Order Evolutionary Adaptation Response to the Environment

Total Page:16

File Type:pdf, Size:1020Kb

Order Evolutionary Adaptation Response to the Environment Order Response to the environment Evolutionary adaptation Reproduction Regulation Energy processing Growth and development 1 The biosphere Tissues Ecosystems Organs and organ systems Communities Cells Organelles Organisms Atoms Populations Molecules 2 Sunlight Leaves absorb light energy from Leaves take in the sun. carbon dioxide CO2 from the air and release oxygen. O2 Cycling of chemical nutrients Leaves fall to Water and Animals eat the ground and minerals in leaves and fruit are decomposed the soil are from the tree. by organisms taken up by that return the tree minerals to the through soil. its roots. 3 Sunlight Heat When energy is used Producers absorb light to do work, some energy and transform it into energy is converted to chemical energy. thermal energy, which is lost as heat. An animal’s muscle cells convert Chemical chemical energy energy from food to kinetic energy, the energy of motion. A plant’s cells use chemical energy to do Chemical energy in work such as growing food is transferred new leaves. from plants to consumers. (a) Energy flow from sunlight to (b) Using energy to do work producers to consumers 4 (a) Wings (b) Wing bones 5 Prokaryotic cell Eukaryotic cell DNA (no nucleus) Membrane Membrane Cytoplasm Nucleus (membrane- enclosed) Membrane- DNA (throughout enclosed organelles nucleus) 1 µm 6 Sperm cell Nuclei containing DNA Fertilized egg with DNA from Embryo’s cells with Egg cell both parents copies of inherited DNA Offspring with traits inherited from both parents 7 Nucleus A DNA C Nucleotide T A T Cell A C C G T A G T A (a) DNA double helix (b) Single strand of DNA 8 A Negative feedback Enzyme 1 B D Enzyme 2 Excess D blocks a step. D D C Enzyme 3 D (a) Negative feedback W Enzyme 4 X Positive feedback + Enzyme 5 Excess Z Z Y stimulates a Z step. Z Enzyme 6 Z (b) Positive feedback 9 Species Genus Family Order Class Phylum Kingdom Domain Ursus americanus (American black bear) Ursus Ursidae Carnivora Mammalia Chordata Animalia Eukarya 10 (a) Domain Bacteria (b) Domain Archaea m µ m µ 2 2 (c) Domain Eukarya Kingdom Animalia 100 µm Kingdom Plantae Protists Kingdom Fungi 11 15 µm 5 µm Cilia of Cilia of Paramecium windpipe cells 0.1 µm Cross section of a cilium, as viewed with an electron microscope 12 1 Population with 2 Elimination of 3 Reproduction of 4 Increasing varied inherited individuals with survivors frequency of traits certain traits traits that enhance survival and reproductive success 13 Warbler finches Warbler Insect-eaters Green warbler finch Certhidea olivacea COMMON Gray warbler finch ANCESTOR Seed-eater Certhidea fusca Sharp-beaked Bud-eater ground finch Geospiza difficilis Vegetarian finch Platyspiza crassirostris Mangrove finch Cactospiza heliobates Insect-eaters Tree finches Tree Woodpecker finch Cactospiza pallida Medium tree finch Camarhynchus pauper Large tree finch Camarhynchus psittacula Small tree finch Camarhynchus parvulus Cactus-flower- Large cactus eaters ground finch Geospiza conirostris Ground finches Ground Cactus ground finch Seed-eaters Geospiza scandens Small ground finch Geospiza fuliginosa Medium ground finch Geospiza fortis Large ground finch Geospiza magnirostris 14 Observations Question Hypothesis #1: Hypothesis #2: Dead batteries Burnt-out bulb Prediction: Prediction: Replacing batteries Replacing bulb will fix problem will fix problem Test of prediction Test of prediction Test falsifies hypothesis Test does not falsify hypothesis 15 .
Recommended publications
  • Cross-Temporal Analysis of Genetic Diversity in the Endangered Medium Tree Finch (Camarhynchus Pauper) and Closely Related Darwin’S Finches
    Cross-Temporal Analysis of Genetic Diversity in the Endangered Medium Tree Finch (Camarhynchus pauper) and Closely Related Darwin’s Finches By Colleen Metzger B.S., Juniata College, 2009 A thesis submitted to the Graduate School of the University of Cincinnati Department of Biological Sciences In partial fulfillment of the requirements For the degree of Master of Science Committee Chair: Kenneth Petren, Ph.D. November 2012 Abstract Natural history collections can provide a direct view of past genotypes, which allows greater insight into evolutionary processes that are relevant for conservation and management. However, few studies have used broad surveys of multilocus genotypes from the past to address the wide range of processes that can affect conservation planning of a species today. Therefore, we assessed the history and status of the critically endangered medium tree finch, Camarhynchus pauper, an endemic finch of the Galápagos Islands. Using ancient DNA techniques, we quantified cross-temporal genetic change for 16 microsatellite loci in this species and its relatives. We tested the hypothesis that C. pauper has undergone a recent reduction in population size and loss of genetic diversity, and evaluated the hypothesis that C. pauper is genetically distinct from its two closest relatives, C. parvulus and C. psittacula. We assessed whether decline in C. pauper has led to increased hybridization with other species and evaluated a long-standing hypothesis of its origin from C. psittacula on another island using genetic distances, assignment tests, and migration analyses. Genetic diversity declined significantly in C. pauper over time, and several other tree finch populations showed similar losses of genetic diversity.
    [Show full text]
  • Ecuador & the Galapagos Islands
    Ecuador & the Galapagos Islands - including Sacha Lodge Extension Naturetrek Tour Report 29 January – 20 February 2018 Medium Ground-finch Blue-footed Booby Wire-tailed Manakin Galapagos Penguin Green Sea Turtle Report kindly compiled by Tour participants Sally Wearing, Rowena Tye, Debbie Hardie and Sue Swift Images courtesy of David Griffiths, Sue Swift, Debbie Hardie, Jenny Tynan, Rowena Tye, Nick Blake and Sally Wearing Naturetrek Mingledown Barn Wolf’s Lane Chawton Alton Hampshire GU34 3HJ UK T: +44 (0)1962 733051 E: [email protected] W: www.naturetrek.co.uk Tour Report Ecuador & the Galapagos Islands - including Sacha Lodge Extension Tour Leader in the Galapagos: Juan Tapia with 13 Naturetrek Clients This report has kindly been compiled by tour participants Sally Wearing, Rowena Tye, Debbie Hardie and Sue Swift. Day 1 Monday 29th January UK to Quito People arrived in Quito via Amsterdam with KLM or via Madrid with Iberia, while Tony came separately from the USA. Everyone was met at the airport and taken to the Hotel Vieja Cuba; those who were awake enough went out to eat before a good night’s rest. Day 2 Tuesday 30th January Quito. Weather: Hot and mostly sunny. The early risers saw the first few birds of the trip outside the hotel: Rufous- collared Sparrow, Great Thrush and Eared Doves. After breakfast, an excellent guide took us on a bus and walking tour of Quito’s old town. This started with the Basilica del Voto Nacional, where everyone marvelled at the “grotesques” of native Ecuadorian animals such as frigatebirds, iguanas and tortoises.
    [Show full text]
  • 01 Grant 1-12.Qxd
    COPYRIGHT NOTICE: Peter R. Grant & B. Rosemary Grant: How and Why Species Multiply is published by Princeton University Press and copyrighted, © 2007, by Princeton University Press. All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher, except for reading and browsing via the World Wide Web. Users are not permitted to mount this file on any network servers. Follow links for Class Use and other Permissions. For more information send email to: [email protected] CHAPTER ONE The Biodiversity Problem and Darwin’s Finches Now it is a well-known principle of zoological evolution that an isolated region, if large and sufficiently varied in topography, soil, climate and vegetation, will give rise to a diversified fauna according to the law of adaptive radiation from primitive and central types. Branches will spring off in all directions to take advantage of every possible opportunity of securing foods. (Osborn 1900, p. 563) I have stated that in the thirteen species of ground-finches, a nearly perfect gradation may be traced, from a beak extraordinarily thick, to one so fine, that it may be compared to that of a warbler. (Darwin 1839, p. 475) Biodiversity e live in a world so rich in species we do not know how many there are. Adding up every one we know, from influenza viruses Wto elephants, we reach a total of a million and a half (Wilson 1992, ch. 8). The real number is almost certainly at least five million, perhaps ten or even twenty, and although very large it is a small fraction of those that have ever existed; the vast majority has become extinct.
    [Show full text]
  • FIELD GUIDES BIRDING TOURS: Galapagos: an Intimate Look At
    Field Guides Tour Report Galapagos: An Intimate Look at Darwin's Islands II 2014 Jul 5, 2014 to Jul 15, 2014 Megan Edwards Crewe with Peter Freire For our tour description, itinerary, past triplists, dates, fees, and more, please VISIT OUR TOUR PAGE. For those interested in natural history, the Galapagos Islands are a wonderland. Every island is a revelation. The animals -- though wild and unfettered -- are so trusting as to seem tame. Our week's cruise brought us within arm's length of Galapagos Tortoises the size of coffee tables and whip-fast lava lizards. Albatrosses snoozed in the middle of paths. Mockingbirds investigated bare toes. Boobies stomped their way through our group. "Darwin's Finches" circled as if planning to land atop heads or arms or camera lenses. And everywhere, we could settle in for extended studies of plants or birds or insects or herps or fish, secure in the knowledge that they just wouldn't care that we were there. As you might expect in such a naturalist's paradise, there were many, many highlights. Waved Albatrosses called and bowed and clattered their beaks together, or brooded small chicks (which look surprisingly poodle- The Swallow-tailed Gull is surely one of the world's most handsome seabirds. (Photo by guide Megan like, thanks to their curly feathers). Blue-footed Edwards Crewe) Boobies whistled and grunted and solemnly displayed their extraordinary feet to each other. Well-camouflaged Short-eared Owls lurked among a whirling mass of Wedge-rumped Storm-Petrels, waiting for an opportunity -- and a one-eyed hunter gobbled its hapless prey nearly at our feet.
    [Show full text]
  • Can Darwin's Finches and Their Native Ectoparasites Survive the Control of Th
    Insect Conservation and Diversity (2017) 10, 193–199 doi: 10.1111/icad.12219 FORUM & POLICY Coextinction dilemma in the Galapagos Islands: Can Darwin’s finches and their native ectoparasites survive the control of the introduced fly Philornis downsi? 1 2 MARIANA BULGARELLA and RICARDO L. PALMA 1School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand and 2Museum of New Zealand Te Papa Tongarewa, Wellington, New Zealand Abstract. 1. The survival of parasites is threatened directly by environmental alter- ation and indirectly by all the threats acting upon their hosts, facing coextinction. 2. The fate of Darwin’s finches and their native ectoparasites in the Galapagos Islands is uncertain because of an introduced avian parasitic fly, Philornis downsi, which could potentially drive them to extinction. 3. We documented all known native ectoparasites of Darwin’s finches. Thir- teen species have been found: nine feather mites, three feather lice and one nest mite. No ticks or fleas have been recorded from them yet. 4. Management options being considered to control P. downsi include the use of the insecticide permethrin in bird nests which would not only kill the invasive fly larvae but the birds’ native ectoparasites too. 5. Parasites should be targeted for conservation in a manner equal to that of their hosts. We recommend steps to consider if permethrin-treated cotton sta- tions are to be deployed in the Galapagos archipelago to manage P. downsi. Key words. Chewing lice, coextinction, Darwin’s finches, dilemma, ectoparasites, feather mites, Galapagos Islands, permethrin, Philornis downsi. Introduction species have closely associated species which are also endangered (Dunn et al., 2009).
    [Show full text]
  • Bio 209 Course Title: Chordates
    BIO 209 CHORDATES NATIONAL OPEN UNIVERSITY OF NIGERIA SCHOOL OF SCIENCE AND TECHNOLOGY COURSE CODE: BIO 209 COURSE TITLE: CHORDATES 136 BIO 209 MODULE 4 MAIN COURSE CONTENTS PAGE MODULE 1 INTRODUCTION TO CHORDATES…. 1 Unit 1 General Characteristics of Chordates………… 1 Unit 2 Classification of Chordates…………………... 6 Unit 3 Hemichordata………………………………… 12 Unit 4 Urochordata………………………………….. 18 Unit 5 Cephalochordata……………………………... 26 MODULE 2 VERTEBRATE CHORDATES (I)……... 31 Unit 1 Vertebrata…………………………………….. 31 Unit 2 Gnathostomata……………………………….. 39 Unit 3 Amphibia…………………………………….. 45 Unit 4 Reptilia……………………………………….. 53 Unit 5 Aves (I)………………………………………. 66 Unit 6 Aves (II)……………………………………… 76 MODULE 3 VERTEBRATE CHORDATES (II)……. 90 Unit 1 Mammalia……………………………………. 90 Unit 2 Eutherians: Proboscidea, Sirenia, Carnivora… 100 Unit 3 Eutherians: Edentata, Artiodactyla, Cetacea… 108 Unit 4 Eutherians: Perissodactyla, Chiroptera, Insectivora…………………………………… 116 Unit 5 Eutherians: Rodentia, Lagomorpha, Primata… 124 MODULE 4 EVOLUTION, ADAPTIVE RADIATION AND ZOOGEOGRAPHY………………. 136 Unit 1 Evolution of Chordates……………………… 136 Unit 2 Adaptive Radiation of Chordates……………. 144 Unit 3 Zoogeography of the Nearctic and Neotropical Regions………………………………………. 149 Unit 4 Zoogeography of the Palaearctic and Afrotropical Regions………………………………………. 155 Unit 5 Zoogeography of the Oriental and Australasian Regions………………………………………. 160 137 BIO 209 CHORDATES COURSE GUIDE BIO 209 CHORDATES Course Team Prof. Ishaya H. Nock (Course Developer/Writer) - ABU, Zaria Prof. T. O. L. Aken’Ova (Course
    [Show full text]
  • Inbreeding in Darwin's Medium Ground Finches (Geospiza Fortis)
    Evohaion, 43(6),1989, pp. 1273-1284 INBREEDING IN DARWIN'S MEDIUM GROUND FINCHES (GEOSPIZA FORTIS) H, LISLE GIBBS'" Museum ofZoology and Department ofBiology, The University ofMichigan, Ann Arbor, MI48109-1079 AND PETER R. GRANT Department ofBiology, Princeton University, Princeton, NJ 08544-1008 Abstract. - We studied the frequency and causes of inbreeding and its effect on reproductive success in a population of Darwin's Medium Ground Finches iGeospiza fortis) on Isla Daphne Major, Galapagos, during four breeding seasons (1981, 1983, 1984, and 1987). Pedigree analysis showed that levels of inbreeding were low but comparable with those observed in other passerine birds. For pairs with at least half of their grandparents known, approximately 20% of all pairings were between detectably related birds. The frequency ofpairings between closely related birds (coefficient of kinship [</>] ~ 0.250) among all pairs was 0.6%. We detected no effect of inbreeding on repro­ ductive success, although sample sizes were small. The observed reproductive output of related pairs was not significantly different from the output ofunrelated pairs, and there was no correlation between a pair's kinship coefficient and an estimate of the potential magnitude of inbreeding depression. Comparisons with a study ofGreat Tits (Parus major) by van Noordwijk and Scharloo (1981) suggest that, even if present, the fitness costs of inbreeding in this population of G. fortis would be low. Observed levels of inbreeding in each breeding episode were accurately predicted by simulations of random mating in which relatedness had no influence on pairing between in­ dividuals. This result suggests that levels ofinbreeding in this population are determined more by demographic factors than by behavioral avoidance of mating with kin.
    [Show full text]
  • WILDLIFE CHECKLIST Reptiles the Twenty-Two Species of Galapagos
    WILDLIFE CHECKLIST Reptiles The twenty-two species of Galapagos reptiles belong to five families, tortoises, marine turtles, lizards/iguanas, geckos and Clasifications snakes. Twenty of these species are endemic to the * = Endemic archipelago and many are endemic to individual islands. The Islands are well-known for their giant tortoises ever since their R = Resident discovery and play an important role in the development of Charles Darwin's theory of evolution. The name "Galapagos" M = Migrant originates from the spanish word "galapago" that means saddle. * Santa Fe land Iguana Conolophus pallidus Iguana Terrestre de Santa Fe * Giant Tortoise (11 Geochelone elephantopus Tortuga Gigante subspecies) M Pacific Green Sea Chelonia mydas Tortuga Marina Turtle * Marine Iguana * (7 Amblyrhynchus cristatus Iguana Marina subspecies) * Galapagos land Conolophus subcristatus Iguana Terrestre Iguana * Lava lizard (7 species) Tropidurus spp Lagartija de Lava Phyllodactylus * Gecko (6 species) Gecko galapagoensis * Galapagos snake (3 Culebras de Colubridae alsophis species) Galapagos Sea Birds The Galapagos archipelago is surrounded by thousands of miles of open ocean which provide seabirds with a prominent place in the fauna of the Islands . There are 19 resident species (5 are endemic), most of which are seen by visitors. There may be as many as 750,000 seabirds in Galapagos, including 30% of the world's blue-footed boobies, the world's largest red- footed booby colony and perhaps the largest concentration of masked boobies in the world (Harris,
    [Show full text]
  • Galapagos Endemics Cruise: October-November 2013
    Tropical Birding Trip Report Galapagos Endemics Cruise: October-November 2013 A Tropical Birding SET DEPARTURE tour Galapagos Endemics Cruise 24 October – 2 November 2013 A visit to the largest Waved Albatross colony in the world was an undoubted highlight Tropical Birding Tour leader: Jose Illanes (With Galapagos Naturalist Guide Jairo) 1 www.tropicalbirding.com +1-409-515-0514 [email protected] Page Tropical Birding Trip Report Galapagos Endemics Cruise: October-November 2013 Itinerary: Day 1 Arrival in Quito/night Quito Day 2 Quito to Baltra and Santa Cruz Day 3 Genovesa Day 4 Isabela to Bartolome Day 5 Bartolome to San Cristobal Day 6 San Cristobal to Española Day 7 Española Day 8 Floreana and Santa Cruz Day 9 North Seymour to Quito Day 10 Departure from Quito October 25: Quito to Baltra and Santa Cruz As for anybody going to the Galapagos Islands, it is perceived, correctly, as unique and amazing, and, as we were sitting on the plane, everybody’s minds were focused on getting there, and wishing they were there already! I had not been to the Galapagos for a while, and so I had my own excitement of returning to the islands myself knowing this would be a marked change from my usual tours within the jungles and rainforests of the mainland. This was to be a tour where the views of the birds were my least concern, as everything shows well. As we arrived at the main entry port to the Galapagos, the tiny island of Baltra, 2 www.tropicalbirding.com +1-409-515-0514 [email protected] Page Tropical Birding Trip Report Galapagos Endemics Cruise: October-November 2013 everyone’s eyes were glued to the window, taking in their first sights of the islands, which, for some, included their first Galapagos Doves flying by.
    [Show full text]
  • The Size of Beaks of Darwin's Finches on the Galápagos Islands Is Influenced by Natural Selection
    NOT FOR SALE TheT size of beaks of Darwin’s fi nches on the Galápagos 8 IIslands is infl uenced by natural selection. © Roberts and Company Publishers, ISBN: 9781936221172, due August 15, 2012, For examination purposes only FINAL PAGES ZE_Ch08_p218-253.indd 218 7/18/12 2:06 PM NOT FOR SALE Natural Selection Empirical Studies in the Wild Learning Objectives • Describe the diff erences between directional selection and stabilizing selection. • Demonstrate how predators can act as agents of selection. • Explain how scarlet kingsnakes can exhibit a colorful pattern in one part of their range and be much redder in another. • Defi ne extended phenotypes. • Explain how replicated natural experiments can be used to examine evolutionary change in response to selection. • Analyze how selective sweeps can be detected within genomes. • Describe three genetic changes that have been identifi ed in the evolution of maize. • Explain how Bt resistance came about in insects. • Explain how body size and gape width could have evolved in Australian snakes in response to the invasion of cane toads. • Discuss how fi shing regulations could aff ect growth rates of fi sh populations. Charles Darwin managed to visit only a handful of the Galápa- gos Islands in 1835 while on his journey aboard the Beagle. Among the many islands he passed by was a tiny volcanic cone known as Daphne Major. Even today, it is not an easy place to visit. To set foot on Daphne Major, you have to approach a steep cliff in a small boat and then take an acrobatic leap onto a tiny ledge.
    [Show full text]
  • Ecuador Simple List Version 2020 Clements
    Checklist of the birds of Ecuador / Lista de las aves del Ecuador, v. 08.2020 Freile, Brinkhuizen, Greenfield, Lysinger, Navarrete, Nilsson, Olmstead, Ridgely, Sánchez-Nivicela, Solano-Ugalde, Athanas, Ahlman & Boyla Comité Ecuatoriano de Registros Ornitológicos (CERO) ID Scientific_Clements_2019 English_Clements_2019 Español Ecuador CERO EC Con Gal Alt_min Alt_max Alt_ext Subespecies 1 Nothocercus julius Tawny-breasted Tinamou Tinamú Pechileonado x x 2300 3400 2100 monotypic 2 Nothocercus bonapartei Highland Tinamou Tinamú Serrano x x 1600 2200 3075 plumbeiceps 3 Tinamus tao Gray Tinamou Tinamú Gris x x 400 1600 kleei 4 Tinamus osgoodi Black Tinamou Tinamú Negro x x 1000 1400 hershkovitzi 5 Tinamus major Great Tinamou Tinamú Grande x x 0 700 1200, 1350 peruvianus, latifrons 6 Tinamus guttatus White-throated Tinamou Tinamú Goliblanco x x 200 400 900 monotypic 7 Crypturellus cinereus Cinereous Tinamou Tinamú Cinéreo x x 200 600 900 monotypic 8 Crypturellus berlepschi Berlepsch's Tinamou Tinamú de Berlepsch x x 0 400 900 monotypic 9 Crypturellus soui Little Tinamou Tinamú Chico x x 0 1200 nigriceps, harterti 10 Crypturellus obsoletus Brown Tinamou Tinamú Pardo x x 500 1100 chirimotanus? 11 Crypturellus undulatus Undulated Tinamou Tinamú Ondulado x x 200 600 yapura 12 Crypturellus transfasciatus Pale-browed Tinamou Tinamú Cejiblanco x x 0 1600 monotypic 13 Crypturellus variegatus Variegated Tinamou Tinamú Abigarrado x x 200 400 monotypic 14 Crypturellus bartletti Bartlett's Tinamou Tinamú de Bartlett x x 200 400 monotypic 15 Crypturellus
    [Show full text]
  • S FINCHES: <I>GEOSPIZA CONIROSTRIS</I>
    EVOLUTION INTERNATIONAL JOURNAL OF ORGANIC EVOLUTION PUBLISHED BY THE SOCIETY FOR THE STUDY OF EVOLUTION Vol. 36 July, 1982 No.4 Evolution, 36(4), 1982, pp. 637-657 NICHE SHIFTS AND COMPETITION IN DARWIN'S FINCHES: GEOSPIZA CONIROSTRIS AND CONGENERS B. R. GRANT AND P. R. GRANT Division of Biological Sciences, University of Michigan, Ann Arbor, Michigan 48109 Received February 5, 1981. Revised October 20, 1981 The idea that interspecific competition titative ecological data to the hypotheses, is an important process in structuring because quantitative data were not used communities stems largely from David to construct the hypotheses. In fact, Lack Lack's work with Darwin's Finches (Lack, had almost no ecological data (see Abbott 1940, 1945, 1947, 1969). Lack made eco­ et al., 1977). logical inferences about feeding niches In our initial studies we analyzed eco­ from analyses of bill sizes and shapes. He logical and morphological data from six listed several instances where the niches species on eight Galapagos islands (Abbott of coexisting species were different, and et al., 1977; Smith et al., 1978). To follow where the niche of an absent species ap­ this general approach, we selected for more peared to be occupied by one or more detailed study three situations which have species present. These examples he inter­ been heralded as especially clear illustra­ preted as evidence of competitive dis­ tions of competitive effects (e.g., Lack, placement and exclusion. 1969; Williamson, 1972; Arms and Camp, Lack's aim was to offer a coherent the­ 1979), the small size of Geospizafortis on oretical framework for understanding the Isla Daphne Major in the absence of G.
    [Show full text]