinctipes. Methodology/Principal Findings: A set of ,30K unique sequences (UniSeqs) representing ,19K clusters were generated from ,98K high quality ESTs from a set of tissue specific non-normalized and mixed-tissue normalized cDNA libraries from the porcelain crab Petrolisthes cinctipes. Homology for each UniSeq was assessed using BLAST, InterProScan, GO and KEGG database searches. Approximately 66% of the UniSeqs had homology in at least one of the databases.
    [Show full text]
  • University of Southampton Research Repository Eprints Soton
    University of Southampton Research Repository ePrints Soton Copyright © and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given e.g. AUTHOR (year of submission) "Full thesis title", University of Southampton, name of the University School or Department, PhD Thesis, pagination http://eprints.soton.ac.uk UNIVERSITY OF SOUTHAMPTON FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS School of Ocean and Earth Science ECOLOGY OF THE INTERTIDAL CRAB DOTILLA INTERMEDIA FROM TSUNAMI-IMPACTED BEACHES IN THAILAND Christopher John Allen Thesis for the degree of Doctor of Philosophy April 2010 DECLARATION OF AUTHORSHIP I, Christopher John Allen , declare that the thesis entitled The Ecology of the intertidal crab Dotilla intermedia from tsunami-impacted beaches in Thailand and the work presented in the thesis are both my own, and have been generated by me as a result of my own original research. I confirm that: • This work was done wholly or mainly while in candidature for a research degree at this University; • Where any part of this thesis has been previously submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated; • Where I have consulted the published work of others, this is always clearly attributed; • Where I have quoted from the work of others, the source is always given.
    [Show full text]
  • The Stimulation of Filter Feeding in the Porcelain Crab Petrolisthes Cinctipes Randall by Amino Acids and Sugars
    Camp.Biochem. Physioi.. 1977, Vol. 56A,pp. 19 IO 22. Pergamon Press. Printed tn Great Britain THE STIMULATION OF FILTER FEEDING IN THE PORCELAIN CRAB PETROLISTHES CINCTIPES RANDALL BY AMINO ACIDS AND SUGARS H. BERNARD HARTMAN AND MAKIKO S. HARTMAN Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, U.S.A. and Oregon Institute of Marine Biology, Charleston, OR 97420, U.S.A. (Received 29 March 1976) Abstract-l. The porcelain crab Petrolisthes cinctipes Randall is stimulated to filter feed by amino acids and sugars. 2. The most stimulatory amino acids are L-tyrosine > glycine > L-proline > L- and D-glumatic acid > y-amino-n-butyric acid. 3. The most stimulatory sugars are trehalose and glucose. 4. Glutathione. peptides of glycine, and peptides of glycine and tyrosine are weakly stimulatory. stock of about 200 animals, 5 randomly selected P. cinc- tipes were placed in each of 4 large finger bowls. The bowls There is a growing literature describing the electro- contained 5OOml of filtered fresh sea water at 1@14”C physiology of chemoreception and the anatomy of with a pH ranging from 7.4-8.0. Small stones were intro- chemoreceptive structures in Crustacea. Hodgson duced into the bowls to provide a natural substrate for (1958) recorded electrical activity from neurons of the animals to grip; the room was darkened and the ani- setae on the chelae and walking legs of crayfish using mals allowed to acclimate for l&l5 min. amino acids as stimuli. Case & Gwilliam (1961) and A typical experimental run included a blank control, a glycine control, and 2 different compounds for assay.
    [Show full text]
  • Autotomy in Porcelain Crabs Is an Effective Escape Mechanism from Rockfish Predation Matthew L
    Marine Ecology. ISSN 0173-9565 ORIGINAL ARTICLE Autotomy in porcelain crabs is an effective escape mechanism from rockfish predation Matthew L. Knope1 & Ralph J. Larson2 1 Department of Geological and Environmental Sciences, Stanford University, Stanford, CA, USA 2 Department of Biology, San Francisco State University, San Francisco, CA, USA Keywords Abstract Anti-predatory behavior; crabs; natural selection; porcellanidae; rockfish; sebastes. Porcelain crabs possess a ‘hair-trigger’ propensity to autotomize their chelipeds (claws), and laboratory studies have demonstrated that this ability is highly Correspondence effective in avoiding predation from other crabs. However, porcelain crabs are Matthew L. Knope, Department of also subject to predation from fishes, which use a very different means of cap- Geological and Environmental Sciences, ture. In this study, we investigated whether autotomy in porcelain crabs is also Stanford University, 385 Serra Mall, Stanford, effective against predation by fishes. To do this, we examined stomach-contents CA 94305, USA. data from four common species of kelp-forest rockfishes and determined the E-mail: [email protected] frequency of disassociated chelipeds (those with no associated bodies) in porce- Accepted: 8 August 2013 lain crabs and in brachyuran crabs, which do not readily autotomize their chelipeds. We found that disassociated chelipeds of porcelain crabs were six doi: 10.1111/maec.12103 times as common as those of brachyuran crabs (35% of the remains of all por- celain crabs versus 6% of the remains of all brachyuran crabs). We interpret this difference to be evidence that, through autotomy, porcelain crabs escaped ingestion of their entire bodies, and thus certain mortality, at a higher rate than did brachyuran crabs.
    [Show full text]
  • <I>Petrolisthes Armatus</I>
    Clemson University TigerPrints Publications Biological Sciences 10-2017 Reproductive performance of the marine green porcelain crab Petrolisthes armatus Gibbes, 1850 in its introduced range favors further range expansion Ann Wassick College of Charleston J. Antonio Baeza Clemson University, [email protected] Amy Fowler George Mason University Dara Wilber College of Charleston Follow this and additional works at: https://tigerprints.clemson.edu/bio_pubs Part of the Biology Commons Recommended Citation Please use the publisher's recommended citation. http://www.aquaticinvasions.net/index.html This Article is brought to you for free and open access by the Biological Sciences at TigerPrints. It has been accepted for inclusion in Publications by an authorized administrator of TigerPrints. For more information, please contact [email protected]. Aquatic Invasions (2017) Volume 12, Issue 4: 469–485 DOI: https://doi.org/10.3391/ai.2017.12.4.05 Open Access © 2017 The Author(s). Journal compilation © 2017 REABIC Research Article Reproductive performance of the marine green porcelain crab Petrolisthes armatus Gibbes, 1850 in its introduced range favors further range expansion Ann Wassick1,*, J. Antonio Baeza2,3,4, Amy Fowler5,6 and Dara Wilber1 1Grice Marine Laboratory, College of Charleston, 205 Ft. Johnson Road, Charleston, South Carolina, 29412 USA 2Department of Biological Sciences, 132 Long Hall, Clemson University, Clemson, South Carolina, 29634 USA 3Smithsonian Marine Station at Fort Pierce, 701 Seaway Drive, Fort Pierce, Florida 34949 USA 4Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile 5Department of Environmental Science and Policy, George Mason University, 400 University Drive, Fairfax, VA 22030 USA 6Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, MD 21037 USA *Corresponding author E-mail: [email protected] Received: Received: 21 February 2017 / Accepted: 1 August 2017 / Published online: 6 October 2017 Handling editor: April M.H.
    [Show full text]
  • Article ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (Online Edition)
    Zootaxa 3150: 1–35 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (online edition) Recent and fossil Isopoda Bopyridae parasitic on squat lobsters and porcelain crabs (Crustacea: Anomura: Chirostyloidea and Galatheoidea), with notes on nomenclature and biogeography CHRISTOPHER B. BOYKO1, 2, 5, JASON D. WILLIAMS3 & JOHN C. MARKHAM4 1Department of Biology, Dowling College, 150 Idle Hour Boulevard, Oakdale, NY 11769, USA 2Division of Invertebrate Zoology, American Museum of Natural History, Central Park West @79th St., New York, NY 10024, USA. E-mail: [email protected] 3Department of Biology, Hofstra University, Hempstead, NY 11549, USA. E-mail: [email protected] 4Arch Cape Marine Laboratory, Arch Cape, OR 97102, USA. E-mail: [email protected] 5Corresponding author Table of contents Abstract . 1 Material and methods . 3 Results and discussion . 3 Nomenclatural issues . 26 Aporobopyrus Nobili, 1906 . 26 Aporobopyrus dollfusi Bourdon, 1976 . 26 Parionella Nierstrasz & Brender à Brandis, 1923. 26 Pleurocrypta Hesse, 1865 . 26 Pleurocrypta porcellanaelongicornis Hesse, 1876 . 26 Pleurocrypta strigosa Bourdon, 1968 . 27 Names in synonymy . 27 Acknowledgements . 28 References . 28 Abstract The parasitic isopod family Bopyridae contains approximately 600 species that parasitize calanoid copepods as larvae and decapod crustaceans as adults. In total, 105 species of these parasites (~18% of all bopyrids) are documented from Recent squat lobsters and porcelain crabs in the superfamilies Chirostyloidea and Galatheoidea. Aside from one endoparasite, all the bopyrids reported herein belong to the branchially infesting subfamily Pseudioninae. Approximately 29% (67 of 233 species) of pseudionine species parasitize squat lobsters and 16% (38 of 233 species) parasitize porcelain crabs.
    [Show full text]
  • Population Structure and Morphometric Variation in the Sand-Bubbler Crab Scopimera Crabricauda (Brachyura: Dotillidae)
    Animal Biology 67 (2017) 319–330 brill.com/ab Population structure and morphometric variation in the sand-bubbler crab Scopimera crabricauda (Brachyura: Dotillidae) Sana Sharifian1, Vahid Malekzadeh2, Ehsan Kamrani2,∗ and Mohsen Safaie2 1 Department of Marine Biology, University of Hormozgan, Bandar Abbas, Iran 2 Fishery Department, University of Hormozgan, Bandar Abbas, Iran Submitted: September 2, 2017. Final revision received: November 4, 2017. Accepted: November 8, 2017 Abstract In the present study, population ecology and relationships between various morphometric characters of the sand-bubbler crab Scopimera crabricauda from the Persian Gulf (Iran) were studied. Crabs were collected monthly by excavating nine quadrats in high-density areas of open burrows at low, mid and high intertidal levels during spring low tides for one year. A total of 534 crabs was collected, of which 70% were males (and 30% females). Mean carapace width and total weight in both sexes showed significant differences. Crabs with a carapace width ranging from 5 to 7 mm were the dominant crabs in the population. The highest numbers of crabs were found in the higher intertidal area. The mean size of crabs decreased towards the sea. The aggregation of small crabs was found towards sea in female crabs. Juveniles were abundantly found from January to March whereas the sub-adults and adults were mostly found from April to January. The carapace length to carapace width relationship differed between males and females, as did the carapace width and carapace length to total weight relationships. Finally, the relationship between carapace width and weight for both sexes showed that the growth of this species is allometric.
    [Show full text]