Impacts and Control of Alien Proteaceae Invasion in the Western Cape Province, South Africa

Total Page:16

File Type:pdf, Size:1020Kb

Impacts and Control of Alien Proteaceae Invasion in the Western Cape Province, South Africa Impacts and control of alien Proteaceae invasion in the Western Cape Province, South Africa by Laimi Nelago Koskima Erckie Dissertation submitted in fulfilment of the requirements for the degree MAGISTER SCIENTIAE in BIODIVERSITY AND CONSERVATION BIOLOGY in the FACULTY OF NATURAL SCIENCES at the University of the Western Cape Supervisor: Prof. JS Boatwright Co-supervisor: Dr. E. van Wyk Co-supervisor: Dr. S. Geerts November 2017 University of the Western Cape Private Bag X17, Bellville 7535, South Africa Telephone: ++27-21- 959 2255/959 2762 Fax: ++27-21- 959 1268/2266 Email: [email protected] FACULTY OF NATURAL SCIENCE DECLARATION PLAGIARISM DECLARATION TO BE INCLUDED IN ALL ASSIGNMENTS, THESIS PROPOSALS ETC, BE IT FOR MARKS OR NOT: I……..Laimi Nelago Koskima Erckie………………………………………………………… Student number….......3418027……………………….declare that the attached thesis entitled ……Impacts and control of alien Proteaceae invasion in the Western Cape Province, South Africa………………………………………………………………………………….. is my own work and that all the sources I have quoted have been indicated and acknowledged by means of complete references. Signed this day……20…… of ……November…….. 2017……. at ..........Bellville………… _____________________________ Signature i http://etd.uwc.ac.za/ ABSTRACT Research focused on ecological impacts and control of invasive alien species (IAS) is gaining attention worldwide. The eradication and control of invasive alien plants (IAP) is essential for the restoration of native plant communities. Understanding ecological impacts and potential invasive risks of IAP is important for their effective management, particularly for prioritisation. Most studies concerning impacts on vegetation structure and plant-pollinator interactions have measured few ecological metrics, resulting in a superficial understanding of plant species invasion. Additionally, most studies related to the control of IAP have focused on major invaders which have demonstrated severe impacts, with less focus on emerging invaders. This study assessed ecological impacts, invasive risks and chemical control options for alien Hakea drupacea and Banksia species in the Western Cape Province, South Africa. Multiple ecological metrics data on vegetation, soil and plant-pollinator parameters were measured and compared between invaded and uninvaded sites. The invasion risk of fourteen Banksia species which have been introduced to South Africa was evaluated by conducting a weed risk assessment (WRA). The herbicide efficacy of resprouting Banksia integrifolia and Banksia serrata was determined by rating plants response to different treatments, with percentage, height and resprout vigour as measures. Results revealed significant negative impacts of alien H. drupacea and Banksia speciosa invasion on native plant species richness and diversity and on the abundance of native pollinators. The study demonstrated that 79% of Banksia species have a high risk of invading the Fynbos Biome. Chemical control with triclopyr+picloram mix provided effective means of controlling resprouting Banksia species. The high invasive risk of Banksia species and competitive effects of invasive alien B. speciosa and H. drupacea with native plant species for biotic and abiotic resources represents a major threat to biodiversity conservation in the Fynbos Biome. The removal of both naturalised and invasive alien H. drupacea and Banksia populations is recommended in order to conserve native plant communities in the Fynbos Biome. ii http://etd.uwc.ac.za/ ACKNOWLEDGEMENTS First, I would like to thank the Almighty God for blessing me with intelligence and determination. Thank you Lord for giving me the strength and for guiding me throughout this study. Thanks to my wonderful supervisors, Prof. Stephen Boatwright, Dr. Ernita van Wyk and Dr. Sjirk Geerts for their advice, useful comments and proper guidance provided throughout the entire research process. Special appreciation is extended to Dr. Ernita van Wyk for her involvement in data collection and for providing assistance and support during field work. This work was supported by the South African National Department of Environmental Affairs through its funding of the South African National Biodiversity Institute Invasive Species Programme (SANBI-ISP). The National Commission on Research Science and Technology (NCRST) has provided partial funding. I gratefully acknowledge the Namibian Ministry of Environment and Tourism for granting me special study leave. Thanks to the Western Cape Department of Agriculture, Elsenburg Laboratory for efficiently analysing my soil samples. I would like to extend thanks to the South African National Parks (SANParks) for permission to work on their premises in the Agulhas National Park. Thanks are also due to various farm owners for permission to access study sites in their properties. I am grateful to Virgil Jacobs for his permission to use data for the herbicide trial experiment. Thanks to Liada Musandiwa and Nolwethu Jubase for their great assistance with field work. Pieter Winter and Joy Tobin from Compton Herbarium are thanked for assisting in mantaining and storing plant specimens. Thanks to Nick Helme for plant species identification. Finally, I want to express my gratitude to my parents, my wonderful husband and two daughters, who provided immense support and encouragement. This work would have never been completed without their patience and understanding. iii http://etd.uwc.ac.za/ TABLE OF CONTENT DECLARATION.................................................................................................................................... i ABSTRACT ........................................................................................................................................... ii ACKNOWLEDGEMENTS ................................................................................................................ iii TABLE OF CONTENT ....................................................................................................................... iv LIST OF TABLES ............................................................................................................................. viii LIST OF FIGURES ............................................................................................................................. ix Chapter 1: General Introduction ............................................................................................................. 1 1 BIOLOGICAL INVASIONS .......................................................................................................... 1 1.1 INVASIVE ALIEN PLANTS ................................................................................................ 1 1.2 INVASIVE ALIEN PLANTS IN SOUTH AFRICA ............................................................. 2 1.3 IMPACTS OF INVASIVE ALIEN PLANTS ........................................................................ 2 1.3.1 Impacts of invasive alien plants on community structure ............................................... 3 1.3.2 Impacts of invasive alien plants on plant-pollinator interactions .................................... 4 1.4 CONTROL OF INVASIVE ALIEN PLANTS ....................................................................... 5 1.4.1 Mechanical control .......................................................................................................... 6 1.4.2 Chemical control ............................................................................................................. 6 1.4.3 Biological control ............................................................................................................ 7 1.4.4 Integrated weed management .......................................................................................... 7 1.5 THE FAMILY PROTEACEAE .............................................................................................. 8 1.6 AIM AND OBJECTIVES ..................................................................................................... 10 1.7 RESEARCH QUESTIONS................................................................................................... 10 1.8 THESIS CHAPTERS ............................................................................................................ 10 Chapter 2: Impacts of an invasive alien Hakea drupacea on the vegetation structure and soil properties .............................................................................................................................................. 12 Abstract ................................................................................................................................................. 12 2 INTRODUCTION ........................................................................................................................ 13 2.1 MATERIALS AND METHODS .......................................................................................... 15 2.1.1 Study species ................................................................................................................. 15 2.1.2 Study area ...................................................................................................................... 16 2.1.3 Experimental design ...................................................................................................... 16 2.1.4 Data collection .............................................................................................................. 17 2.1.4.1 Vegetation survey
Recommended publications
  • Salesforce Park Garden Guide
    Start Here! D Central Lawn Children’s Play Area Garden Guide6 Palm Garden 1 Australian Garden Start Here! D Central Lawn Salesforce Park showcases7 California over Garden 50 species of Children’s Play Area 2 Mediterraneantrees and Basin over 230 species of understory plants. 6 Palm Garden -ã ¼ÜÊ ÊăØÜ ØÊèÜãE úØƀØÊèÃJapanese Maples ¼ÃØ Ê¢ 1 Australian Garden 3 Prehistoric¢ØÕ輫ÕØÊ£ØÂÜÃã«ó«ã«Üŧ¼«¹ĆãÃÜÜ Garden 7 California Garden ¼ÜÜÜŧÊÃØãÜŧÃØ¢ã«Ã£¼ÜÜÜũF Amphitheater Garden Guide 2 Mediterranean Basin 4 Wetland Garden Main Lawn E Japanese Maples Salesforce Park showcases over 50 species of 3 Prehistoric Garden trees and over 230 species of understory plants. A Oak Meadow 8 Desert Garden F Amphitheater It also offers a robust year-round calendar of 4 Wetland Garden Main Lawn free public programs and activities, like fitness B Bamboo Grove 9 Fog Garden Desert Garden classes, concerts, and crafting classes! A Oak Meadow 8 5 Redwood Forest 10 Chilean Garden B Bamboo Grove 9 Fog Garden C Main Plaza 11 South African 10 Chilean Garden Garden 5 Redwood Forest C Main Plaza 11 South African Garden 1 Children’s Australian Play Area Garden ABOUT THE GARDENS The botanist aboard the Endeavor, Sir Joseph Banks, is credited with introducing many plants from Australia to the western world, and many This 5.4 acre park has a layered soil system that plants today bear his name. balances seismic shifting, collects and filters storm- water, and irrigates the gardens. Additionally, the soil Native to eastern Australia, Grass Trees may grow build-up and dense planting help offset the urban only 3 feet in 100 years, and mature plants can be heat island effect by lowering the air temperature.
    [Show full text]
  • Wide Variation in Post-Emergence Desiccation Tolerance of Seedlings of Fynbos Proteoid Shrubs ⁎ P.J
    Available online at www.sciencedirect.com South African Journal of Botany 80 (2012) 110–117 www.elsevier.com/locate/sajb Wide variation in post-emergence desiccation tolerance of seedlings of fynbos proteoid shrubs ⁎ P.J. Mustart a, A.G. Rebelo b, J. Juritz c, R.M. Cowling a, a Botany Department, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6301, South Africa b Kirstenbosch Research Centre, South African National Biodiversity Institute, Private Bag X7, Claremont 7735, South Africa c Department of Statistical Science, University of Cape Town, Private Bag, Rondebosch 7700, South Africa Received 20 February 2012; received in revised form 13 March 2012; accepted 21 March 2012 Abstract Fynbos Proteaceae that are killed by fire and bear their seeds in serotinous cones (proteoids), are entirely dependent on seedling recruitment for persistence. Hence, the regeneration phase represents a vulnerable stage of the plant life cycle. In laboratory-based experiments we investigated the effect of desiccation on the survival of newly emerged seedlings of 23 proteoid species (Leucadendron and Protea) occurring in a wide variety of fynbos habitats. We tested the hypothesis that species of drier habitats would be more tolerant of desiccation than those from more moist areas. Results showed that with no desiccation treatment, or with desiccation prior to radicle emergence, all species germinated to high levels. However, with desiccation treatments imposed after radicle emergence, there were significant declines in seedling emergence after subsequent re-wetting. Furthermore, other than three species that grow in waterlogged habitats, germination responses could not be reliably modeled as a function of soil moisture variables.
    [Show full text]
  • List of Plants Used by Carnaby's Black Cockatoo
    Plants Used by Carnaby's Black Cockatoo List prepared by Christine Groom, Department of Environment and Conservation 15 April 2011 For more information on plant selection or references used to produce this list please visit the Plants for Carnaby's Search Tool webpage at www.dec.wa.gov.au/plantsforcarnabys Used for Soil type Soil drainage Priority for planting Sun Species Growth form Flower colour Origin for exposure Carnaby's Feeding Nesting Roosting Clayey Gravelly Loamy Sandy drained Well drained Poorly Waterlogged affected Salt Acacia baileyana (Cootamundra wattle)* Low Tree Yellow Australian native Acacia pentadenia (Karri Wattle) Low Tree Cream WA native Acacia saligna (Orange Wattle) Low Tree Yellow WA native Agonis flexuosa (Peppermint Tree) Low Tree White WA native Araucaria heterophylla (Norfolk Island Pine) Low Tree Green Exotic to Australia Banksia ashbyi (Ashby's Banksia) Medium Tree or Tall shrub Yellow, Orange WA native Banksia attenuata (Slender Banksia) High Tree Yellow WA native Banksia baxteri (Baxter's Banksia) Medium Tall shrub Yellow WA native Banksia carlinoides (Pink Dryandra) Medium Medium or small shrub White, cream, pink WA native Banksia coccinea (Scarlet Banksia) Medium Tree Red WA native Banksia dallanneyi (Couch Honeypot Dryandra) Low Medium or small shrub Orange, brown WA native Banksia ericifolia (Heath-leaved Banksia) Medium Tall shrub Orange Australian native Banksia fraseri (Dryandra) Medium Medium or small shrub Orange WA native Banksia gardneri (Prostrate Banksia) Low Medium
    [Show full text]
  • Environmental Weeds of Coastal Plains and Heathy Forests Bioregions of Victoria Heading in Band
    Advisory list of environmental weeds of coastal plains and heathy forests bioregions of Victoria Heading in band b Advisory list of environmental weeds of coastal plains and heathy forests bioregions of Victoria Heading in band Advisory list of environmental weeds of coastal plains and heathy forests bioregions of Victoria Contents Introduction 1 Purpose of the list 1 Limitations 1 Relationship to statutory lists 1 Composition of the list and assessment of taxa 2 Categories of environmental weeds 5 Arrangement of the list 5 Column 1: Botanical Name 5 Column 2: Common Name 5 Column 3: Ranking Score 5 Column 4: Listed in the CALP Act 1994 5 Column 5: Victorian Alert Weed 5 Column 6: National Alert Weed 5 Column 7: Weed of National Significance 5 Statistics 5 Further information & feedback 6 Your involvement 6 Links 6 Weed identification texts 6 Citation 6 Acknowledgments 6 Bibliography 6 Census reference 6 Appendix 1 Environmental weeds of coastal plains and heathy forests bioregions of Victoria listed alphabetically within risk categories. 7 Appendix 2 Environmental weeds of coastal plains and heathy forests bioregions of Victoria listed by botanical name. 19 Appendix 3 Environmental weeds of coastal plains and heathy forests bioregions of Victoria listed by common name. 31 Advisory list of environmental weeds of coastal plains and heathy forests bioregions of Victoria i Published by the Victorian Government Department of Sustainability and Environment Melbourne, March2008 © The State of Victoria Department of Sustainability and Environment 2009 This publication is copyright. No part may be reproduced by any process except in accordance with the provisions of the Copyright Act 1968.
    [Show full text]
  • Chapter 1: General Introduction and Aims
    Margaret L. Stimpson Banksia spinulosa complex Chapter 1: General introduction and aims “The history of science, like the history of all human ideas, is a history of irresponsible dreams, of obstinacy, and of error. But science is one of the very few human activities perhaps the only one in which errors are systematically criticized and fairly often, in time, corrected. This is why we can say that, in science, we often learn from our mistakes, and why we can speak clearly and sensibly about making progress there.” (Popper 1963 p. 216) Proteaceae and Banksia The flowering plant family Proteaceae is predominantly distributed in the Southern Hemisphere and represents a classic Gondwanan clade, with fossils dating to c. 94 Mya, i.e., shortly after the separation of Africa from the rest of Gondwana (Guerin and Hill 2006). The family comprises about 80 genera with c. 1700 species, c.1450 of which are distributed in Australia and South Africa, which have the greatest concentrations of diversity (APG III 2009). There are also about 83 species in 8 genera in South and Central America (Prance and Plana 1998). Well known genera in the Proteaceae clade include Telopea, Protea, Banksia, Grevillea, Hakea, and Macadamia. The New South Wales floral emblem is the Waratah (Telopea speciosissima); Banksia, Grevillea, and Leucadendron are popular cut flowers, while the nuts of Macadamia integrifolia are widely grown commercially. The genus Banksia L.f. (Proteaceae subfam. Grevilleoideae) was first described on the basis of four species collected by Banks and Solander during the Cook voyage in 1770 (Thiele and Ladiges 1996; Collins et al.
    [Show full text]
  • Persoonia Levis Broad-Leaved Geebung
    Persoonia levis Broad-leaved Geebung Geebung is an unusual name derived from Aboriginal languages: geebung is the name used by the Dharuk in the Sydney Region, and Jibbong by the Wiradjuri1. The genus name Persoonia, to our ears, is also unusual until you find out that it is named after a Dutch mycologist (someone who studies fungi), Christiaan Hendrik Persoon. Geebungs are endemic to Australia and there are almost 100 species which, for the most part, are found in eastern Australia, and in the SW corner of Western Australia. They are mostly small trees or shrubs. This particular species, Persoonia levis, common in Sydney bushland, grows along the central and north coast of NSW, and in the SE corner of NSW and NE corner of Victoria. We are accustomed to the subtle olives, blues, greys and yellowish greens of the foliage of the Australian bush but the Broad-leaved Geebung is quite a contrast with bright, apple green foliage. The fruits, too, are unusual, round and succulent, bright green colouring to purple, very different from the dry, hard fruits of other genera in the same (Proteaceae) family, for example, Needle Bush (Hakea), Telopea (Waratah), Grevillea and Woodly Pear (Xylomelum). Geebungs are also unusual in that they have seven chromosomes that are much larger than those of other Proteaceae2. Broad-leaved Geebung has papery bark that provides some protection from bushfires. Peel back the superficial burnt bark and you will find glorious, rich crimson beneath the blackened exterior. This species also has the potential to resprout after fires, and regenerate from seed.
    [Show full text]
  • Friends of the UC Davis Arboretum & Public Garden October 12, 2019
    Friends of the UC Davis Arboretum & Public Garden October 12, 2019 Second Fall Plant Sale (Public: 9 a.m. - 1 p.m.) Final Availability Availability subject to change Cate- Bed Botanical Name Qty Common Name Description Price Size gory # forms large clumps of 12" rosettes. Bronzy-pink foliage. Branched inflorescences up to 2' hold yellow flws with × Graptoveria 'Fred Ives' 11 graptoveria orange/red centers, summer. Good drainage. $7.50 4" P, + C12 × Heucherella 'Dayglow Pink' hybrid coral bells and foam to 16"; glowing pink flws on starry wands, spring. Purple foliar PP12164 34 flower color, winter. Bright shade, average water for best growth. $11.00 1G S C2 16"x 14"; spikes of pnk flws, lt sprng; heavy bloomer. Grn lvs × Heucherella 'Pink Revolution' Pink Revolution w/brgndy veins; pt shd; med wtr; well-drained soil; attracts PPAF 13 heucherella hmmngbrds. $11.00 1G S C2 Mounding perennial to 10", bronze lvs w/ reddish ceters, dk × Heucherella 'Pumpkin Spice' PPAF 2 Pumpkin Spice foamy bells red stems, white fls in spring $11.00 1G S C2 × Heucherella 'Solar Eclipse' Up to 16". Drk purple lvs w ring of chartreuse grn. White flws PP23647 21 foamy bells late spring. Pt sun to light shade. $11.00 1G S C2 7" x 16". Blue-green foliage turns darker as the weather cools hybrid coral bells and foam in fall; dark veins. Foamy pink flowers, spring. Shade. Deer × Heucherella 'Tapestry' PP21150 30 flower resistant. $11.00 1G S C2 × Mangave 'Bad Hair Day' PP30279 to 10"x20"; arching, narrow, flat, lime-green lvs w/red spots; (Mad About Mangave® Collection) 60 Bad Hair Day mangave full sun-bright shd; med-low wtr.
    [Show full text]
  • FNCV Register of Photos
    FNCV Register of photos - natural history (FNCVSlideReg is in Library computer: My computer - Local Disc C - Documents and settings - Library) [Square brackets] - added or updated name Slide number Title Place Date Source Plants SN001-1 Banksia marginata Grampians 1974 001-2 Xanthorrhoea australis Labertouche 17 Nov 1974 001-3 Xanthorrhoea australis Anglesea Oct 1983 001-4 Regeneration after bushfire Anglesea Oct 1983 001-5 Grevillea alpina Bendigo 1975 001-6 Glossodia major / Grevillea alpina Maryborough 19 Oct 1974 001-7 Discarded - out of focus 001-8 [Asteraceae] Anglesea Oct 1983 001-9 Bulbine bulbosa Don Lyndon 001-10 Senecio elegans Don Lyndon 001-11 Scaevola ramosissima (Hairy fan-flower) Don Lyndon 001-12 Brunonia australis (Blue pincushion) Don Lyndon 001-13 Correa alba Don Lyndon 001-14 Correa alba Don Lyndon 001-15 Calocephalus brownii (Cushion bush) Don Lyndon 001-16 Rhagodia baccata [candolleana] (Seaberry saltbush) Don Lyndon 001-17 Lythrum salicaria (Purple loosestrife) Don Lyndon 001-18 Carpobrotus sp. (Pigface in the sun) Don Lyndon 001-19 Rhagodia baccata [candolleana] Inverloch Don Lyndon 001-20 Epacris impressa Don Lyndon 001-21 Leucopogon virgatus (Beard-heath) Don Lyndon 001-22 Stackhousia monogyna (Candles) Don Lyndon 001-23 Correa reflexa (yellow) Don Lyndon 001-24 Prostanthera sp. Don Lyndon Fungi 002-1 Stinkhorn fungus Aseroe rubra Buckety Plains 30/12/1974 Margarey Lester 002-2 Fungi collection: Botany Group excursion Dom Dom Saddle 28 May 1988 002-3 Aleuria aurantia Aug 1966 R&M Jennings Bairnsdale FNC 002-4
    [Show full text]
  • Rhizosphere Processes and Nutrient Management for Improving Nutrient
    HORTSCIENCE 54(4):603–608. 2019. https://doi.org/10.21273/HORTSCI13643-18 macadamia production is still in its infancy. Many guide brochures on the Macadamia grower’s handbook have been used in Aus- Rhizosphere Processes and Nutrient tralia and America (Bittenbender and Hirae, 1990; O’Hare et al., 2004). The technical Management for Improving guidelines mentioned in these books are not well adapted to the local soil and climatic Nutrient-use Efficiency in conditions in China. Moreover, the unique characteristics of cluster roots of macadamia have been greatly ignored, leading to uncou- Macadamia Production pling of crop management in the orchard with Xin Zhao and Qianqian Dong root/rhizosphere-based nutrient management. Department of Plant Nutrition, China Agricultural University, Key Enhancing nutrient-use efficiency through op- timizing fertilizer input, improving fertilizer Laboratory of Plant–Soil Interactions, Ministry of Education, Beijing formulation, and maximizing biological in- 100193, P. R. China teraction effects helps develop healthy and sustainable orchards (Jiao et al., 2016; Shen Shubang Ni, Xiyong He, Hai Yue, and Liang Tao et al., 2013). Yunnan Institute of Tropical Crops, Jinghong 666100, Yunnan, P. R. China This paper discusses the problems and challenges of macadamia production and de- Yanli Nie velopment in China as well as other parts of The General Station of Forestry Technology Extension in Yunnan Province, the world, analyzes how cluster root growth Yunnan, P. R. China affects the rhizosphere dynamics of macad- amia, thus contributing to efficient nutrient Caixian Tang mobilization and use, and puts forward the Department of Animal, Plant and Soil Sciences, AgriBio – Centre for strategies of nutrient management for im- AgriBioscience, La Trobe University, Bundoora, Victoria 3086, Australia proving nutrient-use efficiency in sustainable macadamia production.
    [Show full text]
  • Invasive Hakeas — Biological Control Implementations
    Invasive Hakeas — Biological Control Implementations A. Fourie, A. J. Gordon1 and R. M. Krug2 17th October 2012 DRAFT 1Plant Protection Research Institute, Private Bag X5017, Stellenbosch, 7599 SOUTH AFICA [email protected] 2Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Matieland 7602 SOUTH AFRICA [email protected] DRAFT 1 rev 210, 14:28:27, 2012-10-17 Contents 1 The Hakea species4 1.1 Biology................................4 1.1.1 Hakea sericea .........................4 1.1.2 Hakea gibbosa .........................4 1.1.3 Hakea drupacea ........................5 1.1.4 Biology of Hakea salicifolia (willow hakea)........5 1.2 Ecology and spread.........................7 1.3 Control measures...........................8 1.3.1 Mechanical control......................8 1.3.2 Chemical control.......................8 1.3.3 Biological control.......................8 2 Agents 11 2.1 Gummosis fungus........................... 11 2.1.1 Description.......................... 11 2.1.2 Disease Symptoms...................... 11 2.1.3 Impact on Hakea sericea ................... 11 2.2 Seed weevil.............................. 12 2.2.1 Description.......................... 12 2.2.2 Life Cycle........................... 12 2.2.3 Feeding Damage....................... 14 2.3 Seed moth............................... 14 2.3.1 Description.......................... 14 2.3.2 Life cycle........................... 15 2.3.3 Feeding damage....................... 15 2.4 Stem-boring beetle.......................... 15 2.4.1 Description.......................... 15 2.4.2 Life cycle........................... 15 2.4.3 Feeding damage....................... 17 2.5 Bud-weevilDRAFT.............................. 17 2.5.1 Description.......................... 17 2.5.2 Life cycle........................... 17 2.5.3 Feeding damage....................... 18 2.6 Leaf weevil.............................. 18 2.6.1 Description.......................... 18 2.6.2 Life cycle........................... 19 2.6.3 Feeding damage......................
    [Show full text]
  • Adenanthos Pungens Subsp. Effusus)
    SPRAWLING SPIKY ADENANTHOS (ADENANTHOS PUNGENS SUBSP. EFFUSUS) RECOVERY PLAN Department of Environment and Conservation Kensington Recovery Plan for Adenanthos pungens subsp. effusus FOREWORD Interim Recovery Plans (IRPs) are developed within the framework laid down in WA Department of Conservation and Land Management (CALM), now Department of Environment and Conservation (DEC) Policy Statements Nos. 44 and 50. Note: the Department of CALM formally became the Department of Environment and Conservation (DEC) in July 2006. DEC will continue to adhere to these Policy Statements until they are revised and reissued. IRPs outline the recovery actions that are required to urgently address those threatening processes most affecting the ongoing survival of threatened taxa or ecological communities, and begin the recovery process. DEC is committed to ensuring that Threatened taxa are conserved through the preparation and implementation of Recovery Plans (RPs) or IRPs, and by ensuring that conservation action commences as soon as possible and, in the case of Critically Endangered (CR) taxa, always within one year of endorsement of that rank by the Minister. This IRP results from a review of, and replaces, IRP No. 78 Adenanthos pungens subsp. effusus (Evans, Stack, Loudon, Graham and Brown 2000). This Interim Recovery Plan will operate from May 2006 to April 2011 but will remain in force until withdrawn or replaced. It is intended that, if the taxon is still ranked as Critically Endangered (WA), this IRP will be reviewed after five years and the need for a full Recovery Plan will be assessed. This IRP was given regional approval on 13 February, 2006 and was approved by the Director of Nature Conservation on 22 February, 2006.
    [Show full text]
  • Australian Wildflower Product Directory
    Australian wildflower product directory This chart covers the most commonly grown products for which a quality specification or product factsheet are available (to see it, click on to the link in the right hand column). The Australian wildflower industry supplies many other products (both species and varieties of the products listed here, and additional products). These can be found in the booklet ‘Flowers from Australia’, available to purchase from WildFlowers Australia. (Foliage products listed at end) Product image Botanical name Common name Flowering season Typical vase life (days) Product(s) Links to more information (quality (note: not all to same available specification or product factsheet) scale) Acacia Wattle, mimosa Different species provide A. Flowers and See p. 93 in Postharvest Manual* Range of species including: flowers year-round product baileyana only 3–6, foliage https://rirdc.infoservices.com.au/items/10 A. baileyana (Cootamundra wattle), -027 other species 6–10. (depending A. buxifolia (Box-leaf wattle), A. cultriformis (Knife-leaf wattle), A. Species with vase lives of on species) dealbata (Silver wattle), A. >7 days, include A. floribunda (White sallow wattle), A. buxifolia, A. cultriformis, retinodes (Wirilda, Swamp wattle, A. floribunda, A. Silver wattle) retinodes and forms of A. A. cultriformis dealbata Actinotus helianthi Flannel flower August–January, peak in 14–21 Flowers https://rirdc.infoservices.com.au/items/10 spring (field-grown flowers); -028 all year round (but limited volume at times) for selected cultivars grown in greenhouses Anigozanthos species Kangaroo paw August–December (other 10–15 Flowers https://rirdc.infoservices.com.au/items/10 Cultivar: ‘Big Red’ cultivars flower all year round -029 or at different times) 1 Product image Botanical name Common name Flowering season Typical vase life (days) Product(s) Links to more information (quality (note: not all to same available specification or product factsheet) scale) Backhousia myrtifolia Backhousia October–January, with peak 9–12 Flowers and p.
    [Show full text]