Supplemental Materials
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Serum Albumin OS=Homo Sapiens
Protein Name Cluster of Glial fibrillary acidic protein OS=Homo sapiens GN=GFAP PE=1 SV=1 (P14136) Serum albumin OS=Homo sapiens GN=ALB PE=1 SV=2 Cluster of Isoform 3 of Plectin OS=Homo sapiens GN=PLEC (Q15149-3) Cluster of Hemoglobin subunit beta OS=Homo sapiens GN=HBB PE=1 SV=2 (P68871) Vimentin OS=Homo sapiens GN=VIM PE=1 SV=4 Cluster of Tubulin beta-3 chain OS=Homo sapiens GN=TUBB3 PE=1 SV=2 (Q13509) Cluster of Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 (P60709) Cluster of Tubulin alpha-1B chain OS=Homo sapiens GN=TUBA1B PE=1 SV=1 (P68363) Cluster of Isoform 2 of Spectrin alpha chain, non-erythrocytic 1 OS=Homo sapiens GN=SPTAN1 (Q13813-2) Hemoglobin subunit alpha OS=Homo sapiens GN=HBA1 PE=1 SV=2 Cluster of Spectrin beta chain, non-erythrocytic 1 OS=Homo sapiens GN=SPTBN1 PE=1 SV=2 (Q01082) Cluster of Pyruvate kinase isozymes M1/M2 OS=Homo sapiens GN=PKM PE=1 SV=4 (P14618) Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 Clathrin heavy chain 1 OS=Homo sapiens GN=CLTC PE=1 SV=5 Filamin-A OS=Homo sapiens GN=FLNA PE=1 SV=4 Cytoplasmic dynein 1 heavy chain 1 OS=Homo sapiens GN=DYNC1H1 PE=1 SV=5 Cluster of ATPase, Na+/K+ transporting, alpha 2 (+) polypeptide OS=Homo sapiens GN=ATP1A2 PE=3 SV=1 (B1AKY9) Fibrinogen beta chain OS=Homo sapiens GN=FGB PE=1 SV=2 Fibrinogen alpha chain OS=Homo sapiens GN=FGA PE=1 SV=2 Dihydropyrimidinase-related protein 2 OS=Homo sapiens GN=DPYSL2 PE=1 SV=1 Cluster of Alpha-actinin-1 OS=Homo sapiens GN=ACTN1 PE=1 SV=2 (P12814) 60 kDa heat shock protein, mitochondrial OS=Homo -
Supplementary Table 1
Supplementary Table 1. Large-scale quantitative phosphoproteomic profiling was performed on paired vehicle- and hormone-treated mTAL-enriched suspensions (n=3). A total of 654 unique phosphopeptides corresponding to 374 unique phosphoproteins were identified. The peptide sequence, phosphorylation site(s), and the corresponding protein name, gene symbol, and RefSeq Accession number are reported for each phosphopeptide identified in any one of three experimental pairs. For those 414 phosphopeptides that could be quantified in all three experimental pairs, the mean Hormone:Vehicle abundance ratio and corresponding standard error are also reported. Peptide Sequence column: * = phosphorylated residue Site(s) column: ^ = ambiguously assigned phosphorylation site Log2(H/V) Mean and SE columns: H = hormone-treated, V = vehicle-treated, n/a = peptide not observable in all 3 experimental pairs Sig. column: * = significantly changed Log 2(H/V), p<0.05 Log (H/V) Log (H/V) # Gene Symbol Protein Name Refseq Accession Peptide Sequence Site(s) 2 2 Sig. Mean SE 1 Aak1 AP2-associated protein kinase 1 NP_001166921 VGSLT*PPSS*PK T622^, S626^ 0.24 0.95 PREDICTED: ATP-binding cassette, sub-family A 2 Abca12 (ABC1), member 12 XP_237242 GLVQVLS*FFSQVQQQR S251^ 1.24 2.13 3 Abcc10 multidrug resistance-associated protein 7 NP_001101671 LMT*ELLS*GIRVLK T464, S468 -2.68 2.48 4 Abcf1 ATP-binding cassette sub-family F member 1 NP_001103353 QLSVPAS*DEEDEVPVPVPR S109 n/a n/a 5 Ablim1 actin-binding LIM protein 1 NP_001037859 PGSSIPGS*PGHTIYAK S51 -3.55 1.81 6 Ablim1 actin-binding -
Mapping the Spatial Proteome of Metastatic Cells in Colorectal Cancer
Mapping the spatial proteome of metastatic cells in colorectal cancer Marta Mendes‡¶, Alberto Peláez-García‡¥, María López-Lucendo‡, Ruben A. Bartolomé‡, Eva Calviño‡, Rodrigo Barderas‡§**, J. Ignacio Casal‡** ‡Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain §Instituto de Salud Carlos III. Majadahonda. Spain ¶Present address: Technische Universität Berlin, Germany ¥Present address: Department of Pathology, Hospital Universitario La Paz, IdiPAZ, Madrid, Spain Running title: Mapping the metastatic proteome Keywords: Spatial proteome, cell fractionation, SILAC, metastasis, colorectal cancer ** To whom correspondence should be addressed: Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB-CSIC), Ramiro de Maeztu, 9, 28040 Madrid, Spain. Tel.: +34 918373112; E-mail: [email protected]. Instituto de Salud Carlos III, Majadahonda, Spain Carretera de Majadahonda - Pozuelo, Km. 2.200, 28220 Majadahonda, Madrid, Spain. Tel.: +34 913944155; E-mail: [email protected] 1 ABSTRACT Colorectal cancer (CRC) is the second deadliest cancer worldwide. Here, we aimed to study metastasis mechanisms using spatial proteomics in the KM12 cell model. Cells were SILAC-labeled and fractionated into five subcellular fractions corresponding to: cytoplasm, plasma, mitochondria and ER/golgi membranes, nuclear, chromatin-bound and cytoskeletal proteins and analyzed with high resolution mass spectrometry. We provide localization data of 4863 quantified proteins in the different subcellular fractions. A total of 1318 proteins with at least 1.5-fold change were deregulated in highly metastatic KM12SM cells respect to KM12C cells. The protein network organization, protein complexes and functional pathways associated to CRC metastasis was revealed with spatial resolution. Although 92% of the differentially expressed proteins showed the same deregulation in all subcellular compartments, a subset of 117 proteins (8%) showed opposite changes in different subcellular localizations. -
Disruption of the Anaphase-Promoting Complex Confers Resistance to TTK Inhibitors in Triple-Negative Breast Cancer
Disruption of the anaphase-promoting complex confers resistance to TTK inhibitors in triple-negative breast cancer K. L. Thua,b, J. Silvestera,b, M. J. Elliotta,b, W. Ba-alawib,c, M. H. Duncana,b, A. C. Eliaa,b, A. S. Merb, P. Smirnovb,c, Z. Safikhanib, B. Haibe-Kainsb,c,d,e, T. W. Maka,b,c,1, and D. W. Cescona,b,f,1 aCampbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada M5G 1L7; bPrincess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada M5G 1L7; cDepartment of Medical Biophysics, University of Toronto, Toronto, ON, Canada M5G 1L7; dDepartment of Computer Science, University of Toronto, Toronto, ON, Canada M5G 1L7; eOntario Institute for Cancer Research, Toronto, ON, Canada M5G 0A3; and fDepartment of Medicine, University of Toronto, Toronto, ON, Canada M5G 1L7 Contributed by T. W. Mak, December 27, 2017 (sent for review November 9, 2017; reviewed by Mark E. Burkard and Sabine Elowe) TTK protein kinase (TTK), also known as Monopolar spindle 1 (MPS1), ator of the spindle assembly checkpoint (SAC), which delays is a key regulator of the spindle assembly checkpoint (SAC), which anaphase until all chromosomes are properly attached to the functions to maintain genomic integrity. TTK has emerged as a mitotic spindle, TTK has an integral role in maintaining genomic promising therapeutic target in human cancers, including triple- integrity (6). Because most cancer cells are aneuploid, they are negative breast cancer (TNBC). Several TTK inhibitors (TTKis) are heavily reliant on the SAC to adequately segregate their abnormal being evaluated in clinical trials, and an understanding of karyotypes during mitosis. -
ACTN4 Mediates SEPT14 Mutation-Induced Sperm Head Defects
biomedicines Article ACTN4 Mediates SEPT14 Mutation-Induced Sperm Head Defects 1,2, 3,4,5, 6,7 8 Yu-Hua Lin y , Chia-Yen Huang y , Chih-Chun Ke , Ya-Yun Wang , Tsung-Hsuan Lai 5,9, Hsuan-Che Liu 8, Wei-Chi Ku 5, Chying-Chyuan Chan 10 and Ying-Hung Lin 8,* 1 Department of Chemistry, Fu Jen Catholic University, New Taipei City 242, Taiwan; [email protected] 2 Division of Urology, Department of Surgery, Cardinal Tien Hospital, New Taipei City 231, Taiwan 3 Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan; [email protected] 4 Gynecologic Cancer Center, Department of Obstetrics and Gynecology, Cathay General Hospital, Taipei 106, Taiwan 5 School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan; [email protected] (T.-H.L.); [email protected] (W.-C.K.) 6 PhD Program in Nutrition & Food Science, Fu Jen Catholic University, New Taipei City 242, Taiwan; [email protected] 7 Department of Urology, En Chu Kong Hospital, New Taipei City 237, Taiwan 8 Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242, Taiwan; [email protected] (Y.-Y.W.); [email protected] (H.-C.L.) 9 Department of Obstetrics and Gynecology, Cathay General Hospital, Taipei 106, Taiwan 10 Department of Obstetrics and Gynecology, Taipei City Hospital, Renai Branch, Taipei 106, Taiwan; [email protected] * Correspondence: [email protected] These authors contributed equally to this work. y Received: 23 October 2020; Accepted: 17 November 2020; Published: 19 November 2020 Abstract: Septins (SEPTs) are highly conserved GTP-binding proteins and the fourth component of the cytoskeleton. -
Receptor Signaling Through Osteoclast-Associated Monocyte
Downloaded from http://www.jimmunol.org/ by guest on September 29, 2021 is online at: average * The Journal of Immunology The Journal of Immunology , 20 of which you can access for free at: 2015; 194:3169-3179; Prepublished online 27 from submission to initial decision 4 weeks from acceptance to publication February 2015; doi: 10.4049/jimmunol.1402800 http://www.jimmunol.org/content/194/7/3169 Collagen Induces Maturation of Human Monocyte-Derived Dendritic Cells by Signaling through Osteoclast-Associated Receptor Heidi S. Schultz, Louise M. Nitze, Louise H. Zeuthen, Pernille Keller, Albrecht Gruhler, Jesper Pass, Jianhe Chen, Li Guo, Andrew J. Fleetwood, John A. Hamilton, Martin W. Berchtold and Svetlana Panina J Immunol cites 43 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Author Choice option Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Freely available online through http://www.jimmunol.org/content/suppl/2015/02/27/jimmunol.140280 0.DCSupplemental This article http://www.jimmunol.org/content/194/7/3169.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Author Choice Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2015 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. -
Supplemental Solier
Supplementary Figure 1. Importance of Exon numbers for transcript downregulation by CPT Numbers of down-regulated genes for four groups of comparable size genes, differing only by the number of exons. Supplementary Figure 2. CPT up-regulates the p53 signaling pathway genes A, List of the GO categories for the up-regulated genes in CPT-treated HCT116 cells (p<0.05). In bold: GO category also present for the genes that are up-regulated in CPT- treated MCF7 cells. B, List of the up-regulated genes in both CPT-treated HCT116 cells and CPT-treated MCF7 cells (CPT 4 h). C, RT-PCR showing the effect of CPT on JUN and H2AFJ transcripts. Control cells were exposed to DMSO. β2 microglobulin (β2) mRNA was used as control. Supplementary Figure 3. Down-regulation of RNA degradation-related genes after CPT treatment A, “RNA degradation” pathway from KEGG. The genes with “red stars” were down- regulated genes after CPT treatment. B, Affy Exon array data for the “CNOT” genes. The log2 difference for the “CNOT” genes expression depending on CPT treatment was normalized to the untreated controls. C, RT-PCR showing the effect of CPT on “CNOT” genes down-regulation. HCT116 cells were treated with CPT (10 µM, 20 h) and CNOT6L, CNOT2, CNOT4 and CNOT6 mRNA were analysed by RT-PCR. Control cells were exposed to DMSO. β2 microglobulin (β2) mRNA was used as control. D, CNOT6L down-regulation after CPT treatment. CNOT6L transcript was analysed by Q- PCR. Supplementary Figure 4. Down-regulation of ubiquitin-related genes after CPT treatment A, “Ubiquitin-mediated proteolysis” pathway from KEGG. -
Astrocytes Close the Critical Period for Visual Plasticity
bioRxiv preprint doi: https://doi.org/10.1101/2020.09.30.321497; this version posted October 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Astrocytes close the critical period for visual plasticity 2 3 Jérôme Ribot1‡, Rachel Breton1,2,3‡#, Charles-Félix Calvo1, Julien Moulard1,4, Pascal Ezan1, 4 Jonathan Zapata1, Kevin Samama1, Alexis-Pierre Bemelmans5, Valentin Sabatet6, Florent 5 Dingli6, Damarys Loew6, Chantal Milleret1, Pierre Billuart7, Glenn Dallérac1£#, Nathalie 6 Rouach1£* 7 8 1Neuroglial Interactions in Cerebral Physiology, Center for Interdisciplinary Research in 9 Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL 10 Research University Paris, France 11 12 2Doctoral School N°568, Paris Saclay University, PSL Research University, Le Kremlin 13 Bicetre, France 14 15 3Astrocytes & Cognition, Paris-Saclay Institute for Neurosciences, CNRS UMR 9197, Paris- 16 Saclay University, Orsay, France 17 18 4Doctoral School N°158, Sorbonne University, Paris France 19 20 5Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Département de la 21 Recherche Fondamentale, Institut de biologie François Jacob, MIRCen, and CNRS UMR 22 9199, Université Paris-Saclay, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, 23 France 24 25 6Institut Curie, PSL Research University, Mass Spectrometry and Proteomics Laboratory, 26 Paris, France 27 28 7Université de Paris, Institute of -
Autocrine IFN Signaling Inducing Profibrotic Fibroblast Responses By
Downloaded from http://www.jimmunol.org/ by guest on September 23, 2021 Inducing is online at: average * The Journal of Immunology , 11 of which you can access for free at: 2013; 191:2956-2966; Prepublished online 16 from submission to initial decision 4 weeks from acceptance to publication August 2013; doi: 10.4049/jimmunol.1300376 http://www.jimmunol.org/content/191/6/2956 A Synthetic TLR3 Ligand Mitigates Profibrotic Fibroblast Responses by Autocrine IFN Signaling Feng Fang, Kohtaro Ooka, Xiaoyong Sun, Ruchi Shah, Swati Bhattacharyya, Jun Wei and John Varga J Immunol cites 49 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2013/08/20/jimmunol.130037 6.DC1 This article http://www.jimmunol.org/content/191/6/2956.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 23, 2021. The Journal of Immunology A Synthetic TLR3 Ligand Mitigates Profibrotic Fibroblast Responses by Inducing Autocrine IFN Signaling Feng Fang,* Kohtaro Ooka,* Xiaoyong Sun,† Ruchi Shah,* Swati Bhattacharyya,* Jun Wei,* and John Varga* Activation of TLR3 by exogenous microbial ligands or endogenous injury-associated ligands leads to production of type I IFN. -
Glucagon-Like Peptide-1 Receptor Agonists Increase Pancreatic Mass by Induction of Protein Synthesis
Page 1 of 73 Diabetes Glucagon-like peptide-1 receptor agonists increase pancreatic mass by induction of protein synthesis Jacqueline A. Koehler1, Laurie L. Baggio1, Xiemin Cao1, Tahmid Abdulla1, Jonathan E. Campbell, Thomas Secher2, Jacob Jelsing2, Brett Larsen1, Daniel J. Drucker1 From the1 Department of Medicine, Tanenbaum-Lunenfeld Research Institute, Mt. Sinai Hospital and 2Gubra, Hørsholm, Denmark Running title: GLP-1 increases pancreatic protein synthesis Key Words: glucagon-like peptide 1, glucagon-like peptide-1 receptor, incretin, exocrine pancreas Word Count 4,000 Figures 4 Tables 1 Address correspondence to: Daniel J. Drucker M.D. Lunenfeld-Tanenbaum Research Institute Mt. Sinai Hospital 600 University Ave TCP5-1004 Toronto Ontario Canada M5G 1X5 416-361-2661 V 416-361-2669 F [email protected] 1 Diabetes Publish Ahead of Print, published online October 2, 2014 Diabetes Page 2 of 73 Abstract Glucagon-like peptide-1 (GLP-1) controls glucose homeostasis by regulating secretion of insulin and glucagon through a single GLP-1 receptor (GLP-1R). GLP-1R agonists also increase pancreatic weight in some preclinical studies through poorly understood mechanisms. Here we demonstrate that the increase in pancreatic weight following activation of GLP-1R signaling in mice reflects an increase in acinar cell mass, without changes in ductal compartments or β-cell mass. GLP-1R agonists did not increase pancreatic DNA content or the number of Ki67+ cells in the exocrine compartment, however pancreatic protein content was increased in mice treated with exendin-4 or liraglutide. The increased pancreatic mass and protein content was independent of cholecystokinin receptors, associated with a rapid increase in S6 kinase phosphorylation, and mediated through the GLP-1 receptor. -
Sepsis-Associated Pathways Segregate Cancer Groups Himanshu Tripathi+, Samanwoy Mukhopadhyay+, Saroj Kant Mohapatra*
bioRxiv preprint doi: https://doi.org/10.1101/635243; this version posted February 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Sepsis-associated Pathways Segregate Cancer Groups Himanshu Tripathi+, Samanwoy Mukhopadhyay+, Saroj Kant Mohapatra* + These authors contributed equally to this work. * [email protected] Abstract Background: Sepsis and cancer are both leading causes of death, and occurrence of any one, increases the likelihood of the other. While cancer patients are susceptible to sepsis, survivors of sepsis are also susceptible to develop certain cancers. This mutual dependence for susceptibility suggests shared biology between the two disease categories. Earlier analysis had revealed cancer- related pathway to be up-regulated in Septic Shock (SS), an advanced stage of sepsis. This has motivated a more comprehensive comparison of the transcriptomes of SS and cancer. Methods: Gene Set Enrichment Analysis was performed to detect the pathways enriched in SS and cancer. Thereafter, hierarchical clustering was applied to identify relative segregation of 17 cancer types in to two groups vis-a-vis SS. Biological significance of the selected pathways was explored by network analysis. Clinical significance of the pathways was tested by survival analysis. A robust classifier of cancer groups was developed based on machine learning. Results: A total of 66 pathways were observed to be enriched in both SS and cancer. However, clustering segregated cancer types into two categories based on the direction of transcriptomic change.