TAXONOMY of COMMON HERMIT CRABS of INDIA Bijukumar, A

Total Page:16

File Type:pdf, Size:1020Kb

TAXONOMY of COMMON HERMIT CRABS of INDIA Bijukumar, A Advances in Finfish and Shellfish Taxonomy, Pages: 11–68 Edited by: A.K. Jaiswar et al. Copyright © 2018, Narendra Publishing House, Delhi, India 14 TAXONOMY OF COMMON HERMIT CRABS OF INDIA Bijukumar, A. 1 and Reshmi, R. 2 Department of Aquatic Biology & Fisheries, University of Kerala, Thiruvananthapuram 695581, Kerala, India Email: 1bi [email protected]; 2r [email protected] Introduction Infraorder Anomura, commonly referred to as anomurans or false crabs in scientific literature, is one of the most diverse groups of crustaceans in the phylum Arthropoda. Infraorders Brachyura and Anomura comprise the entire crab community of the order Decapoda. Infraorder Anomura is represented by 6 superfamilies, 17 families, 223 genera and around 2500 species. The taxonomic status of several species is unclear and discovery of new species is increasing day by day. Infraorder Anomura Macleay, 1838 is represented by six superfamilies: Aegloidea, Hippoidea, Lithodoidea, Lomisoidea, Paguroidea and Galatheoidea. Superfamily Aegloidea Dana, 1852 is represented by a singlefamily Agelidae comprising 69 species in one genus. Superfamily Hippoidea Latreille, 1825 comprises three families of sand and mole crabs in Albuneidae (48 species in 9 genera), Blepharipodidae (6 species in 2 genera) and Hippidae (27 species in 3 genera). Superfamily Lithodoidea Samouelle, 1819 is with two families­ Hapalogastridae and Lithodidae (129 species in 15 genera). Superfamily Lomisoidea Bouvier, 1895 is represented by a single family Lomisidae compising a single species Lomis hirta (hairy stone crab). Superfamily Paguroidea Latreille, 1802 comprises hermit crabs and their relatives in the families Coenobitidae (17 species in 2 genera), Diogenidae (428 species in 20 genera), Paguridae (542 species in 75 genera), Parapaguridae (76 species in 10 genera)(Lemaitre, 1996; McLaughlin, 2003), Pylochelidae (52 species in 10 genera) and Pylojacquesidae (2 species in 2 genera). Superfamily Galatheoidea Samouelle, 1819 includes squat lobsters and related animals in four families such as Galatheidae (675 species in 34 genera), Chirostylidae (192 species in 7 genera), Kiwaidae with only one species Kiwa hirsuta (‘yeti lobster’) and Porcellanidae (225 species). 132 Advances in Finfish and Shellfish Taxonomy Among anomurans hermit crabs of the super family Paguroidea Latreille, 1802 represent an important portion of the intertidal, sublittoral and moderately deep benthic marine communities worldwide, with high diversity in tropical and subtropical regions, where they play an important role in food web. Hermit crabs are ecologically important scavengers, feeding on organic deposits and also good predators. They are typically marines organisms seen in intertidal as well as subtidal environments, although some species have physiological and behavioural adaptations for living in almost all habitats such as estuarine, semi­terrestrial and terrestrial habitats; they therefore, form important specimen for research. Hermit crabs can be considered as ecological indicators of freshwater inundation as they have the physiological adaptations to withstand the fluctuating conditions in the intertidal zone. They are decapod crustaceans with ten pereopods, but the last pair of these is often hidden under the gill chamber and is used for keeping the gills clean. They have a soft abdomen and for safety from predation, desiccation and mechanical damage they keep the abdomen tucked away in a discarded gastropod shell or cavities of appropriate size. Few hermit crabs are found inhabiting shelters other than shells, which includes bivalve and scaphopod shells, hollowed cylinders of wood or stone, calcareous tubes of polychaetes or vermetid gastropods which are immobile, corals, and sponges. Terrestrial hermit crab, popularly known as “coconut crab” [Birgus latro (Linnaeus, 1767)], is fully calcified and exist without a shell, although megalopa larvae and young crabs of this species require shells. Hermit crabs obtain new shells or housing by exchanging or sharing shells among individuals of same or different species, seeking empty shells or migrating to areas where gastropod shells are abundant. Hermit crabs seem to select among the available empty gastropod shells the most suitable one for their size and shape. The life cycle of hermit crabs depends on the process that makes suitable gastropod shells. Shells are considered as a limiting factor for hermit crab survival. The gastropod shells occupied by hermit crabs provide mobility and protection which had helped them to establish in marine and tropical terrestrial shores. Despite their ecological importance the studies on the distribution patterns in hermit crabs are scarce. Members of the family Coenobitidae are commonly called as “land hermit crabs”. They are semi­terrestrial hermit crabs represented by 17 species in two genera viz., Coenobita (16 species) and Birgus (one species). Hermit crabs of the family Diogenidae are commonly known as “left­ handed” hermit crabs as they have appreciably larger left cheliped than the right. They are seen in all habitats, mainly in tropical and temperate areas, in depths ranging from the intertidal to over 465 m. They are very rare in higher latitudes. Out of the six families Diogenidae is the most species­rich family. Taxonomy of Common Hermit Crabs of India 133 Members of the family Paguridae are commonly called as “right handed” hermit crabs because the members have right cheliped larger than the left. This family has the highest number of genera and species. They are commonly found in the intertidal areas of temperate zone in depths of 50­500 m. The Parapaguridae or “deep­water hermit crabs” are species typically found at depths ranging from 200 to 3000 m. There are five genera, Oncopagurus Lemaitre, 1996; Parapagurus Smith, 1879; Sympagurus Smith, 1883; Tylaspis Henderson, 1885 and Probeebei Boone, 1926, with species having reduced corneas, as they are mainly seen in the twilight zone (Lemaitre, 2006). Family Pylochelidae Bate, 1888 are known as “symmetrical” hermit crabs because they have symmetrical chelipeds, straight pleon, partially calcified articulated tergites, and generally symmetrical uropods. The habitats of pylochelids are pieces of wood, rocks, sponges, tusk shells, and rarely gastropods. They are found in depths ranging from 30 to 1570 m, most frequently occurring in depths from 200 to 500 m. Family Pylojacquesidae McLaughlin and Lemaitre, 2001 is unique among anomurans in having mandible which is chitinous and strongly toothed and they reflect an unusual neotenous or paedomorphic condition. Hermit crabs are fascinating specimens for zoologists because of their intelligent selection of suitable discarded shells as their ‘home’. Hermit crabs are also used as an ideal experimental organism to study environmental influences as they are seen many in the intertidal and deep marine benthic communities and their presence in these areas are due to adaptive evolution of the population, thus forming an important organism in the living world. Taxonomy Kingdom: Animalia Phylum: Arthropoda Subphylum: Crustacea Class: Malacostraca Order: Decapoda Suborder: Pleocyemata, Infraorder Anomura Crustaceans of the infraorder Anomura are characterized by having adult body shapes from lobster­like to true crab­like and highly reduced fifth pereopods which is used for keeping the gills clean. The abdomen may be elongated, short and folded under the body or tightly curved to fit into the gastropod shells. Markedly reduced fifth pereopods that are not used as ambulatory appendages, the articulated 134 Advances in Finfish and Shellfish Taxonomy or missing eighth thoracic sternite and the cephalothorax that is not fused to the epistome are the major characters of this infraorder. Body parts of hermit crabs and their taxonomic charactes are shown in Figs. 1 to 6. Common Families occurring in India Hermit crab diversity in India is represented by over 110 species and the families represented in India are Coenobitidae, Diogenidae, Paguridae, Parapaguridae and Pylochelidae. Key to the identification of common families of hermit crabs (super family Paguroidea) are given below: Keys to the families of Paguroidea 1. Antennules with upper rami of flagella terminating bluntly, ... Coenobitidae somewhat “stick­like” (semiterrestrial) — Antennules with upper rami of flagella terminating in ... 2 tapered filament, not “stick­like” (marine, estuarine) 2. Paired pleopods on abdominal somites 2–5; abdominal ... Pylochelidae tergites 1–5 well defined, well calcified — No paired pleopods on abdominal somites 4 and 5; ... 3 abdominal tergites variable, but most frequently not well calcified 3. Maxilliped 3 generally approximate basally;chelipeds equal, ... Diogenidae subequal or unequal, left frequently largest ….. — Maxilliped 3 generally widely separated basally; ... 4 chelipeds unequal or less frequently subequal, right usually largest 4. Exopod of maxilliped 1 with flagellum ... Paguridae — Exopod of maxilliped 1 without flagellum ... Parapaguridae I. FAMILY: COENOBITIDAE (Land hermit crabs) The Coenobitidae are the family of terrestrial hermit crabs, widely known for their terrestrial habits, with 17 species in two genera. The genus Birgus is represented by a single species, the well­known Birgus latro. Description: Carapace cylindrical or subcylindrical, well calcified ; elongate or broadened at posterior half. Rostrum obsolete or very prominent. Outer ocular spine absent, ocular acicles present.Cornea well developed. Antennal
Recommended publications
  • A Classification of Living and Fossil Genera of Decapod Crustaceans
    RAFFLES BULLETIN OF ZOOLOGY 2009 Supplement No. 21: 1–109 Date of Publication: 15 Sep.2009 © National University of Singapore A CLASSIFICATION OF LIVING AND FOSSIL GENERA OF DECAPOD CRUSTACEANS Sammy De Grave1, N. Dean Pentcheff 2, Shane T. Ahyong3, Tin-Yam Chan4, Keith A. Crandall5, Peter C. Dworschak6, Darryl L. Felder7, Rodney M. Feldmann8, Charles H. J. M. Fransen9, Laura Y. D. Goulding1, Rafael Lemaitre10, Martyn E. Y. Low11, Joel W. Martin2, Peter K. L. Ng11, Carrie E. Schweitzer12, S. H. Tan11, Dale Tshudy13, Regina Wetzer2 1Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom [email protected] [email protected] 2Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007 United States of America [email protected] [email protected] [email protected] 3Marine Biodiversity and Biosecurity, NIWA, Private Bag 14901, Kilbirnie Wellington, New Zealand [email protected] 4Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, Republic of China [email protected] 5Department of Biology and Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602 United States of America [email protected] 6Dritte Zoologische Abteilung, Naturhistorisches Museum, Wien, Austria [email protected] 7Department of Biology, University of Louisiana, Lafayette, LA 70504 United States of America [email protected] 8Department of Geology, Kent State University, Kent, OH 44242 United States of America [email protected] 9Nationaal Natuurhistorisch Museum, P. O. Box 9517, 2300 RA Leiden, The Netherlands [email protected] 10Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, 10th and Constitution Avenue, Washington, DC 20560 United States of America [email protected] 11Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore 117543 [email protected] [email protected] [email protected] 12Department of Geology, Kent State University Stark Campus, 6000 Frank Ave.
    [Show full text]
  • Spermatophore Morphology of the Endemic Hermit Crab Loxopagurus Loxochelis (Anomura, Diogenidae) from the Southwestern Atlantic - Brazil and Argentina
    Invertebrate Reproduction and Development, 46:1 (2004) 1- 9 Balaban, Philadelphia/Rehovot 0168-8170/04/$05 .00 © 2004 Balaban Spermatophore morphology of the endemic hermit crab Loxopagurus loxochelis (Anomura, Diogenidae) from the southwestern Atlantic - Brazil and Argentina MARCELO A. SCELZ01*, FERNANDO L. MANTELATT02 and CHRISTOPHER C. TUDGE3 1Departamento de Ciencias Marinas, FCEyN, Universidad Nacional de Mar del Plata/CONICET, Funes 3350, (B7600AYL), Mar del Plata, Argentina Tel. +54 (223) 475-1107; Fax: +54 (223) 475-3150; email: [email protected] 2Departamento de Biologia, Faculdade de Filosojia, Ciencias e Letras de Ribeirao Preto (FFCLRP), Universidade de Sao Paulo (USP), Av. Bandeirantes 3900, Ribeirao Preto, Sao Paulo, Brasil 3Department of Systematic Biology, National Museum ofNatural History, Smithsonian Institution, Washington, DC 20013-7012, USA Received 10 June 2003; Accepted 29 August 2003 Summary The spermatophore morphology of the endemic and monotypic hermit crab Loxopagurus loxochelis from the southwestern Atlantic is described. The spermatophores show similarities with those described for other members of the family Diogenidae (especially the genus Cliba­ narius), and are composed of three major regions: a sperm-filled, circular flat ampulla; a columnar stalk; and a pedestal. The morphology and size of the spermatophore of L. loxochelis, along with a distinguishable constriction or neck that penetrates almost halfway into the base of the ampulla, are characteristic of this species. The size of the spermatophore is related to hermit crab size. Direct relationships were found between the spermatophore ampulla width, total length, and peduncle length with carapace length of the hermit crab. These morphological characteristics and size of the spermatophore ofL.
    [Show full text]
  • Carcinization in the Anomura–Fact Or Fiction? II. Evidence from Larval
    Contributions to Zoology, 73 (3) 165-205 (2004) SPB Academic Publishing bv, The Hague Carcinization in the Anomura - fact or fiction? II. Evidence from larval, megalopal and early juvenile morphology Patsy+A. McLaughlin Rafael Lemaitre² & Christopher+C. Tudge² ¹, 1 Shannon Point Marine Center, Western Washington University, 1900 Shannon Point Road, Anacortes, 2 Washington 98221-908IB, U.S.A; Department ofSystematic Biology, NationalMuseum ofNatural History, Smithsonian Institution, P.O. Box 37012, Washington, D.C. 20013-7012, U.S.A. Keywords: Carcinization, Anomura, Paguroidea, Lithodidae, Paguridae, Lomisidae, Porcellanidae, larval, megalopal and early juvenile morphology, pleonal tergites Abstract Existing hypotheses 169 Developmental data 170 Results 177 In this second carcinization in the Anomura ofa two-part series, From hermit to king, or king to hermit? 179 has been reviewed from early juvenile, megalopal, and larval Analysis by Richter & Scholtz 179 perspectives. Data from megalopal and early juvenile develop- Questions of asymmetry- 180 ment in ten ofthe Lithodidae have genera provided unequivo- Pleopod loss and gain 18! cal evidence that earlier hypotheses regarding evolution ofthe Uropod loss and transformation 182 king crab erroneous. of and pleon were A pattern sundering, - Polarity or what constitutes a primitive character decalcification has been traced from the megalopal stage through state? 182 several early crabs stages in species ofLithodes and Paralomis, Semaphoronts 184 with evidence from in other supplemental species eight genera. Megalopa/early juvenile characters and character Of major significance has been the attention directed to the states 185 inmarginallithodidsplatesareofnotthehomologoussecond pleomere,with thewhichadult whenso-calledseparated“mar- Cladistic analyses 189 Lomisoidea 192 ginal plates” ofthe three megalopal following tergites.
    [Show full text]
  • Downloaded from Brill.Com10/11/2021 08:33:28AM Via Free Access 224 E
    Contributions to Zoology, 67 (4) 223-235 (1998) SPB Academic Publishing bv, Amsterdam Optics and phylogeny: is there an insight? The evolution of superposition eyes in the Decapoda (Crustacea) Edward Gaten Department of Biology, University’ ofLeicester, Leicester LEI 7RH, U.K. E-mail: [email protected] Keywords: Compound eyes, superposition optics, adaptation, evolution, decapod crustaceans, phylogeny Abstract cannot normally be predicted by external exami- nation alone, and usually microscopic investiga- This addresses the of structure and in paper use eye optics the tion of properly fixed optical elements is required construction of and crustacean phylogenies presents an hypoth- for a complete diagnosis. This largely rules out esis for the evolution of in the superposition eyes Decapoda, the use of fossil material in the based the of in comparatively on distribution eye types extant decapod fami- few lies. It that arthropodan specimens where the are is suggested reflecting superposition optics are eyes symplesiomorphic for the Decapoda, having evolved only preserved (Glaessner, 1969), although the optics once, probably in the Devonian. loss of Subsequent reflecting of some species of trilobite have been described has superposition optics occurred following the adoption of a (Clarkson & Levi-Setti, 1975). Also the require- new habitat (e.g. Aristeidae,Aeglidae) or by progenetic paedo- ment for good fixation and the fact that complete morphosis (Paguroidea, Eubrachyura). examination invariably involves the destruction of the specimen means that museum collections Introduction rarely reveal enough information to define the optics unequivocally. Where the optics of the The is one of the compound eye most complex component parts of the eye are under investiga- and remarkable not on of its fixation organs, only account tion, specialised to preserve the refrac- but also for the optical precision, diversity of tive properties must be used (Oaten, 1994).
    [Show full text]
  • Reappraisal of Hermit Crab Species (Crustacea: Anomura: Paguridea) Reported by Camill Heller in 1861, 1862 and 1865
    Ann. Naturhist. Mus. Wien 103 B 135 - 176 Wien, Dezember 2001 Reappraisal of hermit crab species (Crustacea: Anomura: Paguridea) reported by Camill Heller in 1861, 1862 and 1865 P.A. McLaughlin1 & P.C. Dworschak2 Abstract Redescriptions based on the type material are presented for 11 species of hermit crabs described as new by Camill Heller (HELLER 1861a, c, 1862, 1865): Coenobita violascens HELLER, 1862, Diogenes avarus HELLER, 1865 - for which a lectotype is designated, Diogenes senex HELLER, 1865, Pagurus varipes HELLER, 1861 [= Dardanus tinctor (FORSKÅL, 1775)], Pagurus depressus HELLER, 1861 [= Dardanus lago- podos (FORSKÅL, 1775)], Calcinus rosaceus HELLER, 1861, Calcinus nitidus HELLER, 1865, Clibanarius carnifex HELLER, 1861, Clibanarius signatus HELLER, 1861, Paguristes barbatus (HELLER, 1862) and Paguristes ciliatus HELLER, 1862. For 7 of those, detailed figures are provided. In addition, the material from the Red Sea along with the hermit crabs obtained during the circumnavigation of the earth by the fri- gate 'Novara' and identified by him have been reevaluated and necessary corrections made. Keywords: Crustacea, Anomura, Paguridea, Camill Heller, Novara, lectotype designation Zusammenfassung Elf Arten von Einsiedlerkrebsen, die Camill Heller als neue Arten beschrieb (HELLER 1861a, c, 1862, 1865), werden hier anhand des Typenmaterials wiederbeschrieben: Coenobita violascens HELLER, 1862, Diogenes avarus HELLER, 1865 - für die ein Lectotypus designiert wird, Diogenes senex HELLER, 1865, Pagurus varipes HELLER, 1861 [= Dardanus tinctor (FORSKÅL, 1775)], Pagurus depressus HELLER, 1861 [= Dardanus lago- podos (FORSKÅL, 1775)], Calcinus rosaceus HELLER, 1861, Calcinus nitidus HELLER, 1865, Clibanarius carnifex HELLER, 1861, Clibanarius signatus HELLER, 1861, Paguristes barbatus (HELLER, 1862) und Paguristes ciliatus HELLER, 1862. Zu sieben Arten davon werden detailierte Zeichnungen präsentiert.
    [Show full text]
  • Hermit Crabs. During the Hottest Times of the Day They'll Hide to Avoid the Heat, So Look for Them Under Flotsam and Jetsam and Sea Shore Plants
    HERMIT CRABS Hermit crabs are unusual because they use sea snail shells for their homes. Recycling shells has helped hermit crabs wander where their crab cousins fear to tread. HOME SWEET HOME To hermit crabs, snail shells are everything! If startled, they use their snail shells for protection. They tuck neatly into a ball, using strong front legs and nippers to block the entrance from intruders. The shell also keeps them wet when they venture onto land, shields them from the sun's rays and is a protected place for them to lay their eggs. Some hermit crabs allow other marine life to piggy-back on their snail shells. The sea anemone is a welcome hitch-hiker as it stings predators. The anemone benefits from the ride by feeding on tiny particles of food as it is moved around. This arrangement, which benefits both creatures, is known as A marine hermit crab with symbiosis. a sea anemone attached to its shell. Shaped to fit! Hermit crabs are arthropods and therefore have an exoskeleton (a hard shell-like covering). The original crab body shape has changed to fit the shape of snail shells, making them look more like a crayfish. The soft abdomen is shaped to curl inside the shell opening. Their four rear legs hang tightly onto the inside of the shell. Their four front legs are used for walking and must be powerful to be able to pull a house along! They have two front nippers used to cut up their food and defend themselves. WARNING: never try to pull a hermit crab from a shell; they hang on so well that they may be torn apart! Close up of Hermit crab habitat baby hermit crab Cheliped (zooplankton).
    [Show full text]
  • Decapoda: Paguridae) from French Polynesia, with Comments on Carcinization in the Anomura
    Zootaxa 3722 (2): 283–300 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3722.2.9 http://zoobank.org/urn:lsid:zoobank.org:pub:9D347B8C-0BCE-47A7-99DF-DBA9A38A4F44 A remarkable new crab-like hermit crab (Decapoda: Paguridae) from French Polynesia, with comments on carcinization in the Anomura ARTHUR ANKER1,2 & GUSTAV PAULAY1 1Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611-7800, U.S.A. 2Department of Biological Sciences, National University of Singapore, Lower Kent Ridge Road, 119260, Singapore Abstract Patagurus rex gen. et sp. nov., a deep-water pagurid hermit crab, is described and illustrated based on a single specimen dredged from 400 m off Moorea, Society Islands, French Polynesia. Patagurus is characterized by a subtriangular, vault- ed, calcified carapace, with large, wing-like lateral processes, and is closely related to two other atypical pagurid genera, Porcellanopagurus Filhol, 1885 and Solitariopagurus Türkay, 1986. The broad, fully calcified carapace, calcified bran- chiostegites, as well as broad and rigidly articulated thoracic sternites make this remarkable animal one of the most crab- like hermit crabs. Patagurus rex carries small bivalve shells to protect its greatly reduced pleon. Carcinization pathways among asymmetrical hermit crabs and other anomurans are briefly reviewed and discussed. Key words: Decapoda, Paguridae, hermit crab, deep-water, carcinization, Porcellanopagurus, Solitariopagurus, Indo- West Pacific Introduction Carcinization, or development of a crab-like body plan, is a term describing an important evolutionary tendency within the large crustacean order Decapoda. The term “carcinization” was coined by Borradaile (1916) with reference to crab-like modifications in the hermit crab genus Porcellanopagurus Filhol, 1885 (Paguridae).
    [Show full text]
  • How to Become a Crab: Phenotypic Constraints on a Recurring Body Plan
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 December 2020 doi:10.20944/preprints202012.0664.v1 How to become a crab: Phenotypic constraints on a recurring body plan Joanna M. Wolfe1*, Javier Luque1,2,3, Heather D. Bracken-Grissom4 1 Museum of Comparative Zoology and Department of Organismic & Evolutionary Biology, Harvard University, 26 Oxford St, Cambridge, MA 02138, USA 2 Smithsonian Tropical Research Institute, Balboa–Ancon, 0843–03092, Panama, Panama 3 Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06520-8109, USA 4 Institute of Environment and Department of Biological Sciences, Florida International University, Biscayne Bay Campus, 3000 NE 151 Street, North Miami, FL 33181, USA * E-mail: [email protected] Summary: A fundamental question in biology is whether phenotypes can be predicted by ecological or genomic rules. For over 140 years, convergent evolution of the crab-like body plan (with a wide and flattened shape, and a bent abdomen) at least five times in decapod crustaceans has been known as ‘carcinization’. The repeated loss of this body plan has been identified as ‘decarcinization’. We offer phylogenetic strategies to include poorly known groups, and direct evidence from fossils, that will resolve the pattern of crab evolution and the degree of phenotypic variation within crabs. Proposed ecological advantages of the crab body are summarized into a hypothesis of phenotypic integration suggesting correlated evolution of the carapace shape and abdomen. Our premise provides fertile ground for future studies of the genomic and developmental basis, and the predictability, of the crab-like body form. Keywords: Crustacea, Anomura, Brachyura, Carcinization, Phylogeny, Convergent evolution, Morphological integration 1 © 2020 by the author(s).
    [Show full text]
  • Ga7459. B) Polyonyx Pedalis, 1 Female 4.56×4.73 Mm, Mayotte, St
    23 Figure 11. A) Polyonyx biunguiculatus, 1 male 2.68×3.23 mm, Mayotte, St. 23, MNHN- Ga7459. B) Polyonyx pedalis, 1 female 4.56×4.73 mm, Mayotte, St. 19, MNHN-Ga7464 (coloration altered by preservative). C) Polyonyx triunguiculatus, 1 male 3.69×4.37, Mayotte, St. 23, MNHN-Ga7438. D) Polyonyx aff. boucheti, 1 ovigerous female 2.20×3.24 mm, Mayotte, St. 12, MNHN-Ga7465. Polyonyx triunguiculatus Zehntner, 1894 Polyonyx triunguiculatus (Figure 11 C) - Haig, 1966: 44 (Mayotte, lagoon, small blocks and coarse sands, coll. A. Crosnier, September 1959, 2 males 2.7 and 3.2 mm, 1 female 1.9 mm, 2 ovigerous females 3.1 and 3.2 mm; same, coarse sands, 50 m, 1 male 3.7 mm, 1 female 3.3 mm, MNHN). - BIOTAS collections, Glorioso, 3-7 May 2009, det. J. Poupin from photo, St. GLOR-2, reef platform and shallow canyons with dead Acropora digitifera head, 7-14 m, specimen MEPA 948; St. GLOR-5, reef slope East side, 17 m, specimen MEPA 1045. - Mayotte, KUW fieldwork November 2009, St. 14, La Prudente bank, 15-17 m, 2 males 3.38×4.13 and 3.31×3.79 mm, 1 ovigerous female 3.29×4.20, 1 juvenile broken, MNHN-Ga7436; St. 17, North reef, 22 m, 1 male 3.43×3.94, 1 ovigerous female 3.10×3.97 mm, MNHN-Ga7437; St. 23, Choizil pass ‘Patate à Teddy’, 15-30 m, 1 male 3.69×4.37, 1 female 2.72×3.12 mm, MNHN-Ga7438; St. 25, islet M'tzamboro, 15-20 m, 1 ovigerous female 3.46×4.45 mm, 1 female 2.74×3.06 mm, 2 ovigerous females 2.89×3.44 and 3.40×3.99 mm, 1 female not measured, MNHN-Ga7439; St.
    [Show full text]
  • Short Note Records of Hippa Strigillata (Stimpson, 1860) (Crustacea: Decapoda: Hippidae) in the SE Gulf of California, Mexico
    Nauplius 22(1): 63-65, 2014 63 Short Note Records of Hippa strigillata (Stimpson, 1860) (Crustacea: Decapoda: Hippidae) in the SE Gulf of California, Mexico Daniela Ríos-Elósegui and Michel E. Hendrickx* (DRE) Posgrado en Ciencias del Mar y Limnología, Unidad Académica Mazatlán, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, P.O. Box 811, Mazatlán, Sinaloa 82000, Mexico. E-mail: [email protected] (DRE, MEH) Laboratorio de Invertebrados Bentónicos, Unidad Académica Mazatlán, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, P.O. Box 811, Mazatlán, Sinaloa 82000, Mexico. E-mail: [email protected]; *Corresponding author ABSTRACT - This paper presents details regarding the collections and records of H. strigillata in the Bay of Mazatlán, SE Gulf of California, Mexico. Samples of H. strigillata were obtained in this bay and suroundings area during different periods and deposited in the collection of UNAM, Mazatlán. Morphometric data, distribution, biological and ecological data were furnished. Key words: Distribution, Gulf of California, Hippa, mole crab Because they represent a very dynamic synonym of Remipes pacificus Dana, 1852) environment, often with high energy wave (Boyko, 2002, Boyko and McLaughlin, action, sandy beaches are considered low 2010) and H. strigillata (Stimpson, 1860) diversity habitats for macro and mega fauna (Hendrickx, 1995; Hendrickx and Harvey, (Tait, 1972). This is particularly true along the 1999). Hippa marmorata occurs from the west coast of Mexico (Dexter, 1976; Hendrickx, central Gulf of California to Colombia, 1996). The intertidal habitat is mostly including several oceanic islands of the eastern dominated by species of bivalve mollusks and Pacific (Revillagigedo, del Coco, Galapagos, small (Amphipoda, Isopoda) to medium size and Clipperton) (Hendrickx, 2005).
    [Show full text]
  • Hermit Crab Care
    HERMIT CRAB BASIC CRAB CARE Just the Basics To live comfortably in captivity, hermit crabs require the following: no lower than 75°F. Consistent low temperatures can kill a hermit crab. Don't allow them to bake in a window, either. If they get too hot they will die, overheating causes irreversible damage and a slow, painful death. Signs of overheating are a musty smell and discharge of brown liquid; crabitat to have a moist, "tropical" feel to it; at it negates the effects of your under- tank heater. If you are having trouble keeping your crabitat warm, try moving some substrate from over the heater. If you are having trouble getting the crabitat to cool down, turn off the heater. See the molting page if you need information on heating a molter's isolation tank; Food, water, shells and other tank decorations to keep the crabs engaged and active. Friends I'm sure you've heard this before, but you really shouldn't keep only one hermit crab alone as a pet. The name 'hermit' is misapplied to our little friends -- they are quite gregarious and like to be around their own kind. In the wild, they travel in packs of up to 100 crabs, scavenging the beach for food and shells. The reason they travel in packs is simple: Where there are more crabs, there are more shells. Researchers have found by putting one clean, empty shell on the beach, they can initiate a "cascade" of shells changes: One crab changes in to the new shell, another changes into his old shell, and another changes into the other empty shell, and so on.
    [Show full text]
  • Crustacea, Decapoda, Anomura, Paguroidea) with Subconical Corneas, and New Data on Biology of Some Rare Species
    Two new species of Parapaguridae (Crustacea, Decapoda, Anomura, Paguroidea) with subconical corneas, and new data on biology of some rare species Rafael LEMAITRE Smithsonian Institution, National Museum of Natural History, MRC 163, Deparment of Invertebrate Zoology, P.O. box 37012, Washington, D.C., 20013-7012 (USA) [email protected] Lemaitre R. 2006. — Two new species of Parapaguridae (Crustacea, Decapoda, Anomura, PaguroKlea) with subconical corneas, and new data on biology of some rare species. Zoosvs- tema28(2):517-532. ABSTRACT Two new parapagurid species with subconical corneas, Oncopagurus conicus n. sp. and Paragiopagurus schnauztr n. ap., are described based on collections by French expeditions to New Caledonia, the Philippines and Solomon Islands, in the we-stern Pacific. These represent the 16th and 18th documented species of Oncopagurus Vemixtyc, 1996 and Paragiopagurus\jimw.K, 1996, respectively. KEYWORDS Two other parapagurids arc known to have subconical corneas, Sympagurus Crustacea, acinops Lemaitre, 1989, and Oncopagurus minutus (Henderson, 1896). Also Decapoda, Anotnura, rejxirtcd are specimens of two rare and morphologically unique parapagurids, Parapaguridae, lyphlopagurtis foresti de Saint Laurent, 1972 and Bivalvopagurus sinensis (de ParagiopaguruSy Saint I aurent, 1972), and represent geographical and bathymetric range c-xten- Oncopagurus, Typhlopagurtis, sions for both species. The diagnoses of the monotypic genera Typhlopagurus Bivalvopagunis, and Bivalvopagurus are to be modified due lo new data on morphology and hermit crabs, biology. The former genus was given to inclutle T foresti, wrongly assumed to deep-water, misnomers, lack a>rnea, thus presumed blind; and the latter for B. sinensis, prematurely new species. assumed to exclusively use bivalve shells as housing. ZOOSYSTEMA • 2006 • 28 (2) O Publications ScientHiquas du Musium national d'Histoire natureNe, Paris.
    [Show full text]