Inbreeding in Darwin's Medium Ground Finches (Geospiza Fortis)

Total Page:16

File Type:pdf, Size:1020Kb

Inbreeding in Darwin's Medium Ground Finches (Geospiza Fortis) Evohaion, 43(6),1989, pp. 1273-1284 INBREEDING IN DARWIN'S MEDIUM GROUND FINCHES (GEOSPIZA FORTIS) H, LISLE GIBBS'" Museum ofZoology and Department ofBiology, The University ofMichigan, Ann Arbor, MI48109-1079 AND PETER R. GRANT Department ofBiology, Princeton University, Princeton, NJ 08544-1008 Abstract. - We studied the frequency and causes of inbreeding and its effect on reproductive success in a population of Darwin's Medium Ground Finches iGeospiza fortis) on Isla Daphne Major, Galapagos, during four breeding seasons (1981, 1983, 1984, and 1987). Pedigree analysis showed that levels of inbreeding were low but comparable with those observed in other passerine birds. For pairs with at least half of their grandparents known, approximately 20% of all pairings were between detectably related birds. The frequency ofpairings between closely related birds (coefficient of kinship [</>] ~ 0.250) among all pairs was 0.6%. We detected no effect of inbreeding on repro­ ductive success, although sample sizes were small. The observed reproductive output of related pairs was not significantly different from the output ofunrelated pairs, and there was no correlation between a pair's kinship coefficient and an estimate of the potential magnitude of inbreeding depression. Comparisons with a study ofGreat Tits (Parus major) by van Noordwijk and Scharloo (1981) suggest that, even if present, the fitness costs of inbreeding in this population of G. fortis would be low. Observed levels of inbreeding in each breeding episode were accurately predicted by simulations of random mating in which relatedness had no influence on pairing between in­ dividuals. This result suggests that levels ofinbreeding in this population are determined more by demographic factors than by behavioral avoidance of mating with kin. Received June I, 1988. Accepted March 24,1989 It has often been argued that inbreeding direct estimates of inbreeding and the has important evolutionary consequences mechanisms responsible can only be ob­ in vertebrate populations (Mayr, 1963; tained from long-term studies of marked Wright, 1969). For example, levels of in­ individuals (e.g., studies on the Great Tit breeding can influence the overall amount [Parus major]: van Noordwijk and Scharloo of genetic variation present within popu­ [1981]; van Noordwijk et at [1985]; van lations and the degree ofkinship among in­ Tienderen and van Noordwijk [1988]). dividuals, while the negative effects of in­ However, the following key questions about breeding on fitness may play an important inbreeding remain largely unanswered. 1) role in the evolution of a wide variety of How frequently does inbreeding occur? 2) behaviors, including patterns ofmate choice What is the effect, if any, of inbreeding on (Bateson, 1978) and sex-specific patterns of reproductive success? 3) What is the relative dispersal within species (Greenwood and importance of factors such as dispersal, Harvey, 1982). population structure, and behavioral avoid­ Inbreeding is generally defined as mating ance ofmating with kin in determining levels between related individuals, with kinship of inbreeding? judged from some arbitrarily defined ref­ Population-level estimates ofinbreeding, erence population or pedigree (see Shields inferred from pedigrees, have been calcu­ [1982] and Ralls et at [1986] for recent dis­ lated for several bird species (Bulmer, 1973; cussions). Despite its potential importance, Greenwood et at, 1978; van Noordwijk and inbreeding has been rarely studied in nat­ Scharloo, 1981; Payne et at, 1985; Ralls et ural populations of birds, mainly because at, 1986; Rowley et at, 1986; Craig and Jamieson, 1988). Most studies, however, have only estimated levels of inbreeding I Present address: Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada. from matings between close relatives (par­ 2 To whom all correspondence should be addressed. ents and offspring or siblings breeding with 1273 1274 H. L. GIBBS AND P. R. GRANT each other). As Templeton (1987) suggests, ulation size, degree of population subdivi­ and van Noordwijk and Scharloo's (1981) sion, and variance in reproductive success study ofinbreeding in Great Tits (Parus ma­ among individuals. jor) demonstrates, matings between more The purpose ofour study was to examine distant relatives can make an important the level, causes, and fitness consequences contribution to observed levels of inbreed­ of inbreeding in a population of Darwin's ing and should be incorporated into esti­ Medium Ground Finches iGeospiza fortis) mates of the overall frequency of inbreed­ on Isla Daphne Major, Galapagos. This ing. population has been intensively studied Studies that examine the fitness conse­ since 1976 (see Boag and Grant, 1984; Price, quences ofinbreeding in wild birds are even 1985; Gibbs and Grant, 1987a), with the rarer. Inbreeding in domesticated or captive result that practically all adults in the pop­ birds generally has a negative effect on com­ ulation have been individually marked since ponents of fitness such as egg hatchability 1978. Thus, detailed pedigrees and life-his­ and production (Shoffner, 1948; Lerner, tory information are available for many in­ 1954; Sittmann et aI., 1966; but see Daniell dividuals. The specific goals of the study and Murray [1986]). However, the effects of were to I) measure the level of inbreeding, inbreeding on reproductive success in wild using a pedigree analysis, 2) determine birds vary. Hatching success is negatively whether there was an effect of pair-relat­ correlated with pair relatedness in Great Tits edness on reproductive success, and 3) iden­ (van Noordwijk and Scharloo, 1981; see also tify the factors responsible for the observed Greenwood et al. [1978]). In contrast, highly level of inbreeding in the population. inbred pairs ofSplendid Fairy Wrens (Mal­ urus splendens) show no decrease in success compared with less inbred birds (Payne et MATERIALS AND METHODS aI., 1985; Rowley et aI., 1986). Clearly, more Finch Populations studies are needed to determine whether in­ The population of Darwin's Medium breeding usually is associated with a fitness Ground Finches (Geospizafortis) has been cost. studied intensively on Isla Daphne Major, Moreover, the relative importance ofbe­ Galapagos, for the first 6-9 months ofeach havioral avoidance and population struc­ year from 1976 until the present (Boag and ture in generating observed levels of in­ Grant, 1984; Price, 1985; Gibbs and Grant, breeding in wild bird populations is largely 1987a). Isla Daphne Major (henceforth, unknown. There is indirect evidence, based "Daphne") is a small island «40 ha) sit­ on dispersal patterns, that individuals in uated in the middle of the Galapagos ar­ some species avoid mating with close kin chipelago. A description ofits geological and (Koenig and Pitelka, 1979). Ralls et ai. floristic characteristics is given in Boag and (1986) suggest that the low percentage of Grant (1984). Over 95% of all G. fortis in­ matings observed between close kin in a dividuals in the population have been band­ number ofpopulations implies that behav­ ed with a metal band and a unique com­ ioral avoidance of mating with close rela­ bination ofthree colored plastic bands since tives is common among birds. These stud­ 1978. Due to the demography of the pop­ ies, however, did not attempt to compare ulation, the 1981 breeding season was the observed levels ofinbreeding with those ex­ first in which matings between related birds pected ifbirds were mating at random with could be detected. Owing to annual varia­ respect to relatedness. This comparison has tion in rainfall, birds do not breed in every only been attempted for a single population year. Here, we present data on inbreeding of Great Tits (van Noordwijk et aI., 1985; in four years (1981, 1983, 1984, and 1987) van Tienderen and van Noordwijk, 1988), when enough reproduction occurred for us and the results demonstrated that pairing to identify breeding pairs reliably and to was random with respect to relatedness. This obtain information on their reproductive finding suggests that the level ofinbreeding success. in this population is determined mainly by Finches breed in response to rain, which aspects ofpopulation structure such as pop- can fall any time during December-July. INBREEDING IN FINCHES 1275 During each of the four breeding seasons are based on calculations involving effective reported here, all nests were marked, and population size (see Crow and Kimura, the parents were identified. Nest contents 1970): 1) the demographic data needed to were regularly checked to determine clutch estimate N; are extensive and difficult to size, hatching, and fledging success. We are obtain for natural populations; 2) changes confident that more than 95% of all nests in our knowledge of ancestry in the popu­ were found, because repeated systematic lation, which strongly influence detected searches ofall potential nest sites were con­ levels of inbreeding, can be incorporated ducted and because fledglings without bands into our estimates of expected levels of in­ were rarely seen. Young birds that were alive breeding; and 3) with simulations, we were in January ofthe year following the season able to generate a distribution of expected of their birth were recorded and identified values ofkinship under random mating and, during repeated and standardized visual hence, to obtain a plausible estimate of the censuses and other observations (Boag and variance of the distribution. Grant, 1984; Gibbs and Grant,
Recommended publications
  • Ecuador & the Galapagos Islands
    Ecuador & the Galapagos Islands - including Sacha Lodge Extension Naturetrek Tour Report 29 January – 20 February 2018 Medium Ground-finch Blue-footed Booby Wire-tailed Manakin Galapagos Penguin Green Sea Turtle Report kindly compiled by Tour participants Sally Wearing, Rowena Tye, Debbie Hardie and Sue Swift Images courtesy of David Griffiths, Sue Swift, Debbie Hardie, Jenny Tynan, Rowena Tye, Nick Blake and Sally Wearing Naturetrek Mingledown Barn Wolf’s Lane Chawton Alton Hampshire GU34 3HJ UK T: +44 (0)1962 733051 E: [email protected] W: www.naturetrek.co.uk Tour Report Ecuador & the Galapagos Islands - including Sacha Lodge Extension Tour Leader in the Galapagos: Juan Tapia with 13 Naturetrek Clients This report has kindly been compiled by tour participants Sally Wearing, Rowena Tye, Debbie Hardie and Sue Swift. Day 1 Monday 29th January UK to Quito People arrived in Quito via Amsterdam with KLM or via Madrid with Iberia, while Tony came separately from the USA. Everyone was met at the airport and taken to the Hotel Vieja Cuba; those who were awake enough went out to eat before a good night’s rest. Day 2 Tuesday 30th January Quito. Weather: Hot and mostly sunny. The early risers saw the first few birds of the trip outside the hotel: Rufous- collared Sparrow, Great Thrush and Eared Doves. After breakfast, an excellent guide took us on a bus and walking tour of Quito’s old town. This started with the Basilica del Voto Nacional, where everyone marvelled at the “grotesques” of native Ecuadorian animals such as frigatebirds, iguanas and tortoises.
    [Show full text]
  • 01 Grant 1-12.Qxd
    COPYRIGHT NOTICE: Peter R. Grant & B. Rosemary Grant: How and Why Species Multiply is published by Princeton University Press and copyrighted, © 2007, by Princeton University Press. All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher, except for reading and browsing via the World Wide Web. Users are not permitted to mount this file on any network servers. Follow links for Class Use and other Permissions. For more information send email to: [email protected] CHAPTER ONE The Biodiversity Problem and Darwin’s Finches Now it is a well-known principle of zoological evolution that an isolated region, if large and sufficiently varied in topography, soil, climate and vegetation, will give rise to a diversified fauna according to the law of adaptive radiation from primitive and central types. Branches will spring off in all directions to take advantage of every possible opportunity of securing foods. (Osborn 1900, p. 563) I have stated that in the thirteen species of ground-finches, a nearly perfect gradation may be traced, from a beak extraordinarily thick, to one so fine, that it may be compared to that of a warbler. (Darwin 1839, p. 475) Biodiversity e live in a world so rich in species we do not know how many there are. Adding up every one we know, from influenza viruses Wto elephants, we reach a total of a million and a half (Wilson 1992, ch. 8). The real number is almost certainly at least five million, perhaps ten or even twenty, and although very large it is a small fraction of those that have ever existed; the vast majority has become extinct.
    [Show full text]
  • Can Darwin's Finches and Their Native Ectoparasites Survive the Control of Th
    Insect Conservation and Diversity (2017) 10, 193–199 doi: 10.1111/icad.12219 FORUM & POLICY Coextinction dilemma in the Galapagos Islands: Can Darwin’s finches and their native ectoparasites survive the control of the introduced fly Philornis downsi? 1 2 MARIANA BULGARELLA and RICARDO L. PALMA 1School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand and 2Museum of New Zealand Te Papa Tongarewa, Wellington, New Zealand Abstract. 1. The survival of parasites is threatened directly by environmental alter- ation and indirectly by all the threats acting upon their hosts, facing coextinction. 2. The fate of Darwin’s finches and their native ectoparasites in the Galapagos Islands is uncertain because of an introduced avian parasitic fly, Philornis downsi, which could potentially drive them to extinction. 3. We documented all known native ectoparasites of Darwin’s finches. Thir- teen species have been found: nine feather mites, three feather lice and one nest mite. No ticks or fleas have been recorded from them yet. 4. Management options being considered to control P. downsi include the use of the insecticide permethrin in bird nests which would not only kill the invasive fly larvae but the birds’ native ectoparasites too. 5. Parasites should be targeted for conservation in a manner equal to that of their hosts. We recommend steps to consider if permethrin-treated cotton sta- tions are to be deployed in the Galapagos archipelago to manage P. downsi. Key words. Chewing lice, coextinction, Darwin’s finches, dilemma, ectoparasites, feather mites, Galapagos Islands, permethrin, Philornis downsi. Introduction species have closely associated species which are also endangered (Dunn et al., 2009).
    [Show full text]
  • Bio 209 Course Title: Chordates
    BIO 209 CHORDATES NATIONAL OPEN UNIVERSITY OF NIGERIA SCHOOL OF SCIENCE AND TECHNOLOGY COURSE CODE: BIO 209 COURSE TITLE: CHORDATES 136 BIO 209 MODULE 4 MAIN COURSE CONTENTS PAGE MODULE 1 INTRODUCTION TO CHORDATES…. 1 Unit 1 General Characteristics of Chordates………… 1 Unit 2 Classification of Chordates…………………... 6 Unit 3 Hemichordata………………………………… 12 Unit 4 Urochordata………………………………….. 18 Unit 5 Cephalochordata……………………………... 26 MODULE 2 VERTEBRATE CHORDATES (I)……... 31 Unit 1 Vertebrata…………………………………….. 31 Unit 2 Gnathostomata……………………………….. 39 Unit 3 Amphibia…………………………………….. 45 Unit 4 Reptilia……………………………………….. 53 Unit 5 Aves (I)………………………………………. 66 Unit 6 Aves (II)……………………………………… 76 MODULE 3 VERTEBRATE CHORDATES (II)……. 90 Unit 1 Mammalia……………………………………. 90 Unit 2 Eutherians: Proboscidea, Sirenia, Carnivora… 100 Unit 3 Eutherians: Edentata, Artiodactyla, Cetacea… 108 Unit 4 Eutherians: Perissodactyla, Chiroptera, Insectivora…………………………………… 116 Unit 5 Eutherians: Rodentia, Lagomorpha, Primata… 124 MODULE 4 EVOLUTION, ADAPTIVE RADIATION AND ZOOGEOGRAPHY………………. 136 Unit 1 Evolution of Chordates……………………… 136 Unit 2 Adaptive Radiation of Chordates……………. 144 Unit 3 Zoogeography of the Nearctic and Neotropical Regions………………………………………. 149 Unit 4 Zoogeography of the Palaearctic and Afrotropical Regions………………………………………. 155 Unit 5 Zoogeography of the Oriental and Australasian Regions………………………………………. 160 137 BIO 209 CHORDATES COURSE GUIDE BIO 209 CHORDATES Course Team Prof. Ishaya H. Nock (Course Developer/Writer) - ABU, Zaria Prof. T. O. L. Aken’Ova (Course
    [Show full text]
  • The Size of Beaks of Darwin's Finches on the Galápagos Islands Is Influenced by Natural Selection
    NOT FOR SALE TheT size of beaks of Darwin’s fi nches on the Galápagos 8 IIslands is infl uenced by natural selection. © Roberts and Company Publishers, ISBN: 9781936221172, due August 15, 2012, For examination purposes only FINAL PAGES ZE_Ch08_p218-253.indd 218 7/18/12 2:06 PM NOT FOR SALE Natural Selection Empirical Studies in the Wild Learning Objectives • Describe the diff erences between directional selection and stabilizing selection. • Demonstrate how predators can act as agents of selection. • Explain how scarlet kingsnakes can exhibit a colorful pattern in one part of their range and be much redder in another. • Defi ne extended phenotypes. • Explain how replicated natural experiments can be used to examine evolutionary change in response to selection. • Analyze how selective sweeps can be detected within genomes. • Describe three genetic changes that have been identifi ed in the evolution of maize. • Explain how Bt resistance came about in insects. • Explain how body size and gape width could have evolved in Australian snakes in response to the invasion of cane toads. • Discuss how fi shing regulations could aff ect growth rates of fi sh populations. Charles Darwin managed to visit only a handful of the Galápa- gos Islands in 1835 while on his journey aboard the Beagle. Among the many islands he passed by was a tiny volcanic cone known as Daphne Major. Even today, it is not an easy place to visit. To set foot on Daphne Major, you have to approach a steep cliff in a small boat and then take an acrobatic leap onto a tiny ledge.
    [Show full text]
  • Ecuador Simple List Version 2020 Clements
    Checklist of the birds of Ecuador / Lista de las aves del Ecuador, v. 08.2020 Freile, Brinkhuizen, Greenfield, Lysinger, Navarrete, Nilsson, Olmstead, Ridgely, Sánchez-Nivicela, Solano-Ugalde, Athanas, Ahlman & Boyla Comité Ecuatoriano de Registros Ornitológicos (CERO) ID Scientific_Clements_2019 English_Clements_2019 Español Ecuador CERO EC Con Gal Alt_min Alt_max Alt_ext Subespecies 1 Nothocercus julius Tawny-breasted Tinamou Tinamú Pechileonado x x 2300 3400 2100 monotypic 2 Nothocercus bonapartei Highland Tinamou Tinamú Serrano x x 1600 2200 3075 plumbeiceps 3 Tinamus tao Gray Tinamou Tinamú Gris x x 400 1600 kleei 4 Tinamus osgoodi Black Tinamou Tinamú Negro x x 1000 1400 hershkovitzi 5 Tinamus major Great Tinamou Tinamú Grande x x 0 700 1200, 1350 peruvianus, latifrons 6 Tinamus guttatus White-throated Tinamou Tinamú Goliblanco x x 200 400 900 monotypic 7 Crypturellus cinereus Cinereous Tinamou Tinamú Cinéreo x x 200 600 900 monotypic 8 Crypturellus berlepschi Berlepsch's Tinamou Tinamú de Berlepsch x x 0 400 900 monotypic 9 Crypturellus soui Little Tinamou Tinamú Chico x x 0 1200 nigriceps, harterti 10 Crypturellus obsoletus Brown Tinamou Tinamú Pardo x x 500 1100 chirimotanus? 11 Crypturellus undulatus Undulated Tinamou Tinamú Ondulado x x 200 600 yapura 12 Crypturellus transfasciatus Pale-browed Tinamou Tinamú Cejiblanco x x 0 1600 monotypic 13 Crypturellus variegatus Variegated Tinamou Tinamú Abigarrado x x 200 400 monotypic 14 Crypturellus bartletti Bartlett's Tinamou Tinamú de Bartlett x x 200 400 monotypic 15 Crypturellus
    [Show full text]
  • S FINCHES: <I>GEOSPIZA CONIROSTRIS</I>
    EVOLUTION INTERNATIONAL JOURNAL OF ORGANIC EVOLUTION PUBLISHED BY THE SOCIETY FOR THE STUDY OF EVOLUTION Vol. 36 July, 1982 No.4 Evolution, 36(4), 1982, pp. 637-657 NICHE SHIFTS AND COMPETITION IN DARWIN'S FINCHES: GEOSPIZA CONIROSTRIS AND CONGENERS B. R. GRANT AND P. R. GRANT Division of Biological Sciences, University of Michigan, Ann Arbor, Michigan 48109 Received February 5, 1981. Revised October 20, 1981 The idea that interspecific competition titative ecological data to the hypotheses, is an important process in structuring because quantitative data were not used communities stems largely from David to construct the hypotheses. In fact, Lack Lack's work with Darwin's Finches (Lack, had almost no ecological data (see Abbott 1940, 1945, 1947, 1969). Lack made eco­ et al., 1977). logical inferences about feeding niches In our initial studies we analyzed eco­ from analyses of bill sizes and shapes. He logical and morphological data from six listed several instances where the niches species on eight Galapagos islands (Abbott of coexisting species were different, and et al., 1977; Smith et al., 1978). To follow where the niche of an absent species ap­ this general approach, we selected for more peared to be occupied by one or more detailed study three situations which have species present. These examples he inter­ been heralded as especially clear illustra­ preted as evidence of competitive dis­ tions of competitive effects (e.g., Lack, placement and exclusion. 1969; Williamson, 1972; Arms and Camp, Lack's aim was to offer a coherent the­ 1979), the small size of Geospizafortis on oretical framework for understanding the Isla Daphne Major in the absence of G.
    [Show full text]
  • The Origin of Species: the Beak of the Finch [NARRATOR:] Our Planet
    The Origin of Species: The Beak of the Finch [NARRATOR:] Our planet has millions of species. Over 300,000 beetles alone. 17,000 butterflies. Thousands of mammals, fish and birds, all astonishingly different. How did so many species come to be? To seek insights into that question, researchers are focusing on places where species recently arose, such as the remote Galápagos Islands. [CARROLL:] Scientists are making observations and conducting experiments that would have surprised Charles Darwin. And they're discovering new insights into what the great naturalist called the "mystery of mysteries": How new species form. [NARRATOR:] The Galápagos Islands are one of the most spectacular landscapes in the world, home to a variety of species that live nowhere else. Biologists Peter and Rosemary Grant have been seeking answers to how species arise by focusing on one of the smaller islands, called Daphne Major. [PETER GRANT:] When we started out, we had no plan for the long term. In fact, we thought it was just going to be just a few years, maybe two years. [NARRATOR:] Two years have turned into a 40-year odyssey. The Grants have returned every summer since 1973. [ROSEMARY GRANT:] Oh, there's a bird. [PETER GRANT:] Is that 306? [ROSEMARY GRANT:] Three oh metal six. [NARRATOR:] Here, they've made some of the most remarkable observations in the history of field research as they studied the famed Galápagos finches. The finches were first brought to scientists' attention by Charles Darwin, when his voyage around South America brought him to this cluster of islands 600 miles from mainland Ecuador.
    [Show full text]
  • Order Evolutionary Adaptation Response to the Environment
    Order Response to the environment Evolutionary adaptation Reproduction Regulation Energy processing Growth and development 1 The biosphere Tissues Ecosystems Organs and organ systems Communities Cells Organelles Organisms Atoms Populations Molecules 2 Sunlight Leaves absorb light energy from Leaves take in the sun. carbon dioxide CO2 from the air and release oxygen. O2 Cycling of chemical nutrients Leaves fall to Water and Animals eat the ground and minerals in leaves and fruit are decomposed the soil are from the tree. by organisms taken up by that return the tree minerals to the through soil. its roots. 3 Sunlight Heat When energy is used Producers absorb light to do work, some energy and transform it into energy is converted to chemical energy. thermal energy, which is lost as heat. An animal’s muscle cells convert Chemical chemical energy energy from food to kinetic energy, the energy of motion. A plant’s cells use chemical energy to do Chemical energy in work such as growing food is transferred new leaves. from plants to consumers. (a) Energy flow from sunlight to (b) Using energy to do work producers to consumers 4 (a) Wings (b) Wing bones 5 Prokaryotic cell Eukaryotic cell DNA (no nucleus) Membrane Membrane Cytoplasm Nucleus (membrane- enclosed) Membrane- DNA (throughout enclosed organelles nucleus) 1 µm 6 Sperm cell Nuclei containing DNA Fertilized egg with DNA from Embryo’s cells with Egg cell both parents copies of inherited DNA Offspring with traits inherited from both parents 7 Nucleus A DNA C Nucleotide T A T Cell A C C G T A G T A (a) DNA double helix (b) Single strand of DNA 8 A Negative feedback Enzyme 1 B D Enzyme 2 Excess D blocks a step.
    [Show full text]
  • Fiftee N Vertebrate Beginnings the Chordates
    Hickman−Roberts−Larson: 15. Vertebrate Beginnings: Text © The McGraw−Hill Animal Diversity, Third The Chordates Companies, 2002 Edition 15 chapter •••••• fifteen Vertebrate Beginnings The Chordates It’s a Long Way from Amphioxus Along the more southern coasts of North America, half buried in sand on the seafloor,lives a small fishlike translucent animal quietly filtering organic particles from seawater.Inconspicuous, of no commercial value and largely unknown, this creature is nonetheless one of the famous animals of classical zoology.It is amphioxus, an animal that wonderfully exhibits the four distinctive hallmarks of the phylum Chordata—(1) dorsal, tubular nerve cord overlying (2) a supportive notochord, (3) pharyngeal slits for filter feeding, and (4) a postanal tail for propulsion—all wrapped up in one creature with textbook simplicity. Amphioxus is an animal that might have been designed by a zoologist for the classroom. During the nineteenth century,with inter- est in vertebrate ancestry running high, amphioxus was considered by many to resemble closely the direct ancestor of the vertebrates. Its exalted position was later acknowledged by Philip Pope in a poem sung to the tune of “Tipperary.”It ends with the refrain: It’s a long way from amphioxus It’s a long way to us, It’s a long way from amphioxus To the meanest human cuss. Well,it’s good-bye to fins and gill slits And it’s welcome lungs and hair, It’s a long, long way from amphioxus But we all came from there. But amphioxus’place in the sun was not to endure.For one thing,amphioxus lacks one of the most important of vertebrate charac- teristics,a distinct head with special sense organs and the equipment for shifting to an active predatory mode of life.
    [Show full text]
  • Proceedings of the General Meetings for Scientific Business of The
    THIS BOOK VM HOT BE PHOTOCOPIED -—'•»r.-»«a!! 190 Page Page {94 Zeus roseus 1843, 85 Ifift Zonites fuliginosus .... 1834, 63 walkeri 1834, 63 Zanclus comutus 1833, 117 Zoothera 1830-1, 172 Zapomia pusilla 1839, 134 u.onticola • • • • Zebiida adamsii 1847, 121 j ^^S; ^^ rj ., • 11843, 115 Zonotrichia matutina . 1843, 113 Zenaida am-ita nSJ.? ^'\ Zophosis nodosa 1841, 116 Zeus aper 1833,' 114 Zosterops 1845, 24 childreni 1843, 85 albogularis 1836, 75 concMfer 1845, 103 chloronotus 1840, 165 1839, 82 maderaspatanus .... 1839, 161 f*^'foi^, •••• ) 11846; 27 tenuirostris 1836, 76 --% THE END OF THE INDEX. PROCEEDINGS ZOOLOGICAL SOCIETY OF LONDON. INDEX. 1848—1860. PRINTED FOE THE SOCIETY; SOLD AT THEIE HOUSE IN HANOVEE SQUARE AND AT MESSRS. LONGaiAN. GREEN, LONGMANS, AND ROBERTS. PATEENOSTER-ROW. 1863. PRINTED BY TATXOR AND FRANCIS, BED LION COURT, FLEET STKEET. CONTENTS. Page List of the Names of Contributors, from 1848 to 1860, with the Titles of and References to the several Articles con- tributed by each 1 List of the Illustrations, 1848 to 1860 67 Index of Species described and referred to, 1848 to 1860 .... 91 LIST OF THE NAMES 08" CONTRIBUTORS, From 1848 to 1860, With the Titles of and References to the several Articles contributed by each. Page Adams, A. Leith, M.U., A.M., Surgeon 22Qd Regiment. Notes on the Habits, Haunts, &c. of some of the Birds of India (communicated by Messrs. T. J. and F. Moore) 1858, 466 Remarks on the Habits and Haunts of some of the Mammalia found in various parts of India and the West Himalayan Mountains (communicated by Messrs.
    [Show full text]
  • Bird Checklists of the World Country Or Region
    Avibase Page 1of 44 Col Location Date Start time Duration Distance Avibase - Bird Checklists of the World 1 Country or region: Ecuador 2 Number of species: 1665 3 Number of endemics: 32 4 Number of breeding endemics: 2 5 Number of globally threatened species: 103 6 Number of extinct species: 0 7 Number of introduced species: 6 8 Date last reviewed: 2016-07-31 9 10 Recommended citation: Lepage, D. 2016. Checklist of the birds of Ecuador. Avibase, the world bird database. Retrieved from http://avibase.bsc- eoc.org/checklist.jsp?lang=EN&region=ec&list=howardmoore&format=1 on 10/10/2016. Make your observations count! Submit your data to ebird.
    [Show full text]