Color Management Guide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
COLOR SPACE MODELS for VIDEO and CHROMA SUBSAMPLING
COLOR SPACE MODELS for VIDEO and CHROMA SUBSAMPLING Color space A color model is an abstract mathematical model describing the way colors can be represented as tuples of numbers, typically as three or four values or color components (e.g. RGB and CMYK are color models). However, a color model with no associated mapping function to an absolute color space is a more or less arbitrary color system with little connection to the requirements of any given application. Adding a certain mapping function between the color model and a certain reference color space results in a definite "footprint" within the reference color space. This "footprint" is known as a gamut, and, in combination with the color model, defines a new color space. For example, Adobe RGB and sRGB are two different absolute color spaces, both based on the RGB model. In the most generic sense of the definition above, color spaces can be defined without the use of a color model. These spaces, such as Pantone, are in effect a given set of names or numbers which are defined by the existence of a corresponding set of physical color swatches. This article focuses on the mathematical model concept. Understanding the concept Most people have heard that a wide range of colors can be created by the primary colors red, blue, and yellow, if working with paints. Those colors then define a color space. We can specify the amount of red color as the X axis, the amount of blue as the Y axis, and the amount of yellow as the Z axis, giving us a three-dimensional space, wherein every possible color has a unique position. -
Cielab Color Space
Gernot Hoffmann CIELab Color Space Contents . Introduction 2 2. Formulas 4 3. Primaries and Matrices 0 4. Gamut Restrictions and Tests 5. Inverse Gamma Correction 2 6. CIE L*=50 3 7. NTSC L*=50 4 8. sRGB L*=/0/.../90/99 5 9. AdobeRGB L*=0/.../90 26 0. ProPhotoRGB L*=0/.../90 35 . 3D Views 44 2. Linear and Standard Nonlinear CIELab 47 3. Human Gamut in CIELab 48 4. Low Chromaticity 49 5. sRGB L*=50 with RGB Numbers 50 6. PostScript Kernels 5 7. Mapping CIELab to xyY 56 8. Number of Different Colors 59 9. HLS-Hue for sRGB in CIELab 60 20. References 62 1.1 Introduction CIE XYZ is an absolute color space (not device dependent). Each visible color has non-negative coordinates X,Y,Z. CIE xyY, the horseshoe diagram as shown below, is a perspective projection of XYZ coordinates onto a plane xy. The luminance is missing. CIELab is a nonlinear transformation of XYZ into coordinates L*,a*,b*. The gamut for any RGB color system is a triangle in the CIE xyY chromaticity diagram, here shown for the CIE primaries, the NTSC primaries, the Rec.709 primaries (which are also valid for sRGB and therefore for many PC monitors) and the non-physical working space ProPhotoRGB. The white points are individually defined for the color spaces. The CIELab color space was intended for equal perceptual differences for equal chan- ges in the coordinates L*,a* and b*. Color differences deltaE are defined as Euclidian distances in CIELab. This document shows color charts in CIELab for several RGB color spaces. -
Harlequin RIP OEM Manual
0RIPMate for Windows operating systems Harlequin PLUS Server RIP v9.0 June 2011 AG12325 Rev. 13 Copyright and Trademarks Harlequin PLUS Server RIP June 2011 Part number: HK‚9.0‚ÄìOEM‚ÄìWIN Document issue: 106 Copyright ¬© 2011 Global Graphics Software Ltd. All rights reserved. Certificate of Computer Registration of Computer Software. Registration No. 2006SR05517 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, elec- tronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of Global Graphics Software Ltd. The information in this publication is provided for information only and is subject to change without notice. Global Graphics Software Ltd and its affiliates assume no responsibility or liability for any loss or damage that may arise from the use of any information in this publication. The software described in this book is furnished under license and may only be used or cop- ied in accordance with the terms of that license. Harlequin is a registered trademark of Global Graphics Software Ltd. The Global Graphics Software logo, the Harlequin at Heart Logo, Cortex, Harlequin RIP, Harlequin ColorPro, EasyTrap, FireWorks, FlatOut, Harlequin Color Management System (HCMS), Harlequin Color Production Solutions (HCPS), Harlequin Color Proofing (HCP), Harlequin Error Diffusion Screening Plugin 1-bit (HEDS1), Harlequin Error Diffusion Screening Plugin 2-bit (HEDS2), Harlequin Full Color System (HFCS), Harlequin ICC Profile Processor (HIPP), Harlequin Standard Color System (HSCS), Harlequin Chain Screening (HCS), Harlequin Display List Technology (HDLT), Harlequin Dispersed Screening (HDS), Harlequin Micro Screening (HMS), Harlequin Precision Screening (HPS), HQcrypt, Harlequin Screening Library (HSL), ProofReady, Scalable Open Architecture (SOAR), SetGold, SetGoldPro, TrapMaster, TrapWorks, TrapPro, TrapProLite, Harlequin RIP Eclipse Release and Harlequin RIP Genesis Release are all trademarks of Global Graphics Software Ltd. -
NEC Multisync® PA311D Wide Gamut Color Critical Display Designed for Photography and Video Production
NEC MultiSync® PA311D Wide gamut color critical display designed for photography and video production 1419058943 High resolution and incredible, predictable color accuracy. The 31” MultiSync PA311D is the ultimate desktop display for applications where precise color is essential. The innovative wide-gamut LED backlight provides 100% coverage of Adobe RGB color space and 98% coverage of DCI-P3, enabling more accurate colors to be displayed on screen. Utilizing a high performance IPS LCD panel and backed by a 4 year warranty with Advanced Exchange, the MultiSync PA311D delivers high quality, accurate images simply and beautifully. Impeccable Image Performance The wide-gamut LED LCD backlight combined with NEC’s exclusive SpectraView Engine deliver precise color in every environment. • True 4K resolution (4096 x 2160) offers a high pixel density • Up to 100% coverage of Adobe RGB color space and 98% coverage of DCI-P3 • 10-bit HDMI and DisplayPort inputs display up to 1.07 billion colors out of a palette of 4.3 trillion colors Ultimate Color Management The sophisticated SpectraView Engine provides extensive, intuitive control over color settings. • MultiProfiler software and on-screen controls provide access to thousands of color gamut, gamma, white point, brightness and contrast combinations • Internal 14-bit 3D lookup tables (LUTs) work with optional SpectraViewII color calibration solution for unparalleled color accuracy A Perfect Fit for Your Workspace A Better Workflow Future-proof connectivity, great ergonomics, and VESA mount Exclusive, -
Driver Installation Guide
Operating Instructions Driver Installation Guide For safe and correct use, be sure to read the Safety Information in "Read This First" before using the machine. TABLE OF CONTENTS 1. Introduction Start Installer........................................................................................................................................................3 Software and Utilities Included on the CD-ROM.............................................................................................5 Printer Drivers..................................................................................................................................................5 TWAIN Driver.................................................................................................................................................7 LAN-Fax Driver...............................................................................................................................................8 For Mac OS X Users...........................................................................................................................................9 2. Installing the Printer Driver Confirming the Connection Method............................................................................................................... 11 Network Connection................................................................................................................................... 11 Local Connection........................................................................................................................................ -
Paperstream Capture 2.5 User's Guide P2WW-4050-01ENZ0 Issue Date: March 2018 Issued By: PFU Limited ● the Contents of This Manual Are Subject to Change Without Notice
P2WW-4050-01ENZ0 PaperStream Capture 2.5 User's Guide Contents Chapter 1 Introduction 4 Chapter 2 Conventions 6 Chapter 3 Prior to Use 8 3.1 Overview..............................................................................................................................................8 3.2 Features...............................................................................................................................................8 3.3 System Requirements .......................................................................................................................11 Chapter 4 Installation 14 4.1 Installing PaperStream Capture.........................................................................................................14 4.2 Installing PaperStream Capture Pro.................................................................................................. 14 Chapter 5 Basic Scanning Operations 17 5.1 Scanning in Simple Scan...................................................................................................................17 5.1.1 Operation Flow ..........................................................................................................................................17 5.1.2 Scanning a Document ...............................................................................................................................17 5.1.3 Naming and Saving the Images That Are Checked and Edited ................................................................19 5.2 Scanning in Batch Scan.....................................................................................................................19 -
Accurately Reproducing Pantone Colors on Digital Presses
Accurately Reproducing Pantone Colors on Digital Presses By Anne Howard Graphic Communication Department College of Liberal Arts California Polytechnic State University June 2012 Abstract Anne Howard Graphic Communication Department, June 2012 Advisor: Dr. Xiaoying Rong The purpose of this study was to find out how accurately digital presses reproduce Pantone spot colors. The Pantone Matching System is a printing industry standard for spot colors. Because digital printing is becoming more popular, this study was intended to help designers decide on whether they should print Pantone colors on digital presses and expect to see similar colors on paper as they do on a computer monitor. This study investigated how a Xerox DocuColor 2060, Ricoh Pro C900s, and a Konica Minolta bizhub Press C8000 with default settings could print 45 Pantone colors from the Uncoated Solid color book with only the use of cyan, magenta, yellow and black toner. After creating a profile with a GRACoL target sheet, the 45 colors were printed again, measured and compared to the original Pantone Swatch book. Results from this study showed that the profile helped correct the DocuColor color output, however, the Konica Minolta and Ricoh color outputs generally produced the same as they did without the profile. The Konica Minolta and Ricoh have much newer versions of the EFI Fiery RIPs than the DocuColor so they are more likely to interpret Pantone colors the same way as when a profile is used. If printers are using newer presses, they should expect to see consistent color output of Pantone colors with or without profiles when using default settings. -
Iec 61966-2-4
This is a preview - click here to buy the full publication IEC 61966-2-4 Edition 1.0 2006-01 INTERNATIONAL STANDARD Multimedia systems and equipment – Colour measurement and management – Part 2-4: Colour management – Extended-gamut YCC colour space for video applications – xvYCC INTERNATIONAL ELECTROTECHNICAL COMMISSION PRICE CODE R ICS 33.160.40 ISBN 2-8318-8426-8 This is a preview - click here to buy the full publication – 2 – 61966-2-4 IEC:2006(E) CONTENTS FOREWORD...........................................................................................................................3 INTRODUCTION.....................................................................................................................5 1 Scope...............................................................................................................................6 2 Normative references .......................................................................................................6 3 Terms and definitions.........................................................................................................6 4 Colorimetric parameters and related characteristics .........................................................7 4.1 Primary colours and reference white........................................................................7 4.2 Opto-electronic transfer characteristics ...................................................................7 4.3 YCC (luma-chroma-chroma) encoding methods.......................................................8 -
246E9QSB/00 Philips LCD Monitor with Ultra Wide-Color
Philips LCD monitor with Ultra Wide-Color E Line 24 (23.8" / 60.5 cm diag.) Full HD (1920 x 1080) 246E9QSB Stunning color, stylish design The Philips E line monitor features stylish design with extraordinary picture performance. A narrow border Full HD display with Ultra Wide-Color brings you to real true-to-life visuals. Enjoy superior viewing in a stylish design. Superb Picture Quality • Ultra Wide-Color wider range of colors for a vivid picture • IPS LED wide view technology for image and color accuracy • 16:9 Full HD display for crisp detailed images Features designed for you • Narrow border display for a seamless appearance • Less eye fatigue with Flicker-free technology • LowBlue Mode for easy on-the-eyes productivity • EasyRead mode for a paper-like reading experience Greener everyday • Eco-friendly materials meet major international standards • Low power consumption saves energy bills LCD monitor with Ultra Wide-Color 246E9QSB/00 E Line 24 (23.8" / 60.5 cm diag.), Full HD (1920 x 1080) Highlights Ultra Wide-Color Technology 16:9 Full HD display a new solution to regulate brightness and reduce flicker for more comfortable viewing. LowBlue Mode Ultra Wide-Color Technology delivers a wider Picture quality matters. Regular displays deliver spectrum of colors for a more brilliant picture. quality, but you expect more. This display Ultra Wide-Color wider "color gamut" features enhanced Full HD 1920 x 1080 produces more natural-looking greens, vivid resolution. With Full HD for crisp detail paired Studies have shown that just as ultra-violet rays reds and deeper blues. -
Xilinx PG014 Logicore IP Ycrcb to RGB Color-Space Converter V6.00.A, Product Guide
LogiCORE IP YCrCb to RGB Color-Space Converter v6.00.a Product Guide PG014 July 25, 2012 Table of Contents SECTION I: SUMMARY IP Facts Chapter 1: Overview Feature Summary. 8 Applications . 9 Licensing and Ordering Information. 9 Chapter 2: Product Specification Standards Compliance . 10 Performance. 10 Resource Utilization. 11 Core Interfaces and Register Space . 13 Chapter 3: Designing with the Core General Design Guidelines . 27 Color-Space Conversion Background . 28 Clock, Enable, and Reset Considerations . 34 System Considerations . 36 Chapter 4: C Model Reference Installation and Directory Structure . 38 Using the C-Model . 40 Input and Output Video Structures . 42 Initializing the Input Video Structure . 43 Compiling with the YCrCb to RGB C-Model . 46 YCrCb to RGB Color-Space Converter v6.00.a www.xilinx.com 2 PG014 July 25, 2012 SECTION II: VIVADO DESIGN SUITE Chapter 5: Customizing and Generating the Core Graphical User Interface . 49 Output Generation. 53 Chapter 6: Constraining the Core Required Constraints . 54 Device, Package, and Speed Grade Selections. 54 Clock Frequencies . 54 Clock Management . 54 Clock Placement. 54 Banking . 55 Transceiver Placement . 55 I/O Standard and Placement. 55 SECTION III: ISE DESIGN SUITE Chapter 7: Customizing and Generating the Core Graphical User Interface . 57 Parameter Values in the XCO File . 61 Output Generation. 62 Chapter 8: Constraining the Core Required Constraints . 63 Device, Package, and Speed Grade Selections. 63 Clock Frequencies . 63 Clock Management . 63 Clock Placement. 63 Banking . 64 Transceiver Placement . 64 I/O Standard and Placement. 64 Chapter 9: Detailed Example Design Demonstration Test Bench . 65 Test Bench Structure . -
Preparing Images for Delivery
TECHNICAL PAPER Preparing Images for Delivery TABLE OF CONTENTS So, you’ve done a great job for your client. You’ve created a nice image that you both 2 How to prepare RGB files for CMYK agree meets the requirements of the layout. Now what do you do? You deliver it (so you 4 Soft proofing and gamut warning can bill it!). But, in this digital age, how you prepare an image for delivery can make or 13 Final image sizing break the final reproduction. Guess who will get the blame if the image’s reproduction is less than satisfactory? Do you even need to guess? 15 Image sharpening 19 Converting to CMYK What should photographers do to ensure that their images reproduce well in print? 21 What about providing RGB files? Take some precautions and learn the lingo so you can communicate, because a lack of crystal-clear communication is at the root of most every problem on press. 24 The proof 26 Marking your territory It should be no surprise that knowing what the client needs is a requirement of pro- 27 File formats for delivery fessional photographers. But does that mean a photographer in the digital age must become a prepress expert? Kind of—if only to know exactly what to supply your clients. 32 Check list for file delivery 32 Additional resources There are two perfectly legitimate approaches to the problem of supplying digital files for reproduction. One approach is to supply RGB files, and the other is to take responsibility for supplying CMYK files. Either approach is valid, each with positives and negatives. -
Unbounded Color Engines
Unbounded Color Engines Marti Maria; Little CMS; Palamós; Catalonia, Spain Abstract the spec, ICC profiles are no longer limited to 8 or 16 bit, but to A Color Matching Method (CMM), also called a Color the broad range of 32-bit IEEE 754 floating point. That was a huge Engine, is a software component that does the color conversion improvement when regarding precision and dynamic range, which calculations from one device's color space to another. This paper is now only limited by floating point representation and can take as 39 discuses a new working mode for CMMs that allows such software much as 10 components to operate in a way that is not restricted by the gamut of the device encoding, the gamut of the profile connection space or any intermediate step. This allows ICC profiles to be used in new ways for a variety of applications. An open source CMM implementing this mode is also introduced. Background One of the main components of a color management system is the Color Matching Method, (CMM), which is the software engine in charge of controlling the color transformations that take place inside the system. By today, the vast majority of color management Figure 2. KODAK VISION2 500T Color Negative Film 5218 / 7218 systems do use International Color Consortium (ICC) profiles. This addendum, however, introduced another improvement ICC color management is based on device characterization perhaps not so evident but equally important. Floating point profiles. Color transformations can be obtained by linking those encoding has a huge domain, which is nearly infinite, much larger profiles.