KEY to FAMILIES of BC ANOMURAN CRABS Taxonomy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Classification of Living and Fossil Genera of Decapod Crustaceans
RAFFLES BULLETIN OF ZOOLOGY 2009 Supplement No. 21: 1–109 Date of Publication: 15 Sep.2009 © National University of Singapore A CLASSIFICATION OF LIVING AND FOSSIL GENERA OF DECAPOD CRUSTACEANS Sammy De Grave1, N. Dean Pentcheff 2, Shane T. Ahyong3, Tin-Yam Chan4, Keith A. Crandall5, Peter C. Dworschak6, Darryl L. Felder7, Rodney M. Feldmann8, Charles H. J. M. Fransen9, Laura Y. D. Goulding1, Rafael Lemaitre10, Martyn E. Y. Low11, Joel W. Martin2, Peter K. L. Ng11, Carrie E. Schweitzer12, S. H. Tan11, Dale Tshudy13, Regina Wetzer2 1Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom [email protected] [email protected] 2Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007 United States of America [email protected] [email protected] [email protected] 3Marine Biodiversity and Biosecurity, NIWA, Private Bag 14901, Kilbirnie Wellington, New Zealand [email protected] 4Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, Republic of China [email protected] 5Department of Biology and Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602 United States of America [email protected] 6Dritte Zoologische Abteilung, Naturhistorisches Museum, Wien, Austria [email protected] 7Department of Biology, University of Louisiana, Lafayette, LA 70504 United States of America [email protected] 8Department of Geology, Kent State University, Kent, OH 44242 United States of America [email protected] 9Nationaal Natuurhistorisch Museum, P. O. Box 9517, 2300 RA Leiden, The Netherlands [email protected] 10Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, 10th and Constitution Avenue, Washington, DC 20560 United States of America [email protected] 11Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore 117543 [email protected] [email protected] [email protected] 12Department of Geology, Kent State University Stark Campus, 6000 Frank Ave. -
Download (8MB)
https://theses.gla.ac.uk/ Theses Digitisation: https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/ This is a digitised version of the original print thesis. Copyright and moral rights for this work are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Enlighten: Theses https://theses.gla.ac.uk/ [email protected] ASPECTS OF THE BIOLOGY OF THE SQUAT LOBSTER, MUNIDA RUGOSA (FABRICIUS, 1775). Khadija Abdulla Yousuf Zainal, BSc. (Cairo). A thesis submitted for the degree of Doctor of Philosophy to the Faculty of Science at the University of Glasgow. August 1990 Department of Zoology, University of Glasgow, Glasgow, G12 8QQ. University Marine Biological Station, Millport, Isle of Cumbrae, Scotland KA28 OEG. ProQuest Number: 11007559 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 11007559 Published by ProQuest LLC(2018). -
A New Calcinus (Decapoda: Anomura: Diogenidae) from the Tropical Western Atlantic, and a Comparison with Other Species of the Genus from the Region
20 April 1994 PROC. BIOL. SOC. WASH. 107(1), 1994, pp. 137-150 A NEW CALCINUS (DECAPODA: ANOMURA: DIOGENIDAE) FROM THE TROPICAL WESTERN ATLANTIC, AND A COMPARISON WITH OTHER SPECIES OF THE GENUS FROM THE REGION Nestor H. Campos and Rafael Lemaitre Abstract.—A new species of a diogenid hermit crab, Calcinus urabaensis, is described from the Gulf of Uraba, on the Caribbean coast of Colombia. The new species is the third in the genus described from the western Atlantic, and can be distinguished from the other two known species of the genus Calcinus in the region, C. tibicen (Herbst) and C. verrilli (Rathbun), by differences in coloration and armature of the dactyl of the left cheliped, third pereopod, and telson. A comparison of the three species is included. Resumen.—Se describe una nueva especie de cangrejo ermitano pertenecienta a la familia Diogenidae, Calcinus urabaensis, colectada en el Golfo de Uraba, Caribe sur. La nueva especie es la tercera conocida de este genero en el Atlantico occidental, y se diferencia de las otras dos especies del genero Calcinus de la region, C tibicen (Herbst) y C. verrilli (Rathbun), en la coloracion y espinas del dactilo de la quela izquierda, tercer pereopodo, y telson. Se presenta una comparacion de las tres especies. Compared to other tropical regions of the junior synonyms of C tibicen (see Proven world oceans, the western Atlantic contains zano 1959; McLaughlin, pers. comm.). very few species of the diogenid genus Cal In 1985, during an expedition to the Gulf cinus Dana, 1852. Recent studies of Cal of Uraba, on the Caribbean coast of Colom cinus species in the Pacific, for example, have bia (Campos & Manjarres 1988), the senior shown that nine species occur on the Ha author collected a male hermit crab be waiian Islands (Haig & McLaughlin 1984), lieved to represent an undescribed species 11 species on the Mariana Islands (Wooster of Calcinus. -
Spermatophore Morphology of the Endemic Hermit Crab Loxopagurus Loxochelis (Anomura, Diogenidae) from the Southwestern Atlantic - Brazil and Argentina
Invertebrate Reproduction and Development, 46:1 (2004) 1- 9 Balaban, Philadelphia/Rehovot 0168-8170/04/$05 .00 © 2004 Balaban Spermatophore morphology of the endemic hermit crab Loxopagurus loxochelis (Anomura, Diogenidae) from the southwestern Atlantic - Brazil and Argentina MARCELO A. SCELZ01*, FERNANDO L. MANTELATT02 and CHRISTOPHER C. TUDGE3 1Departamento de Ciencias Marinas, FCEyN, Universidad Nacional de Mar del Plata/CONICET, Funes 3350, (B7600AYL), Mar del Plata, Argentina Tel. +54 (223) 475-1107; Fax: +54 (223) 475-3150; email: [email protected] 2Departamento de Biologia, Faculdade de Filosojia, Ciencias e Letras de Ribeirao Preto (FFCLRP), Universidade de Sao Paulo (USP), Av. Bandeirantes 3900, Ribeirao Preto, Sao Paulo, Brasil 3Department of Systematic Biology, National Museum ofNatural History, Smithsonian Institution, Washington, DC 20013-7012, USA Received 10 June 2003; Accepted 29 August 2003 Summary The spermatophore morphology of the endemic and monotypic hermit crab Loxopagurus loxochelis from the southwestern Atlantic is described. The spermatophores show similarities with those described for other members of the family Diogenidae (especially the genus Cliba narius), and are composed of three major regions: a sperm-filled, circular flat ampulla; a columnar stalk; and a pedestal. The morphology and size of the spermatophore of L. loxochelis, along with a distinguishable constriction or neck that penetrates almost halfway into the base of the ampulla, are characteristic of this species. The size of the spermatophore is related to hermit crab size. Direct relationships were found between the spermatophore ampulla width, total length, and peduncle length with carapace length of the hermit crab. These morphological characteristics and size of the spermatophore ofL. -
Carcinization in the Anomura–Fact Or Fiction? II. Evidence from Larval
Contributions to Zoology, 73 (3) 165-205 (2004) SPB Academic Publishing bv, The Hague Carcinization in the Anomura - fact or fiction? II. Evidence from larval, megalopal and early juvenile morphology Patsy+A. McLaughlin Rafael Lemaitre² & Christopher+C. Tudge² ¹, 1 Shannon Point Marine Center, Western Washington University, 1900 Shannon Point Road, Anacortes, 2 Washington 98221-908IB, U.S.A; Department ofSystematic Biology, NationalMuseum ofNatural History, Smithsonian Institution, P.O. Box 37012, Washington, D.C. 20013-7012, U.S.A. Keywords: Carcinization, Anomura, Paguroidea, Lithodidae, Paguridae, Lomisidae, Porcellanidae, larval, megalopal and early juvenile morphology, pleonal tergites Abstract Existing hypotheses 169 Developmental data 170 Results 177 In this second carcinization in the Anomura ofa two-part series, From hermit to king, or king to hermit? 179 has been reviewed from early juvenile, megalopal, and larval Analysis by Richter & Scholtz 179 perspectives. Data from megalopal and early juvenile develop- Questions of asymmetry- 180 ment in ten ofthe Lithodidae have genera provided unequivo- Pleopod loss and gain 18! cal evidence that earlier hypotheses regarding evolution ofthe Uropod loss and transformation 182 king crab erroneous. of and pleon were A pattern sundering, - Polarity or what constitutes a primitive character decalcification has been traced from the megalopal stage through state? 182 several early crabs stages in species ofLithodes and Paralomis, Semaphoronts 184 with evidence from in other supplemental species eight genera. Megalopa/early juvenile characters and character Of major significance has been the attention directed to the states 185 inmarginallithodidsplatesareofnotthehomologoussecond pleomere,with thewhichadult whenso-calledseparated“mar- Cladistic analyses 189 Lomisoidea 192 ginal plates” ofthe three megalopal following tergites. -
A Year in Hypoxia: Epibenthic Community Responses to Severe Oxygen Deficit at a Subsea Observatory in a Coastal Inlet
A Year in Hypoxia: Epibenthic Community Responses to Severe Oxygen Deficit at a Subsea Observatory in a Coastal Inlet Marjolaine Matabos1,2*, Verena Tunnicliffe1,3, S. Kim Juniper1,2, Courtney Dean1 1 School of Earth and Ocean Sciences, University of Victoria, Victoria, BC, Canada, 2 NEPTUNE Canada, University of Victoria, Victoria, BC, Canada, 3 VENUS, University of Victoria, Victoria, BC, Canada Abstract Changes in ocean ventilation driven by climate change result in loss of oxygen in the open ocean that, in turn, affects coastal areas in upwelling zones such as the northeast Pacific. Saanich Inlet, on the west coast of Canada, is a natural seasonally hypoxic fjord where certain continental shelf species occur in extreme hypoxia. One study site on the VENUS cabled subsea network is located in the hypoxic zone at 104 m depth. Photographs of the same 5 m2 area were taken with a remotely-controlled still camera every 2/3 days between October 6th 2009 and October 18th 2010 and examined for community composition, species behaviour and microbial mat features. Instruments located on a near-by platform provided high-resolution measurements of environmental variables. We applied multivariate ordination methods and a principal coordinate analysis of neighbour matrices to determine temporal structures in our dataset. Responses to seasonal hypoxia (0.1–1.27 ml/l) and its high variability on short time-scale (hours) varied among species, and their life stages. During extreme hypoxia, microbial mats developed then disappeared as a hippolytid shrimp, Spirontocaris sica, appeared in high densities (200 m22) despite oxygen below 0.2 ml/l. -
On the Larval Development of Some Hermit Crabs from Hokkaido, Japan, Reared Under Laboratory Conditions Title (Decapoda : Anomura) (With 33 Text-Figures and 7 Tables)
On the Larval Development of Some Hermit Crabs from Hokkaido, Japan, Reared Under Laboratory Conditions Title (Decapoda : Anomura) (With 33 Text-figures and 7 Tables) Author(s) QUINTANA, Rodolfo; IWATA, Fumio Citation 北海道大學理學部紀要, 25(1), 25-85 Issue Date 1987-10 Doc URL http://hdl.handle.net/2115/27702 Type bulletin (article) File Information 25(1)_P25-85.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP On the Larval Development of Some Hermit Crabs from Hokkaido, Japan, Reared Under Laboratory Conditions (Decapoda: Anomura) By Rodolfo Quintana and Fumio Iwata Zoological Institute, Faculty of Science, Hokkaido University, Sapporo 060, Japan. (With 33 Text-figures and 7 Tables) Introduction Descriptive accounts of larvae of a number of Diogenidae and Paguridae species from different geographic regions have been given -among others-, by MacDonald, Pike and Williamson, (1957); Pike and Williamson (1960); Proven zano (1963; 1968a ); Makarov (1967); Roberts (1970; 1973); Biffar and Proven zano (1972); Nyblade and McLaughlin (1975); Hong (1981), but our knowledge of larvae of species of both families from Japan is still deficient. The list of anomuran crabs inhabiting the coasts of Hokkaido, northern Japan includes approximately 15 species of hermit crabs (Igarashi, 1970; Miyake, 1982), for which only some reports have been published on their larval stages, so that the larvae of several of these species (especially those of the genus Paguristes and approximately the 50% of the Pagurus species) remain so far unknown. Kurata (1964) described the larvae of several Pagurus species from the coasts of Hokkaido. In his carefully constructed plankton study, using mainly character- 1) Contribution No.1 from the Oshoro Marine Biological Station, Faculty of Science, Hokkaido University. -
A New Genus of Parapaguridae (Decapoda: Anomura)
CRUSTACEAN RESEARCH, NO. 22 : 11-20. 1993 A new genus of Parapaguridae (Decapoda: Anomura) Rafael Lemaitre Abstract. — A new monotypic genus, removed from Sympagurus and placed in Bivalvopagurus, is described for Bivalvopagurus, new genus. The new genus Sympagurus sinensis (de Saint Laurent), a is diagnosed and its only species redescribed species of Parapaguridae known so far and illustrated. only from the China Sea. The new genus The material used for this study remains is distinguished from other genera in the deposited in the Museum national d'Hist- family by the presence of paired pleopods oire naiurelle. Paris (MNHN), and at the in both sexes, calcification of the shield, National Museum of Natural History, posterior carapace, and tcrgites of the Smithsonian Institution, Washington, D. C. first two abdominal somites, and symmetry (USNM). The following abbreviations are of the uropods and telson. The only species used: SL. length of shield (to the nearest in the new genus commonly uses a bivalve 0.1 mm), measured from the tip of the ros- shell with an actinian as means of par- trum to the midpoint of the posterior mar- tially protecting its abdomen. This species gin of the shield; and MUSORSTOM, expe- is redescribed and illustrated, and some dition of the MNHN and the office de la evolutionary comments are made. Recherche Scientifique et Technique Outre- Mer. Introduction Systematic Account Among the species assigned by Lemaitre F'amily Parapaguridae Smith, 1882 (1989: 37) to the heterogeneous genus Bivalvopagurus new genus Sympagurus Smith, 1883, was Parapagurus sinensis. a species briefly described by de Diagnosis. Shield distinctly broader Saint Laurent (1972) based on two speci- than long, well calcified. -
A New Classification of the Chirostyloidea (Crustacea: Decapoda: Anomura)
Zootaxa 2687: 56–64 (2010) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2010 · Magnolia Press ISSN 1175-5334 (online edition) A new classification of the Chirostyloidea (Crustacea: Decapoda: Anomura) KAREEN E. SCHNABEL1 & SHANE T. AHYONG2 1National Institute of Water and Atmospheric Research, Private Bag 14901, Kilbirnie, Wellington, New Zealand. E-mail: [email protected] 2Australian Museum, 6 College Street, Sydney, NSW 2010 Australia. E-mail: [email protected] Abstract The high level classification of the Chirostyloidea Ortmann, 1892, is reviewed. Eumunididae Milne-Edwards & Bouvier, 1900, is resurrected for two genera formerly placed in the Chirostylidae Ortmann, 1892, Eumunida Smith, 1883, and Pseudomunida Haig, 1979, based on shared characteristics such as the dorsal carapace striation, presence of supraocular spines of the rostrum, dentition of the mandible, presence of an epipod and an annulated exopod flagellum of maxilliped 1. Three families are now included in the Chirostyloidea: Chirostylidae, Eumunididae and Kiwaidae. Diagnoses are provided for each family as well as a key to the families. The fossil record of the Chirostyloidea is discussed, with putative records of Eumunida in the fossil record referred to the galatheid genus Sadayoshia Baba, 1969. Key words: Galatheoidea, Chirostylidae, Eumunididae, Kiwaidae, adult somatic morphology, larval morphology, fossil record Introduction Recent focus on the phylogeny of Anomura has generated significant molecular phylogenetic information that has challenged the traditional understanding of the marine squat lobsters and porcelain crabs, the Galatheoidea, which comprised the Chirostylidae Ortmann, 1892, Galatheidae Samouelle, 1819, Porcellanidae Haworth, 1825, and Kiwaidae Macpherson, Jones & Segonzac, 2005 (e.g., Ahyong et al. -
Hermit Crabs. During the Hottest Times of the Day They'll Hide to Avoid the Heat, So Look for Them Under Flotsam and Jetsam and Sea Shore Plants
HERMIT CRABS Hermit crabs are unusual because they use sea snail shells for their homes. Recycling shells has helped hermit crabs wander where their crab cousins fear to tread. HOME SWEET HOME To hermit crabs, snail shells are everything! If startled, they use their snail shells for protection. They tuck neatly into a ball, using strong front legs and nippers to block the entrance from intruders. The shell also keeps them wet when they venture onto land, shields them from the sun's rays and is a protected place for them to lay their eggs. Some hermit crabs allow other marine life to piggy-back on their snail shells. The sea anemone is a welcome hitch-hiker as it stings predators. The anemone benefits from the ride by feeding on tiny particles of food as it is moved around. This arrangement, which benefits both creatures, is known as A marine hermit crab with symbiosis. a sea anemone attached to its shell. Shaped to fit! Hermit crabs are arthropods and therefore have an exoskeleton (a hard shell-like covering). The original crab body shape has changed to fit the shape of snail shells, making them look more like a crayfish. The soft abdomen is shaped to curl inside the shell opening. Their four rear legs hang tightly onto the inside of the shell. Their four front legs are used for walking and must be powerful to be able to pull a house along! They have two front nippers used to cut up their food and defend themselves. WARNING: never try to pull a hermit crab from a shell; they hang on so well that they may be torn apart! Close up of Hermit crab habitat baby hermit crab Cheliped (zooplankton). -
Decapoda: Paguridae) from French Polynesia, with Comments on Carcinization in the Anomura
Zootaxa 3722 (2): 283–300 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3722.2.9 http://zoobank.org/urn:lsid:zoobank.org:pub:9D347B8C-0BCE-47A7-99DF-DBA9A38A4F44 A remarkable new crab-like hermit crab (Decapoda: Paguridae) from French Polynesia, with comments on carcinization in the Anomura ARTHUR ANKER1,2 & GUSTAV PAULAY1 1Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611-7800, U.S.A. 2Department of Biological Sciences, National University of Singapore, Lower Kent Ridge Road, 119260, Singapore Abstract Patagurus rex gen. et sp. nov., a deep-water pagurid hermit crab, is described and illustrated based on a single specimen dredged from 400 m off Moorea, Society Islands, French Polynesia. Patagurus is characterized by a subtriangular, vault- ed, calcified carapace, with large, wing-like lateral processes, and is closely related to two other atypical pagurid genera, Porcellanopagurus Filhol, 1885 and Solitariopagurus Türkay, 1986. The broad, fully calcified carapace, calcified bran- chiostegites, as well as broad and rigidly articulated thoracic sternites make this remarkable animal one of the most crab- like hermit crabs. Patagurus rex carries small bivalve shells to protect its greatly reduced pleon. Carcinization pathways among asymmetrical hermit crabs and other anomurans are briefly reviewed and discussed. Key words: Decapoda, Paguridae, hermit crab, deep-water, carcinization, Porcellanopagurus, Solitariopagurus, Indo- West Pacific Introduction Carcinization, or development of a crab-like body plan, is a term describing an important evolutionary tendency within the large crustacean order Decapoda. The term “carcinization” was coined by Borradaile (1916) with reference to crab-like modifications in the hermit crab genus Porcellanopagurus Filhol, 1885 (Paguridae). -
1 Crustaceans in Cold Seep Ecosystems: Fossil Record, Geographic Distribution, Taxonomic Composition, 2 and Biology 3 4 Adiël A
1 Crustaceans in cold seep ecosystems: fossil record, geographic distribution, taxonomic composition, 2 and biology 3 4 Adiël A. Klompmaker1, Torrey Nyborg2, Jamie Brezina3 & Yusuke Ando4 5 6 1Department of Integrative Biology & Museum of Paleontology, University of California, Berkeley, 1005 7 Valley Life Sciences Building #3140, Berkeley, CA 94720, USA. Email: [email protected] 8 9 2Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA 92354, USA. 10 Email: [email protected] 11 12 3South Dakota School of Mines and Technology, Rapid City, SD 57701, USA. Email: 13 [email protected] 14 15 4Mizunami Fossil Museum, 1-47, Yamanouchi, Akeyo-cho, Mizunami, Gifu, 509-6132, Japan. 16 Email: [email protected] 17 18 This preprint has been submitted for publication in the Topics in Geobiology volume “Ancient Methane 19 Seeps and Cognate Communities”. Specimen figures are excluded in this preprint because permissions 20 were only received for the peer-reviewed publication. 21 22 Introduction 23 24 Crustaceans are abundant inhabitants of today’s cold seep environments (Chevaldonné and Olu 1996; 25 Martin and Haney 2005; Karanovic and Brandão 2015), and could play an important role in structuring 26 seep ecosystems. Cold seeps fluids provide an additional source of energy for various sulfide- and 27 hydrocarbon-harvesting bacteria, often in symbiosis with invertebrates, attracting a variety of other 28 organisms including crustaceans (e.g., Levin 2005; Vanreusel et al. 2009; Vrijenhoek 2013). The 29 percentage of crustaceans of all macrofaunal specimens is highly variable locally in modern seeps, from 30 0–>50% (Dando et al. 1991; Levin et al.