Plant ID – Danie Miller Trail

Total Page:16

File Type:pdf, Size:1020Kb

Plant ID – Danie Miller Trail Plant ID – Danie Miller trail Amaryllidaceae Brunsvigia orientalis Amaryllidaceae Haemanthus sp Anacardiaceae Heeria argentea Anacardiaceae Rhus angustifolia Anacardiaceae Rhus cuneifolia Anacardiaceae Rhus glauca Anacardiaceae Rhus lucida Anacardiaceae Rhus rosmarinifolia Anacardiaceae Rhus scytophylla Anacardiaceae Rhus tomentosa Apocynaceae Cysticapnos vesicaria Araliaceae Centella macrocarpa Asparagaceae Asparagus rubicundus Asphodelaceae Bulbine annua Asteraceae Arctotis acaulis Asteraceae Berkheya armata Asteraceae Berkheya barbata Asteraceae Chrysanthemoides monilifera Asteraceae Cullumia squarrosa Asteraceae Elytropappus glandulosus Asteraceae Felicia fruticosa Asteraceae Gymnodiscus capillaris Asteraceae Hymenolepis parviflora Asteraceae Metalasia muricata Asteraceae Osteospermum ciliatum Asteraceae Osteospermum spinosum Asteraceae Othonna digitata Asteraceae Othonna quinquedentata Asteraceae Phaenocoma prolifera Asteraceae Senecio elegans Asteraceae Senecio pterophorus # Asteraceae Stoebe cinerea Boraginaceae Lobostemon sp Brassicaceae Heliophila africana Bruniaceae Berzelia abrotanoides Campanulaceae Lobelia comosa Campanulaceae Lobelia coronopifolia Celastraceae Cassine peragua Celastraceae Maytenus oleoides Celastraceae Putterlickia pyracantha Commelinaceae Commelina africana Crassulaceae Crassula fascicularis Ebenaceae Diospyros glabra Ericaceae Erica imbricata Euphorbiaceae Clutia alaternoides Euphorbiaceae Euphorbia genistoides Euphorbiaceae Euphorbia tuberosa Fabaceae Acacia cyclops # Fabaceae Acacia elata # Fabaceae Acacia longifolia # Fabaceae Acacia saligna # Fabaceae Aspalathus astroites Fabaceae Aspalathus ciliaris Fabaceae Aspalathus cordata Fabaceae Indigofera sp Fabaceae Paraserianthus lophantha Fabaceae Psoralea aphylla Fabaceae Rafnia sp Fern Pellaea calomelanos Fern Pteridium aquilinum Fern Todea barbara Geraniaceae Geranium incanum Geraniaceae Pelargonium cucullatum Geraniaceae Pelargonium triste Haemodoraceae Wachendorphia sp Hyacinthaceae Lachenalia cf pustulata Iridaceae Aristea sp Iridaceae Ferraria sp Iridaceae Gladiolus gracilis Iridaceae Gladiolus sp. Iridaceae Moraea tripetala Iridaceae Watsonia sp. Kiggelariaceae Kiggelaria africana Lamiaceae Salvia africana–caerulea Lauraceae Cassytha ciliolata Malvaceae Hermannia hyssopifolia Malvaceae Hermannia multiflora Mesembryanthemaceae Erepsia gracilis Montiniaceae Montinia caryophyllacea Myoporaceae Myoporum # Myrsinaceae Myrsine africana Myrtaceae Eucalyptus spp. # Oleaceae Olea capensis Oleaceae Olea europaea subsp africana Oxalidaceae Oxalis luteola Penaeaceae Saltera sarcocolla Pinaceae Pinus halepensis # Poaceae Cymbopogon marginatus Poaceae Ehrharta calycina Poaceae Hyparrhenia sp Poaceae Pennisetum clandestinum # Poaceae Pennisetum macrourum (River Grass) Poaceae Pennisetum setaceum # (Feathertop) Poaceae Themeda triandra Polygalaceae Muraltia heisteria Polygalaceae Muraltia sp. Proteaceae Leucadendron laureolum Proteaceae Leucadendron salignum Proteaceae Leucadendron sessile Proteaceae Leucospermum bolusii (only found in the mountain above GB) Proteaceae Leucospermum conocarpodendron subsp viridum Proteaceae Protea laurifolia Proteaceae Protea nitida Proteaceae Protea repens Restionaceae Calopsis paniculatus Restionaceae Elegia stipularis Restionaceae Hypodiscus aristatus Restionaceae Nevillea obtusissima Restionaceae Thamnochortus sp. Rhamnaceae Phylica 3 spp Rhamnaceae Trichocephalus stipularis Rosaceae Cliffortia ruscifolia Rubiaceae Anthospermum galioides Rutaceae Adenandra uniflora Rutaceae Diosma sp Santalaceae Osyris compressa Santalaceae Thesium strictum Sapindaceae Dodonaea angustifolia Scrophulariaceae Manulea cheiranthus Scrophulariaceae Nemesia affinis Scrophulariaceae Nemesia versicolor Scrophulariaceae Oftia africana Scrophulariaceae Sutera hispida Scrophulariaceae Zaluzianskya capensis Solanaceae Datura sp # Solanaceae Solanum mauritianum # Thymelaeaceae Gnidia pinifolia Thymelaeaceae Passerina corymbosa Thymelaeaceae Struthiola ciliaris Verbenaceae Lantana camara # Zygophyllaceae Roepera (Zygophyllum) flexuosum # = alien 131 species: probably about 20-30% of species to be found along the trail. The others will only be visible in other seasons and at different veld ages. Conspicuously missing are Orchids, Ericas and Sedges .
Recommended publications
  • Capitulo 3 Tesis
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC 1 Flowering phenology of invasive alien plant species compared to native 2 species in three mediterranean-type ecosystems 3 4 Oscar Godoy*1,4, David M. Richardson2, Fernando Valladares1,3 & Pilar Castro-Díez4 5 6 1 Laboratorio Internacional de Cambio Global (Linc-Global). Instituto de los Recursos 7 Naturales, Centro de Ciencias Medioambientales. CSIC. Serrano 115 dpdo E-28006 8 Madrid Spain. ! 9 2 Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch 10 University, Private Bag X1, Matieland 7602, South Africa. 11 3 Departamento de Biología y Geología. Área de Biodiversidad & Conservación, 12 Universidad Rey Juan Carlos, ESCET, Tulipán s/n E-28933, Móstoles, Madrid, Spain. 13 4 Departamento Interuniversitario de Ecología. Sección de Alcalá. Edificio de Ciencias. 14 Universidad de Alcalá, E-28871, Alcalá de Henares, Madrid, Spain. 15 16 *Correspondence author: [email protected] 17 18 19 20 21 22 23 24 25 26 27 28 29 1 1 Fenología de floración de las especies de plantas exóticas invasoras en 2 tres ecosistemas mediterráneos en comparación con las especies 3 nativas. 4 5 Resumen 6 • Antecedentes y Objetivos: La fenología de floración es un componente esencial 7 del éxito de las especies invasoras, ya que una elevada fecundidad incrementa su 8 potencial invasor. Por tanto, estudiamos la relación existente entre los patrones 9 de floración de las especies invasoras y nativas en tres regiones con clima 10 mediterráneo: California, España y la Región Sudafricana de El Cabo 11 • Métodos: 227 pares de especies invasoras-nativas fueron utilizados 12 • Resultados clave: Las especies invasoras tienen diferentes patrones de floración 13 en comparación con las especies nativas en las tres regiones.
    [Show full text]
  • Sand Mine Near Robertson, Western Cape Province
    SAND MINE NEAR ROBERTSON, WESTERN CAPE PROVINCE BOTANICAL STUDY AND ASSESSMENT Version: 1.0 Date: 06 April 2020 Authors: Gerhard Botha & Dr. Jan -Hendrik Keet PROPOSED EXPANSION OF THE SAND MINE AREA ON PORTION4 OF THE FARM ZANDBERG FONTEIN 97, SOUTH OF ROBERTSON, WESTERN CAPE PROVINCE Report Title: Botanical Study and Assessment Authors: Mr. Gerhard Botha and Dr. Jan-Hendrik Keet Project Name: Proposed expansion of the sand mine area on Portion 4 of the far Zandberg Fontein 97 south of Robertson, Western Cape Province Status of report: Version 1.0 Date: 6th April 2020 Prepared for: Greenmined Environmental Postnet Suite 62, Private Bag X15 Somerset West 7129 Cell: 082 734 5113 Email: [email protected] Prepared by Nkurenkuru Ecology and Biodiversity 3 Jock Meiring Street Park West Bloemfontein 9301 Cell: 083 412 1705 Email: gabotha11@gmail com Suggested report citation Nkurenkuru Ecology and Biodiversity, 2020. Section 102 Application (Expansion of mining footprint) and Final Basic Assessment & Environmental Management Plan for the proposed expansion of the sand mine on Portion 4 of the Farm Zandberg Fontein 97, Western Cape Province. Botanical Study and Assessment Report. Unpublished report prepared by Nkurenkuru Ecology and Biodiversity for GreenMined Environmental. Version 1.0, 6 April 2020. Proposed expansion of the zandberg sand mine April 2020 botanical STUDY AND ASSESSMENT I. DECLARATION OF CONSULTANTS INDEPENDENCE » act/ed as the independent specialist in this application; » regard the information contained in this
    [Show full text]
  • Vicariance, Climate Change, Anatomy and Phylogeny of Restionaceae
    Botanical Journal of the Linnean Society (2000), 134: 159–177. With 12 figures doi:10.1006/bojl.2000.0368, available online at http://www.idealibrary.com on Under the microscope: plant anatomy and systematics. Edited by P. J. Rudall and P. Gasson Vicariance, climate change, anatomy and phylogeny of Restionaceae H. P. LINDER FLS Bolus Herbarium, University of Cape Town, Rondebosch 7701, South Africa Cutler suggested almost 30 years ago that there was convergent evolution between African and Australian Restionaceae in the distinctive culm anatomical features of Restionaceae. This was based on his interpretation of the homologies of the anatomical features, and these are here tested against a ‘supertree’ phylogeny, based on three separate phylogenies. The first is based on morphology and includes all genera; the other two are based on molecular sequences from the chloroplast genome; one covers the African genera, and the other the Australian genera. This analysis corroborates Cutler’s interpretation of convergent evolution between African and Australian Restionaceae. However, it indicates that for the Australian genera, the evolutionary pathway of the culm anatomy is much more complex than originally thought. In the most likely scenario, the ancestral Restionaceae have protective cells derived from the chlorenchyma. These persist in African Restionaceae, but are soon lost in Australian Restionaceae. Pillar cells and sclerenchyma ribs evolve early in the diversification of Australian Restionaceae, but are secondarily lost numerous times. In some of the reduction cases, the result is a very simple culm anatomy, which Cutler had interpreted as a primitively simple culm type, while in other cases it appears as if the functions of the ribs and pillars may have been taken over by a new structure, protective cells developed from epidermal, rather than chlorenchyma, cells.
    [Show full text]
  • Fire-Scaping Your Garden
    THE BUFFER ZONE THE MEDIUM RESISTANCE ZONE THE LOW RESISTANCE ZONE AROUND THE HOUSE IF YOU LIVE IN THE GARDEN ROUTE AREA This area should be the furthest away from the house, This should be the area between the peripheral buffer This is the area closest to the house. Indigenous species that can be planted to create a FIRESCAPING within the essential 10 metre zone. zone and the inner band (low-resistance zone) around fire-proof thicket/foresthedge include: the house. • This area must be kept free of large shrubs. It should • Plant low-growing groundcov- contain low-growing plants and groundcovers, inter- • Shrubs: Aloe arborescens IN THE FYNBOS ers with fleshy leaves that have • It is possible to plant a fynbos spersed with gravel or lawn. (Krantz Aloe), Azima tetracantha a high resistance to fire like garden here, but remember (Needle Bush), Carissa bispi- vygies (Lampranthus, Malepho- to space tall and short shrubs • Groundcovers for sunny areas nosa (Num-Num), Osteosper- Andrew Brown Andrew Colin Paterson-Jones GARDEN IN ZONES ra, Drosanthemum, Delosperma to prevent a large dense thicket include Cliffortia ferruginea, mum moniliferum (Bietou), Colin Paterson-Jones Plant your garden with a fire-resistant buffer zone on and Carpobrotus), Gazania, of continuous fuel developing Otholobium decumbens, Buddleja salviifolia the periphery, a medium resistant ring within that and Arctotis, Cliffortia ferruginea that could support a very hot Dymondia margaretae, Gazania (Sagewood), Cassine an approximately 3m wide zone of low resistant plant- and Aloe brevifolia. These need fire. Protea cynaroides spp., Helichrysum argyrophyl- Colin Paterson-Jones tetragona (Climbing Saffron), ing around the house.
    [Show full text]
  • Effects of Thirty-Five Years of Afforestation with Pinus Radiata on the Composition of Mesic Mountain Fynbos Near Stellenbosch
    Effects of thirty-five years of afforestation with Pinus radiata on the composition of mesic mountain fynbos near Stellenbosch D.M. Richardson and B.W. van Wilgen South African Forestry Research Institute, Jonkershoek Forestry Research Centre, Stellenbosch The fynbos vegetation of Biesievlei, Jonkershoek, was surveyed Introduction and described in 1945. In 1948 the catchment was afforested The Jonkershoek Forest Influences Research Station, as it was with Pinus radiata. This paper presents results of a reassessment of the vegetation in 1984 using the same then known, was established in 1935, chiefly to investigate methods that were used in 1945. Afforestation has reduced the the effects of afforestation on streamflow. Biesievlei is one cover of the vegetation (excluding P. radiata) from 75% to 20%. of seven experimental catchments that was afforested for this The total number of species was reduced by 58% from 298 to 126. At least 190 species found in 1945 were not found in 1984, purpose. A study of the fynbos vegetation of Biesievlei was and at least 18 species were added to the list. The mean plant undertaken in October - November 1945 (Rycroft 1950). This density was reduced from 260 to 78 plants m - 2. Only stream study was the first to analyze sclerophyllous fynbos vegetation bank vegetation, comprising mainly large-leaved sprouting using quantitative methods. Its main purpose was to develop shrubs, persisted in a relatively unmodified state. Away from the stream , annuals, geophytes and hemicryptophytes were methods for sampling vegetation in the fynbos but the results dominant. Dominant spe.cies in the pre-afforestation flora were provide a unique opportunity to assess the effects of afforesta­ not resilient to afforestation.
    [Show full text]
  • Impacts and Control of Alien Proteaceae Invasion in the Western Cape Province, South Africa
    Impacts and control of alien Proteaceae invasion in the Western Cape Province, South Africa by Laimi Nelago Koskima Erckie Dissertation submitted in fulfilment of the requirements for the degree MAGISTER SCIENTIAE in BIODIVERSITY AND CONSERVATION BIOLOGY in the FACULTY OF NATURAL SCIENCES at the University of the Western Cape Supervisor: Prof. JS Boatwright Co-supervisor: Dr. E. van Wyk Co-supervisor: Dr. S. Geerts November 2017 University of the Western Cape Private Bag X17, Bellville 7535, South Africa Telephone: ++27-21- 959 2255/959 2762 Fax: ++27-21- 959 1268/2266 Email: [email protected] FACULTY OF NATURAL SCIENCE DECLARATION PLAGIARISM DECLARATION TO BE INCLUDED IN ALL ASSIGNMENTS, THESIS PROPOSALS ETC, BE IT FOR MARKS OR NOT: I……..Laimi Nelago Koskima Erckie………………………………………………………… Student number….......3418027……………………….declare that the attached thesis entitled ……Impacts and control of alien Proteaceae invasion in the Western Cape Province, South Africa………………………………………………………………………………….. is my own work and that all the sources I have quoted have been indicated and acknowledged by means of complete references. Signed this day……20…… of ……November…….. 2017……. at ..........Bellville………… _____________________________ Signature i http://etd.uwc.ac.za/ ABSTRACT Research focused on ecological impacts and control of invasive alien species (IAS) is gaining attention worldwide. The eradication and control of invasive alien plants (IAP) is essential for the restoration of native plant communities. Understanding ecological impacts and potential invasive risks of IAP is important for their effective management, particularly for prioritisation. Most studies concerning impacts on vegetation structure and plant-pollinator interactions have measured few ecological metrics, resulting in a superficial understanding of plant species invasion.
    [Show full text]
  • Bulletin of the Natural History Museum
    ISSN 0968-044 Bulletin of The Natural History Museum THE NATURAL HISTORY 22 KOV 2000 Q6NEKAI LIBRARY THE NATURAL HISTORY MUSEUM VOLUME 30 NUMBER 2 30 NOVEMBER 2000 The Bulletin of The Natural History Museum (formerly: Bulletin of the British Museum (Natural History) ), instituted in 1949, is issued in four scientific series, Botany, Entomology, Geology (incorporating Mineralogy) and Zoology. The Botany Series is edited in the Museum's Department of Botany Keeper of Botany: Dr R. Bateman Editor of Bulletin: Ms M.J. Short Papers in the Bulletin are primarily the results of research carried out on the unique and ever- growing collections of the Museum, both by the scientific staff and by specialists from elsewhere who make use of the Museum's resources. Many of the papers are works of reference that will remain indispensable for years to come. All papers submitted for publication are subjected to external peer review for acceptance. A volume contains about 160 pages, made up by two numbers, published in the Spring and Autumn. Subscriptions may be placed for one or more of the series on an annual basis. Individual numbers and back numbers can be purchased and a Bulletin catalogue, by series, is available. Orders and enquiries should be sent to: Intercept Ltd. P.O. Box 7 16 Andover Hampshire SP 10 1YG Telephone: (01 264) 334748 Fax: (01264) 334058 Email: [email protected] Internet: http://www.intercept.co.uk Claims for non-receipt of issues of the Bulletin will be met free of charge if received by the Publisher within 6 months for the UK, and 9 months for the rest of the world.
    [Show full text]
  • Plant DNA Barcoding -- Advances, Applications & Limits
    Plant DNA barcoding -- Advances, applications & limits Sean Graham University of British Columbia Funding provided by: Plant DNA barcoding -- Advances, applications & limits CO-AUTHORS: Prasad R. Kesanakurti; Aron J. Fazekas; Diana M. Percy; Kevin S. Burgess; Jeffery M Saarela; Steven G. Newmaster; Brian C. Husband; Mehrdad Hajibabaei; Spencer C. H. Barrett Root project: Prasad R. Kesanakurti; Aron J. Fazekas; Kevin S. Burgess Grasses & Willows: Diana Percy; Jeffery Saarela Institutions: UBC; U. Guelph, U. Toronto, Canadian Museum of Nature Overview Choosing a multi-locus barcoding system Are plants harder to barcode than animals? -- CBOL Plant Working Group (PNAS 2009) -- Fazekas & al., 2008 (PLoS ONE 2008) -- Fazekas & al. 2009 (Mol. Ecol. Resources 2009) Plant DNA barcoding studies -- Poaceae & Salix of British Columbia, Canada -- Eco-applications: Below-ground ecology PLANT DIVERSITY LAND PLANTS • c. 400,000 species VASCULAR PLANTS • > 350,000 species • c. 13,888 genera • c. 511 families Pennisi (2007) Science 318: 190-191 Plant working group (Sept 2008) Core loci (CBOL): rbcL+matK (2 locus) (plus suppl. loci) CBOL Plant working group (PNAS 2009) What about the barcoding gap? -- Ideally: Intraspecific < Interspecific variation Plant genus: Animal genus: Viburnum Artibeus Intra- Inter- Genetic distance (K2P) What about the barcoding gap? Ideally -- -- Intraspecific < Interspecific variation -- Gene-tree monophyly tracks species boundaries = Mutual (reciprocal) monophyly Samples of -- Species A Species B Observed monophyly fraction
    [Show full text]
  • A Phytosociological Study of the Cape Fynbos and Other Vegetation at Jonkershoek, Stellenbosch by M
    Bothalia, 10, 4: 599-614 A Phytosociological Study of the Cape Fynbos and other Vegetation at Jonkershoek, Stellenbosch by M. J. A. Werger,* F. J. Krugerf and H. C. Taylor J A b s t r a c t The Braun-Blanquet phytosociological method was tested in the complex Fynbos vegetation of the South-western Cape Region of South Africa. In the Swartboschkloof Nature Reserve, Jonkers- hoek, the Fynbos, riverine scrub and forest vegetation was classified preliminarily into eight com­ munities, which are described floristically and related to habitat. The results hold promise, and the possibilities of classifying the Cape Fynbos in a formal phytosociological system are discussed. I ntroduction The Braun-Blanquet phytosociological method commonly used in Europe has remained relatively unknown in Southern Africa. Possible reasons for this are language difficulties, the need for more general, rather than more detailed information on the vegetation, and the general non-acceptance of the method by English and American plant ecologists. For many years the only source of information in the English-speaking world was Fuller & Conard’s (1932) authorised translation of Braun-Blanquet’s first edition of Pflanzensoziologie (1928), a work that omitted certain important details of the phytosociological technique. More detailed German works of the phytosociological school were largely inaccessible (for example Ellenberg, 1956; Braun-Blanquet, 1951. 1964). In recent years an English evaluation of the method was given by Poore (1955, 1956), although his main criticisms were shown by Moore (1962) to be largely unfounded. Becking (1957) reviewed the phytosociological school and its concepts, and Kiichler (1967) translated the tabulation techniques from Ellenberg (1956).1 Originally, nearly all vegetation surveys undertaken in Southern Africa were on a physiognomic or on a non-formal descriptive basis, with the exception of Acocks (1953) who used his own floristic technique to construct a system of veld types.
    [Show full text]
  • Nuclear Genes, Matk and the Phylogeny of the Poales
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2018 Nuclear genes, matK and the phylogeny of the Poales Hochbach, Anne ; Linder, H Peter ; Röser, Martin Abstract: Phylogenetic relationships within the monocot order Poales have been well studied, but sev- eral unrelated questions remain. These include the relationships among the basal families in the order, family delimitations within the restiid clade, and the search for nuclear single-copy gene loci to test the relationships based on chloroplast loci. To this end two nuclear loci (PhyB, Topo6) were explored both at the ordinal level, and within the Bromeliaceae and the restiid clade. First, a plastid reference tree was inferred based on matK, using 140 taxa covering all APG IV families of Poales, and analyzed using parsimony, maximum likelihood and Bayesian methods. The trees inferred from matK closely approach the published phylogeny based on whole-plastome sequencing. Of the two nuclear loci, Topo6 supported a congruent, but much less resolved phylogeny. By contrast, PhyB indicated different phylo- genetic relationships, with, inter alia, Mayacaceae and Typhaceae sister to Poaceae, and Flagellariaceae in a basally branching position within the Poales. Within the restiid clade the differences between the three markers appear less serious. The Anarthria clade is first diverging in all analyses, followed by Restionoideae, Sporadanthoideae, Centrolepidoideae and Leptocarpoideae in the matK and Topo6 data, but in the PhyB data Centrolepidoideae diverges next, followed by a paraphyletic Restionoideae with a clade consisting of the monophyletic Sporadanthoideae and Leptocarpoideae nested within them. The Bromeliaceae phylogeny obtained from Topo6 is insufficiently sampled to make reliable statements, but indicates a good starting point for further investigations.
    [Show full text]
  • The Role of Overstorey Proteoid Shrubs In
    THE ROLE OF OVERSTOREY PROTEOID SHRUBS IN MAINTAINING SPECIES RICHNESS IN A SOUTHERN CAPE MOUNTAIN FYNBOS COMMUNITY by Johannes Hendrik Jacobus Vlok Submitted in fulfillment of the academic requirements for the degree of . Master of Science in the Department of Botany, University of Natal Pietermaritzburg 1996 ii ABSTRACT ~ This study was conducted to determine if, and how, over storey proteoid shrubs affect the species richness of a southern Cape mountain fynbos community. Protea eximia, ~ lorifolia and ~ repens were the dominant over storey shrubs in the community studied. The percentage canopy cover and density of over storey protea shrubs before a fire were regressed against the a-diversity of under storey species after a fire, for spatial scales ranging · from 1 - 100m2. High canopy cover percentages (~ 50%) and high densities (~ 30 plants per 100m2) of over storey proteas before a fire enriched the a-diversity levels of under storey species after a fire. The spatial scale at which a-diversity was measured affected results. The number of understorey species at a site, where overstorey proteas were absent for several fire­ cycles, was compared with those where over storey proteas persisted. The number of understorey species was least where the over storey proteas were lacking for several fire-cycles, but results also depended on the spatial scale at which a­ diversity was measured. The basal cover percentage and density of sprouting understorey species of two sites, burned at several short (6 year) fire-cycles and where over storey proteas were lacking, were compared with those of an adjacent site which was not burned for 28 years and where the over storey proteas persisted.
    [Show full text]
  • Evolutionary Drivers of Temporal and Spatial Host Use Patterns in Restio Leafhoppers Cephalelini (Cicadellidae)
    Evolutionary drivers of temporal and spatial host use patterns in restio leafhoppers Cephalelini (Cicadellidae) By Willem Johannes Augustyn Thesis presented in fulfilment of the requirements for the degree of Doctor of Philosophy in the Faculty of Science at Stellenbosch University Promoters: Allan George Ellis and Bruce Anderson December 2015 1 Stellenbosch University https://scholar.sun.ac.za Declaration By submitting this thesis/dissertation electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Copyright © 2015 Stellenbosch University All rights reserved 2 Stellenbosch University https://scholar.sun.ac.za Abstract Understanding how divergent selection results in the evolution of reproductive isolation (i.e. speciation) is an important goal in evolutionary biology. Populations of herbivorous insects using different host plant species can experience divergent selection from multiple selective pressures which can rapidly lead to speciation. Restio leafhoppers are a group of herbivorous insect species occurring within the Cape Floristic Region (CFR) of South Africa. They are specialised on different plant species in the Restionaceae family. Throughout my thesis I investigated how bottom- up (i.e. plant chemistry/morphology of host plant species) and top-down (i.e. predation and competition) factors drive specialisation and divergence in restio leafhoppers. I also investigated interspecific competition as an important determinant of restio leafhopper community structure.
    [Show full text]