HD-SDI, HDMI, and Tempus Fugit

Total Page:16

File Type:pdf, Size:1020Kb

HD-SDI, HDMI, and Tempus Fugit TECHNICALL Y SPEAKING... By Steve Somers, Vice President of Engineering HD-SDI, HDMI, and Tempus Fugit D-SDI (high definition serial digital interface) and HDMI (high definition multimedia interface) Hversion 1.3 are receiving considerable attention these days. “These days” really moved ahead rapidly now that I recall writing in this column on HD-SDI just one year ago. And, exactly two years ago the topic was DVI and HDMI. To be predictably trite, it seems like just yesterday. As with all things digital, there is much change and much to talk about. HD-SDI Redux difference channels suffice with one-half 372M spreads out the image information The HD-SDI is the 1.5 Gbps backbone the sample rate at 37.125 MHz, the ‘2s’ between the two channels to distribute of uncompressed high definition video in 4:2:2. This format is sufficient for high the data payload. Odd-numbered lines conveyance within the professional HD definition television. But, its robustness map to link A and even-numbered lines production environment. It’s been around and simplicity is pressing it into the higher map to link B. Table 1 indicates the since about 1996 and is quite literally the bandwidth demands of digital cinema and organization of 4:2:2, 4:4:4, and 4:4:4:4 savior of high definition interfacing and other uses like 12-bit, 4096 level signal data with respect to the available frame delivery at modest cost over medium-haul formats, refresh rates above 30 frames per rates. distances using RG-6 style video coax. second, and larger picture formats. Defined in SMPTE (Society of Motion Applications like digital cinema demand Picture and Television Engineers) 292M, More Bits is More Better the uncompressed, 12-bit 4:4:4 structure; this standard just underwent an update in SMPTE addressed this demand with meaning that each channel is full late 2006. The technical data is essentially SMPTE 372M, which describes a dual-link bandwidth RGB or component format the same, but the standard’s relationship application of HD-SDI capable of 4:4:4 with 12-bit depth per color. According to to other SMPTE standards is now clarified delivery; i.e. two coax cables supporting Table 1, a wide variety of frame rates may via a roadmap within the new release. separate, but coordinated, interfaces be accommodated, but digital cinema with each delivering 1.485 Gbps for a typically utilizes the 24 frame progressive And so it goes, but the real reason to total bandwidth of 2.970 Gbps. This mode listed so as to preserve the film discuss HD-SDI today is to introduce adaptation supports component and RGB look. Since this standard is an extension you to some of its variations. Why? The sources of 10-bits and 12-bits as well as of SMPTE 292M, the original HD-SDI variations are taking on new meaning an “alpha” channel. The alpha channel format, its versatility is utilized for some as the industry encounters the need provides support for chroma keying and digital cinema interfacing installations; for higher color depth and expanded background clipping mattes. When the although at this time, the digital cinema transmission bandwidth. The digital alpha channel is present, the sampling infrastructure is still under considerable cinema industry is well aware of the structure is referred to as 4:4:4:4. SMPTE development and change. new flavors of HD-SDI and, in some applications, uses its variants to feed the voracious data appetite of the digital cinema projector. Signal format sampling structure/ Frame/Field Rates pixel depth SMPTE 292M describes the basic 1.485 4:2:2 (Y'C' C' ) / 10-bit 60, 60/1.001 and 50 progressive Gbps serial digital interface capable of B R 4:4:4 (R'G'B'), 4:4:4:4 (R'G'B'+ A) / 10-bit supporting high definition 10-bit, 1024 30, 30/1.001, 25, 24, and 24/1.001 progressive, PsF levels, component video in the 4:2:2 4:4:4 (R'G'B') / 12-bit 4:4:4 (Y'C' C' ), 4:4:4:4 (Y'C' C' + A) / 10-bit 60, 60/1.001, and 50 fields interlaced sampling format. This is digital component B R B R 4:4:4 (Y'C' C' ) / 12-bit with the luminance channel having full B R 4:2:2 (Y'C' C' ) / 12-bit bandwidth sampling at 74.250 MHz, B R the ‘4’ in 4:2:2, while the two chroma Table 1: Source signal formats from SMPTE 372M-2002 18 ExtroNews 18.2 Summer 2007 TECHNICALL Y SPEAKING... TECHNICALL Y SPEAKING... Reference Mapping Image Signal Format Sampling/Pixel SMPTE Frame/Field Rates Structure Format Depth Standard 1 274M 1920 x 1080 4:2:2 (Y’C’BC’R) / 10-bit 60, 60/1.001, 50 frame progressive 296M 4:4:4 (R’G’B’), 4:4:4:4 (R’G’B’+ A) / 10-bit 60, 60/1.001, 50 frames progressive 1280 x 720 4:4:4 (Y’C’BC’R), 4:4:4:4 (YC’BC’R+A) / 10-bit 30, 30/1.001, 25, 24, & 24/1.001 frames progressive 2 274M 4:4:4 (R’G’B’), 4:4:4:4 (R’G’B’+ A) / 10-bit 60, 60/1.001, 50 frames interlaced 1920 x 1080 4:4:4 (Y’C’BC’R), 4:4:4:4 (YC’BC’R+A) / 10-bit 30, 30/1.001, 25, 24, & 24/1.001 frames progressive 3 274M 4:4:4 (R’G’B’) / 12-bit 60, 60/1.001, 50 frames interlaced 1920 x 1080 4:4:4 (Y’C’BC’R) / 12-bit 30, 30/1.001, 25, 24, & 24/1.001 frames progressive 4 274M 30, 30/1.001, 25, 24, & 24/1.001 frames progressive 1920 x 1080 4:2:2 (Y’C’BC’R) / 12-bit 60, 60/1.001, 50 fields interlaced Table 2: Source Image Format Relationships from SMPTE 425M SMPTE Dynamic Duo: 424M and 425M moves from 743 MHz to 1.485 GHz. timing occupied about 20% of the total Dual-link HD-SDI is certainly a step Essentially, the loss is about double for the timing allotment, re-use of this valuable forward, but it demands that the same distance with the same cable; or, we timing slot allows a significant amount of interfacing devices be capable of can transmit the signal half as far. additional data to be transmitted within managing a certain amount of timing the HD-SDI or HD-SDTI. skew that can occur as the signal travels In SMPTE 425M, both 10-bit and through two separate cable pathways. It is 12-bit signals map into the 3 Gbps stream. SMPTE 349M takes the transport imperative that cable length be managed Table 2 summarizes the scope of image concept back into the standard definition closely to guard against increased skew formats handled in this dual-rate standard. production environment for support of time. Signal timing difference at the The mapping structure supports various 525 and 625 line video. Instructions are source must not exceed 40 nanoseconds. rates from 4:2:2 10-bit component up provided for the repacking of standard Wouldn’t it be nice if we could manage to 4:4:4 12-bit component and RGB. definition into the HD-SDI transport space. the two data streams on one cable? Increasing the bit depth improves the Further, this standard sets the structure image’s dynamic range. for transport of a variety of video data SMPTE 424M and 425M do just that. Both including MPEG-2 encoded video. standards describe attributes of the new Video Blanking Recycled 3 Gbps HD-SDI often referred to as “dual You might recall from the past HD-SDI New Song: “What kind of HD-M-I?” rate”. SMPTE 424M describes the physical article some discussion on the SMPTE Yes, Mr. Sinatra would be asking himself interface while SMPTE 425M details image 348M transport version called HD-SDTI, just that if he were around to install and format mapping. Just think of 424M high definition serial digital transport connect his own flat screen TV today. The being two regular 10-bit HD-SDI data interface. HD-SDTI is geared for general big news is that HDMI version 1.3 finally streams alternating, or time-multiplexed, purpose data hauling at 1.5 Gbps. In the released along with an additional smaller, onto one cable. In order to transmit the new release of SMPTE 292M, the roadmap adroit connector and a color depth same information as two separate HD- shows this transport interface tied in to increase from a paltry 16,777,216 colors SDI streams, the clocking rate is simply the taxonomy through SMPTE 291M, also to 68,719,476,736 colors. Yes, folks, doubled. This arrangement is called a updated in 2006, which describes how to 68.7 Gigacolors. One could fixate into a “virtual interface” within 424M. The format data for use within the ancillary comma coma reading numbers like that. connectivity via 75 ohm RG-6 style coax data space supplied in all television serial Can you imagine what a jump all the way with BNC connectors and loss budget digital standards. The ancillary space to version 2.0 might bring? Welcome to is the same as with the original SMPTE is the time interval previously devoted Gigacolors. 292M for the standard HD-SDI. The only to horizontal and vertical blanking in difference is that our -20 dB calculation the analog television system.
Recommended publications
  • COLOR SPACE MODELS for VIDEO and CHROMA SUBSAMPLING
    COLOR SPACE MODELS for VIDEO and CHROMA SUBSAMPLING Color space A color model is an abstract mathematical model describing the way colors can be represented as tuples of numbers, typically as three or four values or color components (e.g. RGB and CMYK are color models). However, a color model with no associated mapping function to an absolute color space is a more or less arbitrary color system with little connection to the requirements of any given application. Adding a certain mapping function between the color model and a certain reference color space results in a definite "footprint" within the reference color space. This "footprint" is known as a gamut, and, in combination with the color model, defines a new color space. For example, Adobe RGB and sRGB are two different absolute color spaces, both based on the RGB model. In the most generic sense of the definition above, color spaces can be defined without the use of a color model. These spaces, such as Pantone, are in effect a given set of names or numbers which are defined by the existence of a corresponding set of physical color swatches. This article focuses on the mathematical model concept. Understanding the concept Most people have heard that a wide range of colors can be created by the primary colors red, blue, and yellow, if working with paints. Those colors then define a color space. We can specify the amount of red color as the X axis, the amount of blue as the Y axis, and the amount of yellow as the Z axis, giving us a three-dimensional space, wherein every possible color has a unique position.
    [Show full text]
  • Cielab Color Space
    Gernot Hoffmann CIELab Color Space Contents . Introduction 2 2. Formulas 4 3. Primaries and Matrices 0 4. Gamut Restrictions and Tests 5. Inverse Gamma Correction 2 6. CIE L*=50 3 7. NTSC L*=50 4 8. sRGB L*=/0/.../90/99 5 9. AdobeRGB L*=0/.../90 26 0. ProPhotoRGB L*=0/.../90 35 . 3D Views 44 2. Linear and Standard Nonlinear CIELab 47 3. Human Gamut in CIELab 48 4. Low Chromaticity 49 5. sRGB L*=50 with RGB Numbers 50 6. PostScript Kernels 5 7. Mapping CIELab to xyY 56 8. Number of Different Colors 59 9. HLS-Hue for sRGB in CIELab 60 20. References 62 1.1 Introduction CIE XYZ is an absolute color space (not device dependent). Each visible color has non-negative coordinates X,Y,Z. CIE xyY, the horseshoe diagram as shown below, is a perspective projection of XYZ coordinates onto a plane xy. The luminance is missing. CIELab is a nonlinear transformation of XYZ into coordinates L*,a*,b*. The gamut for any RGB color system is a triangle in the CIE xyY chromaticity diagram, here shown for the CIE primaries, the NTSC primaries, the Rec.709 primaries (which are also valid for sRGB and therefore for many PC monitors) and the non-physical working space ProPhotoRGB. The white points are individually defined for the color spaces. The CIELab color space was intended for equal perceptual differences for equal chan- ges in the coordinates L*,a* and b*. Color differences deltaE are defined as Euclidian distances in CIELab. This document shows color charts in CIELab for several RGB color spaces.
    [Show full text]
  • Dell Ultrasharp Premiercolor Monitors Brochure (EN)
    Dell UltraSharp PremierColor Monitors BRING YOUR VISION TO LIFE Engineered to meet the demands of creative professionals, Dell UltraSharp PremierColor Monitors push the boundaries of monitor technology to deliver exceptional performance that sets the standard for today’s digital creators. Choose Dell UltraSharp PremierColor monitors for the tools you need that help bring your vision to life. Learn more at Dell.com/UltraSharp See everything. Do anything. VISUALS THAT RIVAL REAL LIFE High resolution Dell See visuals with astounding clarity on UltraSharp PremierColor these high resolution monitors, up to Monitors set the standard Ultra HD 8K resolution. These monitors feature IPS (In-Plane Switching) panel technology for consistent color and picture for creative professionals. quality across a wide 178°/178° viewing angle. Count on a wide color gamut, incredible color THE COLORS YOU NEED depth, powerful calibration Dell UltraSharp PremierColor Monitors oer a wide color capabilities, and consistent, coverage across professional color spaces, including AdobeRGB, accurate colors. Bringing sRGB, Rec. 709, as well as the widest DCI-P3 color coverage in a professional monitor at 99.8%*. This enables support everything you need in a for projects across dierent formats, making UltraSharp monitor for all your color- PremierColor monitors the ideal choice for photographers, lm critical projects. and video creators, animators, VFX artists and more. Features vary by model. Please visit dell.com/monitors for details. Dell UltraSharp PremierColor Monitors INCREDIBLE COLOR DEPTH AND CONTRAST Get amazingly smooth color gradients and precision across more shades with an incredible color depth of 1.07 billion colors and true 10 bit color**.
    [Show full text]
  • Effects of Color Depth
    EFFECTS OF COLOR DEPTH By Tom Kopin – CTS, ISF-C MARCH 2011 KRAMER WHITE PAPER WWW.KRAMERELECTRONICS.COM TABLE OF CONTENTS WHAT IS COLOR DEPTH? ...................................................................................1 DEEP COLOR ......................................................................................................1 CALCULATING HDMI BANDWIDTH ......................................................................1 BLU-RAY PLAYERS AND DEEP COLOR .................................................................3 THE SOLUTIONS .................................................................................................3 SUMMARY ..........................................................................................................4 The first few years of HDMI in ProAV have been, for lack of a better word, unpredictable. What works with one display doesn’t work with another. Why does HDMI go 50ft out of this source, but not that source? The list is endless and comments like this have almost become commonplace for HDMI, but why? Furthermore, excuses have been made in order to allow ambiguity to remain such as, "All Blu-ray players are not made equally, because their outputs must have different signal strength." However, is this the real reason? While the real answers may not truly be known, understanding how color depth quietly changes our HDMI signals will help make HDMI less unpredictable. What is Color Depth? Every HDMI signal has a color depth associated with it. Color depth defines how many different colors can be represented by each pixel of a HDMI signal. A normal HDMI signal has a color depth of 8 bits per color. This may also be referred to as 24-bit color (8-bits per color x 3 colors RGB). The number of bits refers to the amount of binary digits used to determine the maximum number of colors that can be rendered. For example, the maximum number of colors for 24-bit color would be: 111111111111111111111111(binary) = 16,777,215 = 16.7 million different colors.
    [Show full text]
  • User Requirements for Video Monitors in Television Production
    EBU – TECH 3320 User requirements for Video Monitors in Television Production Source: P/Display Version 1.0 Geneva May 2007 1 Page intentionally left blank. This document is paginated for recto-verso printing Tech 33xx User requirements for Video Monitors in Television Production Contents Scope .............................................................................................................. 5 1. Definition of a Grade 1 monitor ......................................................................... 5 2. Definition of a Grade 2 monitor ......................................................................... 5 3. Definition of a Grade 3 monitor ......................................................................... 6 4. Special application of displays ........................................................................... 6 4.1 Viewfinder monitors.................................................................................. 6 4.2 Displays used for set design......................................................................... 6 4.3 Displays used in location shooting, or on set/studio floor ..................................... 6 4.3.1 Luminance ranges ............................................................................... 6 4.3.2 Black level........................................................................................ 7 4.3.3 Contrast ratio .................................................................................... 7 4.3.4 Gamma characteristics ........................................................................
    [Show full text]
  • ABBREVIATIONS EBU Technical Review
    ABBREVIATIONS EBU Technical Review AbbreviationsLast updated: January 2012 720i 720 lines, interlaced scan ACATS Advisory Committee on Advanced Television 720p/50 High-definition progressively-scanned TV format Systems (USA) of 1280 x 720 pixels at 50 frames per second ACELP (MPEG-4) A Code-Excited Linear Prediction 1080i/25 High-definition interlaced TV format of ACK ACKnowledgement 1920 x 1080 pixels at 25 frames per second, i.e. ACLR Adjacent Channel Leakage Ratio 50 fields (half frames) every second ACM Adaptive Coding and Modulation 1080p/25 High-definition progressively-scanned TV format ACS Adjacent Channel Selectivity of 1920 x 1080 pixels at 25 frames per second ACT Association of Commercial Television in 1080p/50 High-definition progressively-scanned TV format Europe of 1920 x 1080 pixels at 50 frames per second http://www.acte.be 1080p/60 High-definition progressively-scanned TV format ACTS Advanced Communications Technologies and of 1920 x 1080 pixels at 60 frames per second Services AD Analogue-to-Digital AD Anno Domini (after the birth of Jesus of Nazareth) 21CN BT’s 21st Century Network AD Approved Document 2k COFDM transmission mode with around 2000 AD Audio Description carriers ADC Analogue-to-Digital Converter 3DTV 3-Dimension Television ADIP ADress In Pre-groove 3G 3rd Generation mobile communications ADM (ATM) Add/Drop Multiplexer 4G 4th Generation mobile communications ADPCM Adaptive Differential Pulse Code Modulation 3GPP 3rd Generation Partnership Project ADR Automatic Dialogue Replacement 3GPP2 3rd Generation Partnership
    [Show full text]
  • Iec 61966-2-4
    This is a preview - click here to buy the full publication IEC 61966-2-4 Edition 1.0 2006-01 INTERNATIONAL STANDARD Multimedia systems and equipment – Colour measurement and management – Part 2-4: Colour management – Extended-gamut YCC colour space for video applications – xvYCC INTERNATIONAL ELECTROTECHNICAL COMMISSION PRICE CODE R ICS 33.160.40 ISBN 2-8318-8426-8 This is a preview - click here to buy the full publication – 2 – 61966-2-4 IEC:2006(E) CONTENTS FOREWORD...........................................................................................................................3 INTRODUCTION.....................................................................................................................5 1 Scope...............................................................................................................................6 2 Normative references .......................................................................................................6 3 Terms and definitions.........................................................................................................6 4 Colorimetric parameters and related characteristics .........................................................7 4.1 Primary colours and reference white........................................................................7 4.2 Opto-electronic transfer characteristics ...................................................................7 4.3 YCC (luma-chroma-chroma) encoding methods.......................................................8
    [Show full text]
  • Creating 4K/UHD Content Poster
    Creating 4K/UHD Content Colorimetry Image Format / SMPTE Standards Figure A2. Using a Table B1: SMPTE Standards The television color specification is based on standards defined by the CIE (Commission 100% color bar signal Square Division separates the image into quad links for distribution. to show conversion Internationale de L’Éclairage) in 1931. The CIE specified an idealized set of primary XYZ SMPTE Standards of RGB levels from UHDTV 1: 3840x2160 (4x1920x1080) tristimulus values. This set is a group of all-positive values converted from R’G’B’ where 700 mv (100%) to ST 125 SDTV Component Video Signal Coding for 4:4:4 and 4:2:2 for 13.5 MHz and 18 MHz Systems 0mv (0%) for each ST 240 Television – 1125-Line High-Definition Production Systems – Signal Parameters Y is proportional to the luminance of the additive mix. This specification is used as the color component with a color bar split ST 259 Television – SDTV Digital Signal/Data – Serial Digital Interface basis for color within 4K/UHDTV1 that supports both ITU-R BT.709 and BT2020. 2020 field BT.2020 and ST 272 Television – Formatting AES/EBU Audio and Auxiliary Data into Digital Video Ancillary Data Space BT.709 test signal. ST 274 Television – 1920 x 1080 Image Sample Structure, Digital Representation and Digital Timing Reference Sequences for The WFM8300 was Table A1: Illuminant (Ill.) Value Multiple Picture Rates 709 configured for Source X / Y BT.709 colorimetry ST 296 1280 x 720 Progressive Image 4:2:2 and 4:4:4 Sample Structure – Analog & Digital Representation & Analog Interface as shown in the video ST 299-0/1/2 24-Bit Digital Audio Format for SMPTE Bit-Serial Interfaces at 1.5 Gb/s and 3 Gb/s – Document Suite Illuminant A: Tungsten Filament Lamp, 2854°K x = 0.4476 y = 0.4075 session display.
    [Show full text]
  • Presentation Title Sub-Title / Date
    Review of HDTV (production) standards Hans Hoffmann Senior Engineer Technical Department, EBU [email protected] Overview HDTV basics Interfaces Compression HD-Ready, HDTV-Ready, EBU Demos @ IBC2005 1080p/50 Summary Uncompromised quality of Sound and Video Details (for advertisements) “Bad” HDTV more annoying than “bad” SDTV High-Definition Television Design Viewing Distance: max. 3h on a 50inch display Preferred Viewing Distance: Line or pixel structure Picture width pw [m] ] c/pw [m ph Line density Ld [m] not visible gh h ] e hi D [m ur c/p nal ago s] ct Di che Pi [in 1' (1/ . 60° ) View in g Dista [m] n ce d α Definitions • SDTV: – 625-line TV = active 576 lines, “576i/25” – 525-line TV = active 480 lines, “480i/29.94” • HDTV: – 1080i/25 – 1080p/25 or 1080p/24 – 720p/50 – 1080p/50 •Interlaced or progressive scan HDTV – Options in the Signal Chain Creation Production Encoder Distribution Decoder Interfacing Display What did we learn from theSat. SDTV debate on interfaces and compression?DTT. IP etc. • The wholeSig. Process.signal chain determines STBthe final qualityDisplay at theCompression consumer Decoder Studio-InterfacesHDTV is muchSignal Processimoreng sensitiveContribution to technicalNew STBand Display HD-SDI (1.485Gb) P/I still MPEG-2 (VC-1, H264) HD-Ready HD-SDI (3Gb) artistical1080i/25 errors. 422P@HL HDTV Ready 720p/50-60 10 Gb? 1080p/25 Emission format (720p/50 1080i/25-30 HD-SDTI • We 1080p/24need to be moreH.264-AcarefulVC and have1080i/25)to provide 720p/50 prop. SMPTE VC1 Impact of sufficient1080p/50 quality 720p/50headroom in the studio.
    [Show full text]
  • Preparing Images for Delivery
    TECHNICAL PAPER Preparing Images for Delivery TABLE OF CONTENTS So, you’ve done a great job for your client. You’ve created a nice image that you both 2 How to prepare RGB files for CMYK agree meets the requirements of the layout. Now what do you do? You deliver it (so you 4 Soft proofing and gamut warning can bill it!). But, in this digital age, how you prepare an image for delivery can make or 13 Final image sizing break the final reproduction. Guess who will get the blame if the image’s reproduction is less than satisfactory? Do you even need to guess? 15 Image sharpening 19 Converting to CMYK What should photographers do to ensure that their images reproduce well in print? 21 What about providing RGB files? Take some precautions and learn the lingo so you can communicate, because a lack of crystal-clear communication is at the root of most every problem on press. 24 The proof 26 Marking your territory It should be no surprise that knowing what the client needs is a requirement of pro- 27 File formats for delivery fessional photographers. But does that mean a photographer in the digital age must become a prepress expert? Kind of—if only to know exactly what to supply your clients. 32 Check list for file delivery 32 Additional resources There are two perfectly legitimate approaches to the problem of supplying digital files for reproduction. One approach is to supply RGB files, and the other is to take responsibility for supplying CMYK files. Either approach is valid, each with positives and negatives.
    [Show full text]
  • Dalmatian's Definitions
    T H E B L A C K & W H I T E P A P E R S D A L M A T I A N ’ S D E F I N I T I O N S 8 BIT A bit is the possible number of colors or tones assigned to each pixel. In 8 bit files, 1 of 256 tones is assigned to each pixel. 8-bit Jpeg is the default setting for most cameras; whenever possible set the camera to RAW capture for the best image capture possible. 16 BIT A bit is the possible number of colors or tones assigned to each pixel. In 16 bit files, 1 of 65,536 tones are assigned to each pixel. 16 bit files have the greatest range of tonalities and a more realistic interpretation of continuous tone. Note the increase in tonalities from 8 bit to 16 bit. If your aim is the quality of the image, then 16 bit is a must. ADOBE 1998 COLOR SPACE Adobe ‘98 is the preferred RGB color space that places the captured and therefore printable colors within larger parameters, rendering approximately 50% the visible color space of the human eye. Whenever possible, change the camera’s default sRGB setting to Adobe 1998 in order to increase available color capture. Whenever possible change this setting to Adobe 1998 in order to increase available color capture. When an image is captured in sRGB, it is best to leave the color space unchanged so color rendering is unaffected. ARCHIVAL Archival materials are those with a neutral pH balance that will not degrade over time and are resistant to UV fading.
    [Show full text]
  • Specification of Srgb
    How to interpret the sRGB color space (specified in IEC 61966-2-1) for ICC profiles A. Key sRGB color space specifications (see IEC 61966-2-1 https://webstore.iec.ch/publication/6168 for more information). 1. Chromaticity co-ordinates of primaries: R: x = 0.64, y = 0.33, z = 0.03; G: x = 0.30, y = 0.60, z = 0.10; B: x = 0.15, y = 0.06, z = 0.79. Note: These are defined in ITU-R BT.709 (the television standard for HDTV capture). 2. Reference display‘Gamma’: Approximately 2.2 (see precise specification of color component transfer function below). 3. Reference display white point chromaticity: x = 0.3127, y = 0.3290, z = 0.3583 (equivalent to the chromaticity of CIE Illuminant D65). 4. Reference display white point luminance: 80 cd/m2 (includes veiling glare). Note: The reference display white point tristimulus values are: Xabs = 76.04, Yabs = 80, Zabs = 87.12. 5. Reference veiling glare luminance: 0.2 cd/m2 (this is the reference viewer-observed black point luminance). Note: The reference viewer-observed black point tristimulus values are assumed to be: Xabs = 0.1901, Yabs = 0.2, Zabs = 0.2178. These values are not specified in IEC 61966-2-1, and are an additional interpretation provided in this document. 6. Tristimulus value normalization: The CIE 1931 XYZ values are scaled from 0.0 to 1.0. Note: The following scaling equations can be used. These equations are not provided in IEC 61966-2-1, and are an additional interpretation provided in this document. 76.04 X abs 0.1901 XN = = 0.0125313 (Xabs – 0.1901) 80 76.04 0.1901 Yabs 0.2 YN = = 0.0125313 (Yabs – 0.2) 80 0.2 87.12 Zabs 0.2178 ZN = = 0.0125313 (Zabs – 0.2178) 80 87.12 0.2178 7.
    [Show full text]