SPACE STORIES of the Yearp. 16

Total Page:16

File Type:pdf, Size:1020Kb

SPACE STORIES of the Yearp. 16 MARS 2020 ARRIVES AT THE RED PLANET p. 24 FEBRUARY 2021 The world’s best-selling astronomy magazine TOP 10 SPACE STORIES OF THE YEAR p. 16 A BRILLIANT COMET LIGHTS THE WAY THE MILKY WAY DOES THE WAVE BETELGEUSE FAKES AN EXPLOSION A NEW SUN TELESCOPE TAKES FLIGHT www.Astronomy.com $6.99 FIRST MIDSIZED BLACK HOLES DETECTED 02 Vol. 49 • GALAXIES SHED LIGHT ON DARK AGES Issue 2 CREW DRAGON GIVES ASTRONAUTS A RIDE 0 7447001096 8 NEW MARS ROVER begins its mission 24 ASTRONOMY • FEBRUARY 2021 Perseverance is more than just Curiosity’s double — it will hunt for ancient life, cache samples, and pave the way for human explorers. BY JIM BELL EVERY 10 YEARS, planetary scien- collectively known as Mars Sample tists put their collective minds together Return. Perseverance takes its first driving test on December 17, 2019, in a clean room at NASA’s Jet to develop mission recommendations Now, nine years later, that Propulsion Laboratory in Pasadena, California. for the decade ahead. The most recent of ambitious journey is about to begin. NASA/JPL-CALTECH these decadal surveys, published in 2011, The Mars 2020 mission launched from had a clear top priority for NASA: to Cape Canaveral on July 30, 2020, and is collect samples from the surface of Mars scheduled to land in Jezero Crater on and return them to Earth. February 18, 2021. If all goes well, the The concept of returning samples rover will embark on a mission lasting from Mars has been something of a holy at least a full martian year (equivalent grail for planetary scientists. As intrepid to 687 days on Earth). In addition to its as NASA’s previous robotic explorers own explorations, it will also collect and have been, their analyses of the rock and cache samples that will later be returned soil they rove have always been limited to Earth — revealing the mysteries of by the equipment they carry. When you that once-habitable place on Mars. ship a rover to Mars, the cost of every extra ounce is colossal. And rover A clone is born instruments — marvels of engineering In December 2012, just four months though they are — are no substitute for after the Curiosity rover landed a fully equipped laboratory on Earth. on Mars, NASA announced a new That’s why, in the 2011 Decadal wheeled explorer that would address Survey, scientists recommended NASA the top goal of the most recent decadal. Perseverance lifts off on July 30, 2020, atop a design a flagship mission to “collect, It was scheduled to launch during a United Launch Alliance Atlas V rocket at the document, and package samples for favorable Earth–Mars alignment in Space Launch Complex-41 on Cape Canaveral. future collection and return to Earth.” 2020. This Mars 2020 rover would UNITED LAUNCH ALLIANCE In other words, the community be designed and built by a team at strongly recommended that NASA NASA’s Jet Propulsion Laboratory finally greenlight a set of missions (JPL) in Pasadena, California — a team that included many of the engineers, managers, and others who had built The Perseverance rover is NASA’s follow-up to the Curiosity, as well as previous Mars rov- successful Curiosity rover and will rove Jezero Crater in search of chemical or textural evidence ers Sojourner, Spirit, and Opportunity. of past microbial life. NASA/JPL-CALTECH To fit NASA’s tight budget and reduce the mission’s complexity, 90 percent of the Mars 2020 rover, cruise stage, and sky crane landing system would be built from spare parts left over from Curiosity. Mars 2020 With social distancing in effect, senior engineers in Southern California conducted their final inspections remotely via a video feed from a smartphone at the Kennedy Space Center in Florida. NASA/JPL-CALTECH MARS SAMPLE RETURN WHILE NO MISSIONS have yet been approved or funded, several space agencies around the world are deep in the planning stages for a Mars sample-return mission. For example, A ROVER’S NASA and the European Space Agency (ESA) are discussing a concept for joint missions that would find, collect, and return the samples cached by the Perseverance rover. And the JOURNEY Chinese National Space Agency is looking into potential robotic sample-return missions as follow-ons to their Tianwen-1 mission, which launched July 23, 2020, and will land a rover in the Utopia Planitia region of Mars in February 2021. The NASA/ESA plan as currently envisioned would involve the launch of two missions in 2026. The first is a dedicated NASA lander carrying an ESA-built “fetch” rover and a small rocket known as the Mars Ascent Vehicle NASA sample ESA Earth (MAV). The fetch rover retrieval lander Return Orbiter 6 would collect the cached rocket rocket ERO travels to sample tubes left by near-Earth orbit Perseverance on Mars’ and releases the surface and bring them samples to Earth. back to the MAV, placing 5 them inside a soccer ball-sized sample cap- ESA’s Earth Return Orbiter (ERO) picks sule. The MAV would up the samples. then launch them into Mars orbit, where an 4 ESA Earth-return orbiter — the second launch of The Mars Ascent Vehicle 2026 — would be waiting (MAV) to capture the sample launches the capsule. That orbiter sample tubes into Mars orbit. would then depart Mars and return to Earth, jetti- soning the capsule for a 3 parachute-assisted land- The fetch rover ing in the Utah desert in places the 2031. — J.B. tubes inside an ascent vehicle. 1 2 Perseverance collects the ESA’s “fetch” rover Midway samples and deposits them carries the tubes to the in tubes on the ground. sample retrieval lander. ASTRONOMY: ROEN KELLY. SPACECRAFT MODELS: NASA, ESA would thus be a clone, of sorts — looking and weather of its field site. However, a lot like Curiosity on the outside, but Perseverance also has a number of new and costing at least $700 million less than unique objectives. Perhaps the most impor- Curiosity’s $2.8 billion price tag. tant is to seek the signs of ancient life. On the inside, however, the Mars 2020 Ancient means not focusing on any This map shows a hypothetical course that Perseverance might take, based on scenarios plotted rover would sport some entirely new potential living organisms on the surface by mission scientists. The actual route will of course equipment to help it carry out the sample- of Mars today (which are highly unlikely differ, depending on where Perseverance happens caching job the decadal had outlined. to exist, given the harsh radiation, low to touch down within the landing ellipse. The prime mission is to explore Jezero Crater; if the rover survives The mission’s announcement kicked off surface pressure, and frigid temperature). to tackle an extended mission, it may trek up and out what NASA Associate Administrator for Instead, Perseverance will seek evidence of the crater west to another site, dubbed Midway. ASTRONOMY: ROEN KELLY. BASE MAP IMAGE: ESA/FU-BERLIN; ROVER PATH (PRIME Science John Grunsfeld called “seven of organisms that may have lived billions MISSION): SANJEEV GUPTA AND BRIONY HORGAN; ROVER PATH (EXTENDED MISSION): years of innovation” to develop that of years ago, during a time early in Mars’ RICHARD OTERO, ERISA STILLEY, NATHAN WILLIAMS, ALLEN CHEN, ET AL. equipment, along with some completely history when the surface environment was new tools. In early 2020, nearing the end a lot more like Earth’s. of the seven-year sprint, the rover finally These signs could come in the form of received its name: Perseverance. preserved physical or chemical evidence, ago, back in the Precambrian era, organ- or textures left imprinted on rocks. isms didn’t develop shells or skeletons that In search of ancient life Finding these biomarkers, however, is could easily leave behind fossil remains Many of the Mars 2020 mission’s goals no small task. Geologists have a similar until about 550 million years ago. are similar to those of previous Mars struggle on Earth: Though life began on Among the prime examples of ancient rover missions, like studying the geology our planet some 3 billion to 4 billion years biomarkers on Earth are stromatolites, 26 ASTRONOMY • FEBRUARY 2021 D elta Delta remnants Delta surface Delta Crater base rim Western Eastern landing site landing site Lake margin Jezero Crater landing ellipse Crater floor N W Prime mission Extended mission 2 miles 3 kilometers which are rock and mineral structures geological or geochemical processes. built up by coordinated groups of simple Rather, samples must often be taken back single-celled organisms, especially cya- into sophisticated laboratories with the nobacteria (formerly called blue-green most advanced equipment that exists. algae). Finding structures like those in This is one of the main motivations ancient rocks on Mars would be an excit- for making Mars 2020 the first step of an ing and potentially profound discovery. international Mars sample-return pro- But definitively confirming these gram. Barring the unambiguous (and structures will be difficult with unlikely) discovery of biomarkers like Perseverance’s toolkit alone. Taking a fossils, the only way to confirm signs of cue from terrestrial geologists, planetary life might be to bring those samples back This reconstructed mosaic view of Jezero Crater’s magnificent river delta from above looks west, out to scientists have realized that equipment to Earth so they can be studied in much the crater rim. The steep slopes of the delta in the used in the field often cannot tease out greater detail. As Carl Sagan famously foreground stand up to 350 feet (107 m) above the whether the samples truly provide evi- noted, “extraordinary claims require crater floor.
Recommended publications
  • Industry at the Edge of Space Other Springer-Praxis Books of Related Interest by Erik Seedhouse
    IndustryIndustry atat thethe EdgeEdge ofof SpaceSpace ERIK SEEDHOUSE S u b o r b i t a l Industry at the Edge of Space Other Springer-Praxis books of related interest by Erik Seedhouse Tourists in Space: A Practical Guide 2008 ISBN: 978-0-387-74643-2 Lunar Outpost: The Challenges of Establishing a Human Settlement on the Moon 2008 ISBN: 978-0-387-09746-6 Martian Outpost: The Challenges of Establishing a Human Settlement on Mars 2009 ISBN: 978-0-387-98190-1 The New Space Race: China vs. the United States 2009 ISBN: 978-1-4419-0879-7 Prepare for Launch: The Astronaut Training Process 2010 ISBN: 978-1-4419-1349-4 Ocean Outpost: The Future of Humans Living Underwater 2010 ISBN: 978-1-4419-6356-7 Trailblazing Medicine: Sustaining Explorers During Interplanetary Missions 2011 ISBN: 978-1-4419-7828-8 Interplanetary Outpost: The Human and Technological Challenges of Exploring the Outer Planets 2012 ISBN: 978-1-4419-9747-0 Astronauts for Hire: The Emergence of a Commercial Astronaut Corps 2012 ISBN: 978-1-4614-0519-1 Pulling G: Human Responses to High and Low Gravity 2013 ISBN: 978-1-4614-3029-2 SpaceX: Making Commercial Spacefl ight a Reality 2013 ISBN: 978-1-4614-5513-4 E r i k S e e d h o u s e Suborbital Industry at the Edge of Space Dr Erik Seedhouse, M.Med.Sc., Ph.D., FBIS Milton Ontario Canada SPRINGER-PRAXIS BOOKS IN SPACE EXPLORATION ISBN 978-3-319-03484-3 ISBN 978-3-319-03485-0 (eBook) DOI 10.1007/978-3-319-03485-0 Springer Cham Heidelberg New York Dordrecht London Library of Congress Control Number: 2013956603 © Springer International Publishing Switzerland 2014 This work is subject to copyright.
    [Show full text]
  • Atlas Launch System Mission Planner's Guide, Atlas V Addendum
    ATLAS Atlas Launch System Mission Planner’s Guide, Atlas V Addendum FOREWORD This Atlas V Addendum supplements the current version of the Atlas Launch System Mission Plan- ner’s Guide (AMPG) and presents the initial vehicle capabilities for the newly available Atlas V launch system. Atlas V’s multiple vehicle configurations and performance levels can provide the optimum match for a range of customer requirements at the lowest cost. The performance data are presented in sufficient detail for preliminary assessment of the Atlas V vehicle family for your missions. This guide, in combination with the AMPG, includes essential technical and programmatic data for preliminary mission planning and spacecraft design. Interface data are in sufficient detail to assess a first-order compatibility. This guide contains current information on Lockheed Martin’s plans for Atlas V launch services. It is subject to change as Atlas V development progresses, and will be revised peri- odically. Potential users of Atlas V launch service are encouraged to contact the offices listed below to obtain the latest technical and program status information for the Atlas V development. For technical and business development inquiries, contact: COMMERCIAL BUSINESS U.S. GOVERNMENT INQUIRIES BUSINESS INQUIRIES Telephone: (691) 645-6400 Telephone: (303) 977-5250 Fax: (619) 645-6500 Fax: (303) 971-2472 Postal Address: Postal Address: International Launch Services, Inc. Commercial Launch Services, Inc. P.O. Box 124670 P.O. Box 179 San Diego, CA 92112-4670 Denver, CO 80201 Street Address: Street Address: International Launch Services, Inc. Commercial Launch Services, Inc. 101 West Broadway P.O. Box 179 Suite 2000 MS DC1400 San Diego, CA 92101 12999 Deer Creek Canyon Road Littleton, CO 80127-5146 A current version of this document can be found, in electronic form, on the Internet at: http://www.ilslaunch.com ii ATLAS LAUNCH SYSTEM MISSION PLANNER’S GUIDE ATLAS V ADDENDUM (AVMPG) REVISIONS Revision Date Rev No.
    [Show full text]
  • Orion Capsule Launch Abort System Analysis
    Orion Capsule Launch Abort System Analysis Assignment 2 AE 4802 Spring 2016 – Digital Design and Manufacturing Georgia Institute of Technology Authors: Tyler Scogin Michel Lacerda Jordan Marshall Table of Contents 1. Introduction ......................................................................................................................................... 4 1.1 Mission Profile ............................................................................................................................. 7 1.2 Literature Review ........................................................................................................................ 8 2. Conceptual Design ............................................................................................................................. 13 2.1 Design Process ........................................................................................................................... 13 2.2 Vehicle Performance Characteristics ......................................................................................... 15 2.3 Vehicle/Sub-Component Sizing ................................................................................................. 15 3. Vehicle 3D Model in CATIA ................................................................................................................ 22 3.1 3D Modeling Roles and Responsibilities: .................................................................................. 22 3.2 Design Parameters and Relations:............................................................................................
    [Show full text]
  • 19700031865.Pdf
    1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. NASA TM X-2075 4. Title and Subtitle 5. Report Date EFFECTOFRETROROCKETCANTANGLEON October 1970 6. Performing Organization Code GROUND EROSION - A SCALED VIKING STUDY 7. Author(s) 8. Performing Organization Report No. Leonard V. Clark L-7376 IO. Work Unit No. 9. Performing Organization Name and Address 124-08-29-01 NASA Langley Research Center 11. Contract or Grant No. Hampton, Va. 23365 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address Technical Memorandum National Aeronautics and Space Administration 14. Sponsoring Agency Code Washington, D.C. 20546 ~ 16. Abstract An experimental study was conducted at the Langley Research Center to evaluate the relative merits of canting the Viking lander retrorockets toward the spacecraft center line as a means of reducing rocket-exhaust disturbance of the surface of Mars. This paper describes the experimental study, outlines the scaling scheme of the tests, and briefly dis- cusses significant data trends. The results of this exploratory study indicate that canting of the retrorockets toward the center of the spacecraft does reduce ground erosion of the landing site from that produced by a lander configuration with downward-directed retro- rockets. Obviously, before canting the Viking lander retrorockets, it would be necessary to weigh this reduction in surface disturbance against the attendant loss of thrust due to canting. 17. Key Words (Suggested by Author(s) ) 18. Distribution Statement Jet impingement Unclassified - Unlimited Rocket-exhaust effects 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No.
    [Show full text]
  • Reusable Rocket Upper Stage Development of a Multidisciplinary Design Optimisation Tool to Determine the Feasibility of Upper Stage Reusability L
    Reusable Rocket Upper Stage Development of a Multidisciplinary Design Optimisation Tool to Determine the Feasibility of Upper Stage Reusability L. Pepermans Technische Universiteit Delft Reusable Rocket Upper Stage Development of a Multidisciplinary Design Optimisation Tool to Determine the Feasibility of Upper Stage Reusability by L. Pepermans to obtain the degree of Master of Science at the Delft University of Technology, to be defended publicly on Wednesday October 30, 2019 at 14:30 AM. Student number: 4144538 Project duration: September 1, 2018 – October 30, 2019 Thesis committee: Ir. B.T.C Zandbergen , TU Delft, supervisor Prof. E.K.A Gill, TU Delft Dr.ir. D. Dirkx, TU Delft This thesis is confidential and cannot be made public until October 30, 2019. An electronic version of this thesis is available at http://repository.tudelft.nl/. Cover image: S-IVB upper stage of Skylab 3 mission in orbit [23] Preface Before you lies my thesis to graduate from Delft University of Technology on the feasibility and cost-effectiveness of reusable upper stages. During the accompanying literature study, it was determined that the technology readiness level is sufficiently high for upper stage reusability. However, it was unsure whether a cost-effective system could be build. I have been interested in the field of Entry, Descent, and Landing ever since I joined the Capsule Team of Delft Aerospace Rocket Engineering (DARE). During my time within the team, it split up in the Structures Team and Recovery Team. In September 2016, I became Chief Recovery for the Stratos III student-built sounding rocket. During this time, I realised that there was a lack of fundamental knowledge in aerodynamic decelerators within DARE.
    [Show full text]
  • Reusable Stage Concepts Design Tool
    DOI: 10.13009/EUCASS2019-421 8TH EUROPEAN CONFERENCE FOR AERONAUTICS AND AEROSPACE SCIENCES (EUCASS) DOI: ADD DOINUMBER HERE Reusable stage concepts design tool Lars Pepermans?, Barry Zandbergeny ?Delft University of Technology Kluyverweg 1, 2629 HS Delft [email protected] yDelft University of Technology Kluyverweg 1, 2629 HS Delft Abstract Reusable launch vehicles hold the promise of substantially reducing the cost of access to space. Many different approaches towards realising a reusable rocket exist or are being proposed. This work focuses on the use of an optimisation method for conceptual design of non-winged reusable upper stages, thereby allowing it to take into account landing on land, sea or mid-air retrieval as well as landing the full stage or the engine only. As the optimisation criterion, the ratio of the specific launch cost of the reusable to the expendable version is used. The tool also provides for a Monte Carlo analysis, which allows for investigating the ruggedness of the design solution(s) found. The article will describe the methods implemented in the Conceptual Reusability Design Tool (CRDT) together with the modifications made to ParSim v3, a simulation tool by Delft Aerospace Rocket Engi- neering. Furthermore, it will present the steps taken to verify and validate CRDT. Finally, several example cases are presented based on the Atlas V-Centaur launch vehicle. The cases demonstrate the tools capa- bility of finding optimum and the sensitivity of the found optimum. However, it also shows the optimum when the user disables some Entry Descent and Landing (EDL) options. 1. Introduction To make space more accessible, one can reduce the cost of an orbital launch.
    [Show full text]
  • A Multipurpose Reusable Reentry Satellite
    I I RRS - A MULTIPURPOSE REUSABLE REENTRY SATELLITE I John J. Givens· I and Richard W. Schaupp NASA Ames Research Center I ABSTRACT . This paper descr ibes a low-cost, mul tipurpose Reus­ able Reentry Satellite (RRS) which can carry a variety of I experiments into space, remain in orbit for up to 60 days, return autonomously to Earth and be refurbished for reuse. Potential user applications include life science, commer­ I cial, and others. As presently conceived, the vehicle is a blunt ballis­ I tic entry vehicle with an internal cavity for accommodat­ ing user payloads, including those utilizing the STS Get­ Away Special (GAS) canister. The spacecraft provides payload power, transmits payload data, receives payload I commands, and controls payload cavi ty thermal conditions. A variety of vehicle sizes with base diameters within I the range 38 to 100 in. have been investigated. Based on these investigations, a 64-in. -diameter vehicle has been selected as a baseline for conceptual design studies. This I vehicle weighs 1900 lb and has an overall length of 76 in. It can accommo~ate a payload whioh weighs 450 lb and ocoupies 21 ft . Up to 30 kWhr of lithium battery power is I available for payload use. The results of the studies to date have been very promising. Efforts are oontinuing at NASA Ames Researoh I Center to define system capabilities and requirements while contraoted vehiole study efforts are being initiated. I INTRODUCTION I In recent years user acoess to space has been seriously oonstrained by the lack of low-cost spaceoraft and the availability of launch opportunities.
    [Show full text]
  • INTRODUCTION This Study of Reentry Vehicle (RV)
    INTRODUCTION This study of Reentry Vehicle (RV) systems and their associated operations was conducted for the Department of Transportation/Office of Commercial Space Transportation. The purpose of the study was to investigate and present an overview of reentry vehicle systems and to identify differences in mission requirements and operations. This includes reentry vehicle system background, system design considerations, description of past/present/future reentry systems, and hazards associated with reentry vehicles that attain orbit, reenter, and are recovered. A general literature search that included the OCST data base, NASA, Air Force, and other technical libraries and personal contact with various government or private industry organizations knowledgeable in reentry system vehicles was performed. A reference page is provided at the end of this report. A history of early manned reentry vehicle launches is shown in Appendix I. A listing of some of the agencies and companies found to be most knowledgeable in the reentry vehicle area is provided in Appendix II. The following sections provide more detailed information on reentry system vehicles. A. Background - The development of reentry vehicles began in the late 1950's due to the need for Department of Defense and Central Intelligence Agency photo reconnaissance of Soviet ICBM sites. NASA has also been involved in the use of reentry vehicles since the early 1960's, including manned space programs Mercury, Gemini and Apollo. The following sections describe the evolution of reentry system development in the United States and foreign countries: 1. Discoverer1 - The Discoverer program was of major importance because it provided a vehicle for testing orbital maneuvering capability and reentry techniques and it played a large role in enabling the first United States manned space flights to be conducted in Project Mercury.
    [Show full text]
  • Vostok Spacecraft Retrofire and Deorbit Systems, December 1963
    DECLASSIFIED UNDER AUTHORITY OF THE INTERAGENCY SECURITY CLASSIFICATION APPEALS PANEL, E.O. 13526, SECTION 5.3(b)(3) ISCAP APPEAL NO. 2009-068, document no. 9 DECLASSIFICATION DATE: November 13,2014 )81 VOSTOK SPACECRAFT RETROFIRE AND DEORBff SYSTEMS DECEMBER \963 - TASK 61820 4{3.3.8.3) AiR FO~C~ ~~~S~l~ DEVilOPiiOOT C!NT~~~ ~O~WMA~ AI~ ~0~~~ ~A$f ~H11 ~~ElC@ A:-'rJIOC 63- 6292. 1nh.') ~ · n ..~ ~·.c . :1 , · ,J r. i~ . : 1 . ng w :~ r . v r P• r • Ol.:nlly aJJe :. t .: ~ ih~( (011 · -.U:1 t' ci ; n ;·, ·, ~: : b! c ;; : c .--~ , ·.Lr:.:ld b < fcnvarchd b )• the reClp : f· a1t d . r (· r • L· , ,-. AFMD C: :MDr!::l. i-i<:-·: k-m ·\ n .-\FB. :-.l ~ w !.,ic-x:co 63330 T h: ::- .n :-:'.• v..·.":.t'.f :t b b!" ,:· g.i :.~ ~- o r .:a. l:tr.s resp0n~;b.Lty j u r !>end i ng c- '..1 : i". r: .!\: · rr.~·_ _,_,-;_ (..r ariy P f· :- \ i :\ent tnlell-.gt::nc:C; dc.\.a. tY.rc-ugh -:;. i:- : .:-~ d ·~· t ~- ~l.'cl =.-t. t-d -.: :~ f:}l · g e ;-, rt= (-:l't..:cnon chan n c Is ·J f the 1.:-'. 0 ',b ~-·t-' ; · c€~ < - ~ ~gcn.:-~r~ :; ,: f : }·. .:: \j S· G c ·.. ;e r r.m e n~ 2 \V AR~~ : :·JG T i;_ ·, ::, d o c..L rn e n: r.c.·r. ! 1an~ :. rdo rma Lon affec • ! n g the -: =t1 · c.:-d .l deff-n. :; c c..£ 1(. c· C S. w~r:h · .n t.'ne rnean~ng o i the E:sp1onage J.• <w.
    [Show full text]
  • R-700 MIT's ROLE in PROJECT APOLLO VOLUME I PROJECT
    R-700 MIT’s ROLE IN PROJECT APOLLO FINAL REPORT ON CONTRACTS NAS 9-153 AND NAS 9-4065 VOLUME I PROJECT MANAGEMENT SYSTEMS DEVELOPMENT ABSTRACTS AND BIBLIOGRAPHY edited by James A. Hand OCTOBER 1971 CAMBRIDGE, MASSACHUSETTS, 02139 ACKNOWLEDGMENTS This report was prepared under DSR Project 55-23890, sponsored by the Manned Spacecraft Center of the National Aeronautics and Space Administration. The description of project management was prepared by James A. Hand and is based, in large part, upon discussions with Dr. C. Stark Draper, Ralph R. Ragan, David G. Hoag and Lewis E. Larson. Robert C. Millard and William A. Stameris also contributed to this volume. The publication of this document does not constitute approval by the National Aeronautics and Space Administration of the findings or conclusions contained herein. It is published for the exchange and stimulation of ideas. @ Copyright by the Massachusetts Institute of Technology Published by the Charles Stark Draper Laboratory of the Massachusetts Institute of Technology Printed in Cambridge, Massachusetts, U. S. A., 1972 ii The title of these volumes, “;LJI’I”s Role in Project Apollo”, provides but a mcdest hint of the enormous range of accomplishments by the staff of this Laboratory on behalf of the Apollo program. Rlanss rush into spaceflight during the 1060s demanded fertile imagination, bold pragmatism, and creative extensions of existing tecnnologies in a myriad of fields, The achievements in guidance and control for space navigation, however, are second to none for their critical importance in the success of this nation’s manned lunar-landing program, for while powerful space vehiclesand rockets provide the environment and thrust necessary for space flight, they are intrinsicaily incapable of controlling or guiding themselves on a mission as complicated and sophisticated as Apollo.
    [Show full text]
  • Mars Correct: Critique of All Nasa Mars Weather Data
    MARS CORRECT: CRITIQUE OF ALL NASA MARS WEATHER DATA David Alexander Roffman, PhD, Physics Web site: http://Davidaroffman.com E-mail [email protected] and Barry S. Roffman Lieutenant, United States Coast Guard - Retired Web site: http://MarsCorrect.com/cgi/wp/ E-mail: [email protected] 27 February 2021 ROFFMAN & ROFFMAN Mars Correct: Critique of All NASA Mars Weather Data This Report is dedicated to the memory of our uncle, Eugene Roffman, the first great scientist in our family. When he was 92 years old, on the last day that we saw him alive, he gave us the key to the door hiding one of the great mysteries of the universe. He then asked us to unlock it and reveal to the world what would be found. This father and son work is the fruit of our twelve-year journey to fulfill his request. May it forever distract humanity from the petty squabbles that threaten to destroy our species. ii ROFFMAN & ROFFMAN Mars Correct: Critique of All NASA Mars Weather Data TABLE OF CONTENTS Table of Contents………………………………………………………….. iii List of Illustrations…................................................................................ iv ABSTRACT……………………………………………………………………………… 1 1. INTRODUCTION…………………………………………………….......................... 2 1.1 Comparison of Martian and terrestrial dust devils……………..……………………… 5 1.1.1 Geographic Occurrences and the Greenhouse and Thermophoresis Effect……… 5 1.1.2 Seasonal Occurrences and Electrical Properties………………….……………… 6 1.1.3. Size and Shape ………………………………………………………………………….. 6 1.1.4. Diurnal Formation Rate and Lifetime……………………………………………….. 6 1.1.5 Wind Speeds…………………………………………………………………………….. 4 1.1.6 Core Temperature Excursions…………………………………………………………. 6 1.1.7 Dust Particle Size – The Problem of Martian Dust <2 Microns and Wind Speeds.
    [Show full text]
  • Motivations and Preliminary Design for Mid-Air Deployment of a Science Rotorcraft on Mars
    Motivations and Preliminary Design for Mid-Air Deployment of a Science Rotorcraft on Mars Jeff Delaune∗ Jacob Izraelevitz† Evgeniy Sklyanskiy‡ Aaron Schutte§ Abigail Fraeman¶ Valerie Scott‖ Carl Leake∗∗ Erik Ballesteros†† Kim Aaron‡‡ Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109 Larry A. Young§§ Wayne Johnson¶¶ Shannah Withrow-Maser∗∗∗ Haley Cummings††† Raghav Bhagwat‡‡‡ NASA Ames Research Center, Moffett Field, CA, 94035 Marcel Veismann§§§ Skylar Wei¶¶¶ Regina Lee17 Luis Pabon Madrid18 Morteza Gharib19 Joel Burdick20 Center for Autonomous Systems and Technologies (CAST), California Institute of Technology, Pasadena, CA, 91125 William Rapin21 CNRS, Toulouse, 31400, France Mid-Air Deployment (MAD) of a rotorcraft during Entry, Descent and Landing (EDL) on Mars eliminates the need to carry a propulsion or airbag landing system. This reduces the total mass inside the aeroshell by more than 100 kg and simplifies the aeroshell architecture. MAD’s lighter and simpler design is likely to bring the risk and cost associated with the mission down. Moreover, the lighter entry mass enables landing in the Martian highlands, at elevations inaccessible to current EDL technologies. This paper proposes a novel MAD concept for a Mars helicopter. We suggest a minimum science payload package to perform relevant science in the highlands. A variant of the Ingenuity helicopter is proposed to provide increased deceleration during MAD, and enough lift to fly the science payload in the highlands. We show in simulation that the lighter aeroshell results in a lower terminal velocity (30 m/s) at the end of the parachute phase of the EDL, and at higher altitudes than other approaches.
    [Show full text]