Mars Correct: Critique of All Nasa Mars Weather Data

Total Page:16

File Type:pdf, Size:1020Kb

Mars Correct: Critique of All Nasa Mars Weather Data MARS CORRECT: CRITIQUE OF ALL NASA MARS WEATHER DATA David Alexander Roffman, PhD, Physics Web site: http://Davidaroffman.com E-mail [email protected] and Barry S. Roffman Lieutenant, United States Coast Guard - Retired Web site: http://MarsCorrect.com/cgi/wp/ E-mail: [email protected] 27 February 2021 ROFFMAN & ROFFMAN Mars Correct: Critique of All NASA Mars Weather Data This Report is dedicated to the memory of our uncle, Eugene Roffman, the first great scientist in our family. When he was 92 years old, on the last day that we saw him alive, he gave us the key to the door hiding one of the great mysteries of the universe. He then asked us to unlock it and reveal to the world what would be found. This father and son work is the fruit of our twelve-year journey to fulfill his request. May it forever distract humanity from the petty squabbles that threaten to destroy our species. ii ROFFMAN & ROFFMAN Mars Correct: Critique of All NASA Mars Weather Data TABLE OF CONTENTS Table of Contents………………………………………………………….. iii List of Illustrations…................................................................................ iv ABSTRACT……………………………………………………………………………… 1 1. INTRODUCTION…………………………………………………….......................... 2 1.1 Comparison of Martian and terrestrial dust devils……………..……………………… 5 1.1.1 Geographic Occurrences and the Greenhouse and Thermophoresis Effect……… 5 1.1.2 Seasonal Occurrences and Electrical Properties………………….……………… 6 1.1.3. Size and Shape ………………………………………………………………………….. 6 1.1.4. Diurnal Formation Rate and Lifetime……………………………………………….. 6 1.1.5 Wind Speeds…………………………………………………………………………….. 4 1.1.6 Core Temperature Excursions…………………………………………………………. 6 1.1.7 Dust Particle Size – The Problem of Martian Dust <2 Microns and Wind Speeds. 6 1.1.8. Core Pressure Excursions……………………………………………………………… 7 1.2. NASA Ames Test of Martian Pressures and Dust Devils …………………………… 10 2. OVERVIEW OF PRESSURE INSTRUMENTATION PROBLEMS…................... 11 2.1 Viking 2 and Gay-Lussac’s Law…………………………………………………………. 13 2.2 Pathfinder and Phoenix Pressure Issues…………………………………………. 18 2.3. Which Transducers Were Used?………………………………………………… 21 2.4. Issues Raised by the FMI 23 2.5. DID ANY TAVIS OR VAISALA TRANSDUCERS PEG OUT AT THEIR MAXIMUM PRESSURES?..................................................................................................... 27 2.5.1 How extraordinary was the (temporary) 1,149 Pa pressure spike of MSL Sol 370? 27 2.5.2. The importance of gleaning data from identification of our web site readers. 28 2.5.3 Why is it so wrong to alter data to fit an expected curve? 35 2.6 The Dust filter on Viking………………………………………………………….. 40 2.6.1. The issue of Viking pressure reports and digitization………………………………… 40 2.6.2. The issue of daily pressure spikes at consistent time-bins. 40 2.7. MSL Weather Reporting Fiasco 46 3. CAVES ON AND SPIRAL CLOUDS ABOVE ARSIA MONS AND OLYMPUS MONS ON MARS. 49 4. THE ISSUES OF SNOW, WATER ICE, AND CARBON DIOXIDE ON MARS. 51 4.1. Annual Pressure Fluctuations Recorded by Viking 1, Viking 2, and Phoenix - Maximum Pressure in the Northern Winter?..................................................................... 51 4.1.1. Ls of minimum pressure……………………………………………………… 52 4.1.2. Ls of maximum pressure………………………………………………………………….. 52 5. RADIO OCCULTATION……………………………………………………………. 65 5.1 Shifting Standards – The Relationship of the MOLA Topography of Mars to the Mean Atmospheric Pressure. 67 6. SPECTROSCOPY PRESSURE READINGS BY MARS EXPRESS ORBITER. 71 7. MARTIAN WIND PROBLEMS….............................................................................. 72 7.1 Anemometer/Telltale Wind Speed Issues………………………………………………… 73 7.2 Martian Bedforms – Too Much Movement of Sand Dunes and Ripples for 6.1 mbar 74 7.2.1 Issues Raised by the paper on Planet-wide sand motion on Mars by Bridges et al. (2012) 75 8. DO DOWNRANGE LANDINGS MEAN THINNER OR THICKER AIR?........... 81 iii ROFFMAN & ROFFMAN Mars Correct: Critique of All NASA Mars Weather Data 9. DUST OPACITY AND PRESSURE…...................................................................... 85 10. EXCESSIVE DECELERATION DURING AEROBRAKING OPERATIONS 92 10.1 Mars Global Surveyor (MGS)…………………………………………………………… 92 10.2 Mars Reconnaissance Orbiter (MRO)…………………………………………… 93 11. THE GLOBAL DUST STORM OF 2018 94 11.1 Pressures Claimed for the 2018 Global Dust Storm 97 11.2 Brief Summary of 2018 Dust Storm Data 108 11.3 Possibility of a Biological Factor in Lifting Dust 108 11.3.1 Martian Dust Storm Seasons 109 11.4 Martian Dust Storm Paths and Radioactive Areas 109 12. MARS PATHFINDER PRESSURES 111 13. THE POTENTIAL PRESSURE ON MARS……………………………………… 113 13.1 Did NASA ever publicly back 20 mbar on Mars? 113 13.2 Biology, Methane, and a Possible Hint of the Real Martian Air Pressure….................... 114 13.3 Recurring Slope Lineae (RSL), Perchlorates and Running Water on Mars…........... 118 13.3.1 Length of daylight where RSL are found……………………………………………….. 118 13.3.2 Latitudes, times and temperatures for evidence of running water…………………. 120 13.3.3 The role of perchlorates in RSL………………………………………………………… 121 13.3.3.1. RSL: Could they be sand rather than water?..................................................... 121 13.4 Other Water on Mars – the Frozen Sea at Utopia Planitia 124 13.5 The High End of Pressure Estimates for Mars…...................................................... 127 13.6. Pressure Drop as MSL Climbs Mt. Sharp vs. Scale Height Predictions. 131 14. RELATIVE HUMIDITY 140 15. TEMPERATURE MEASUREMENT CONCERNS 145 15.1. Ground Temperature Problems 152 15.2. Winter Ground Temperatures above freezing in MSL Year 2 152 15.3. Why the early winter ground temperatures are so important and possible life seen on Sol 1185 152 15.3.1 Evidence of Life on Mars. 154 15.4. MSL Air and Ground Temperature Differences. 158 15.4.1. Oxygen Solubility in near-surface Martian environments and aerobic life. 160 15.5. MSL Diurnal Temperature Variations……………….. 161 15.5.1. Why does the temperature fall more degrees at MSL in summer nights than winter nights? 166 15.6. Probable Failure of the Ground Temperature Sensor or Personnel Issues? 167 15.6.1 Failure of the Temperature Sensor. 173 15.6.2 Personnel Issues. 173 15.6.3 Mixed messages about the range and sensitivity of pressure sensors sent to Mars. 175 15.6.4. A Possible Excuse for REMS Errors. 181 15.7 Temperature, Pressure and Albedo 182 16. ULTRAVIOLET RADIATION AND CLOUD COVER AT MSL. 186 16.1 Solar Longitude for sols at MSL with very high and low ultraviolet radiation. 188 17. CRASH OF THE EXOMARS 2016 SCHIAPARELLI LANDER 197 17.1 ESA gets smarter – Raises ExoMars orbit due to excessive density of Mars’s atmosphere 200 iv ROFFMAN & ROFFMAN Mars Correct: Critique of All NASA Mars Weather Data 18. SUMMARY OF CRITICAL OBSERVATIONS……………………………………… 201 18.1. Dust Devils 202 18.2 Accuracy of instrument descriptions 202 18.3 Data management 202 18.4 The crash of the ExoMars 2016 202 18.5 During Viking 1 and 2 Year 1, pressures varied closely with Gay-Lussac/ Amonton’s Law-based predictions for a gas trapped in a closed container 202 18.6 Data digitization Issues and stuck pressure readings 203 18.7 Pressure readings affected by heat generating internal events 203 18.8 Inconsistent reports about the maximum pressures measurements possible with FMI transducers 204 18.9 Timing of pressure spikes 204 18.10. Annex F and how the time of day affects the accuracy of pressure prediction 204 18.11. Mariner Pressure Results 204 18.12. Landing Pressure Capabilities 204 18.13. Deliberate use of flawed sensors 204 18.14. Innocent Mistakes? 205 18.15. Effects of Dust storms 206 18.16. Altitude and pressure changes seen 207 18.17. Effects on Aerobraking 207 18.18. Diurnal pressure fluctuation 207 18.19. Organic chemicals found on Mars 207 18.20. Evidence for life on Mars 207 18.21. Problems with transducer design and testing 208 18.22. Failure to replicate dust devils 208 18.23. Sand movement not possible at NASA’s claimed Martian air pressure 208 18.24. Lower than expected ultraviolet radiation 208 18.25. Stratus clouds at high altitudes 208 18.26. The real pressure on Mars? 208 19. RECOMMENDATIONS…............................................................................................ 209 20. ACKNOWLEDGEMENTS……................................................................................. 210 AFTERWORD: What difference could this all possibly make? ……………… 212 21. REFERENCES…............................................................................................................... 217 LIST OF ILLUSTRATIONS IN THE BASIC REPORT FIGURE TOPIC PAGE 1 Arsia Mons dust devils 3 2 Utah dust devil pressure drop 5 3 Pressure drops at Phoenix and Pathfinder 6 4 Relative magnitude of 0.62 mbar increase in pressure for Viking 1 at its sol 332.3 and pressure drops or 79 convective vortices/dust devils at Mars pathfinder 7 5A First photo from the surface of Mars and dust kicked up 10 5B Rocks on the deck of the MSL Curiosity 10 6 Pressure calculator with Gay-Lussac Pressure Law and Viking 2 results. 12 v ROFFMAN & ROFFMAN Mars Correct: Critique of All NASA Mars Weather Data 7 Prediction success totals per time-bin and corresponding % of successful predictions. 13 8 Sample of Annex F – Viking 1 daily pressure predictions & measurements with cyclic accuracies for pressure predictions 14 9A-9C Relationship of temperature changes to pressure changes on Viking 2 15 10A Tavis Viking CAD Diagram 10011 17 10B Tavis Pathfinder CAD Diagram 10484 18 10C Three different Tavis transducers 19 10D Tavis was used on both Pathfinder and Insight 20 11A Vaisala 10484 pressure transducer on Phoenix and MSL 21 11B Relative size of dust filters for Mars landers 22 12A Pressure and Temperatures Recorded by Phoenix 23 12B Except for Sol 370 the black MSL pressure curve is suspiciously too close to the Viking 2 curve above it and the Viking 1 curve below it. 24 13 Quality control Individuals test. 27 14A MSL sensor pegged out at max pressure 30 14B MSL pressure sols 369-371 29 14C The REMS team alters the critical MSL Sol 370 pressure data 31 14D Ashima Research has not yet altered the critical MSL Sol 370 pressure 31 data 14E REMS also alters pressures for Sols 1160 and 1161.
Recommended publications
  • Venona Special Studies
    - 1 - Venona Project Special Studies Transcribed by Students of the Mercyhurst College Institute for Intelligence Studies Arranged by John Earl Haynes, Library of Congress, 2010 COVER NAMES IN NEW YORK TRAFFIC p. 2 UNIDENTIFIED COVER NAMES IN NEW YORK TRAFFIC p. 86 COVER NAMES IN SAN FRANCISCO TRAFFIC p. 92 COVER NAMES IN WASHINGTON TRAFFIC p. 123 ADDITIONAL COVERNAMES AND RELATED INFORMATION IN DIPLOMATIC TRAFFIC p. 127 REVISED TRANSLATION OF MESSAGE ON ANTENNA-LIBERAL'S WIFE ETHEL p. 135 THE COVERNAMES "ANTENNA" AND "LIBERAL" IN . MESSAGES p. 139 ESSAGES IN . INVOLVING THE COVERNAME"ENORMOZ" AND THE NAMES OF NUCLEAR PHYSICISTS, ETC. p. 147 UNDATED REPORT OF MEREDITH GARDNER p. 155 DEVELOPMENT OF THE “G--“HOMER” [“GOMER”] CASE p. 158 THE KOMAR (KRAVCHENKO) AFFAIR IN . MESSAGES p. 161 REVISED TRANSLATION OF TWO . MESSAGES ON CHANGES IN COVERNAMES p. 170 THE COVERNAME "KARAS" IN. TRAFFIC p. 178 THE COVERNAMES "TÉNOR", "BAS", AND "CHETÁ" (? IN . TRAFFIC p. 181 - 2 - Special Study Cover Names in New York Traffic - 3 - cover-name Message number Date Publication reference S/ or 3/NBF/ 19 N.Y. to M. 812 29053 JKI 06 T1022 1B-1910 0027A ABRAM N.Y. to M. 992 24063 JKR 14 T872√ 1B-7518 0005A JACK SOBLE 1086 06073 JKV 48 T873√ 2A-0011 1957 29113 NNNNNN T939√ 625 04054 JHD 48 T916√ 851 15064 JIJ 40 T10.1√ 1146 10084 JHM 41 T123√ 1251 02094 JHN 12 T301√ (to ChEKh) 0005B 1353 23094 JHO 42 T289√ 1449 12104 JIL 37 T106√ 1754 14124 JHZ 49 T6√ 48 11015 JHV 37 (NSA)T1941 AVGUR 2A-0013 1638 (AUGUR) N.Y.
    [Show full text]
  • Industry at the Edge of Space Other Springer-Praxis Books of Related Interest by Erik Seedhouse
    IndustryIndustry atat thethe EdgeEdge ofof SpaceSpace ERIK SEEDHOUSE S u b o r b i t a l Industry at the Edge of Space Other Springer-Praxis books of related interest by Erik Seedhouse Tourists in Space: A Practical Guide 2008 ISBN: 978-0-387-74643-2 Lunar Outpost: The Challenges of Establishing a Human Settlement on the Moon 2008 ISBN: 978-0-387-09746-6 Martian Outpost: The Challenges of Establishing a Human Settlement on Mars 2009 ISBN: 978-0-387-98190-1 The New Space Race: China vs. the United States 2009 ISBN: 978-1-4419-0879-7 Prepare for Launch: The Astronaut Training Process 2010 ISBN: 978-1-4419-1349-4 Ocean Outpost: The Future of Humans Living Underwater 2010 ISBN: 978-1-4419-6356-7 Trailblazing Medicine: Sustaining Explorers During Interplanetary Missions 2011 ISBN: 978-1-4419-7828-8 Interplanetary Outpost: The Human and Technological Challenges of Exploring the Outer Planets 2012 ISBN: 978-1-4419-9747-0 Astronauts for Hire: The Emergence of a Commercial Astronaut Corps 2012 ISBN: 978-1-4614-0519-1 Pulling G: Human Responses to High and Low Gravity 2013 ISBN: 978-1-4614-3029-2 SpaceX: Making Commercial Spacefl ight a Reality 2013 ISBN: 978-1-4614-5513-4 E r i k S e e d h o u s e Suborbital Industry at the Edge of Space Dr Erik Seedhouse, M.Med.Sc., Ph.D., FBIS Milton Ontario Canada SPRINGER-PRAXIS BOOKS IN SPACE EXPLORATION ISBN 978-3-319-03484-3 ISBN 978-3-319-03485-0 (eBook) DOI 10.1007/978-3-319-03485-0 Springer Cham Heidelberg New York Dordrecht London Library of Congress Control Number: 2013956603 © Springer International Publishing Switzerland 2014 This work is subject to copyright.
    [Show full text]
  • Atlas Launch System Mission Planner's Guide, Atlas V Addendum
    ATLAS Atlas Launch System Mission Planner’s Guide, Atlas V Addendum FOREWORD This Atlas V Addendum supplements the current version of the Atlas Launch System Mission Plan- ner’s Guide (AMPG) and presents the initial vehicle capabilities for the newly available Atlas V launch system. Atlas V’s multiple vehicle configurations and performance levels can provide the optimum match for a range of customer requirements at the lowest cost. The performance data are presented in sufficient detail for preliminary assessment of the Atlas V vehicle family for your missions. This guide, in combination with the AMPG, includes essential technical and programmatic data for preliminary mission planning and spacecraft design. Interface data are in sufficient detail to assess a first-order compatibility. This guide contains current information on Lockheed Martin’s plans for Atlas V launch services. It is subject to change as Atlas V development progresses, and will be revised peri- odically. Potential users of Atlas V launch service are encouraged to contact the offices listed below to obtain the latest technical and program status information for the Atlas V development. For technical and business development inquiries, contact: COMMERCIAL BUSINESS U.S. GOVERNMENT INQUIRIES BUSINESS INQUIRIES Telephone: (691) 645-6400 Telephone: (303) 977-5250 Fax: (619) 645-6500 Fax: (303) 971-2472 Postal Address: Postal Address: International Launch Services, Inc. Commercial Launch Services, Inc. P.O. Box 124670 P.O. Box 179 San Diego, CA 92112-4670 Denver, CO 80201 Street Address: Street Address: International Launch Services, Inc. Commercial Launch Services, Inc. 101 West Broadway P.O. Box 179 Suite 2000 MS DC1400 San Diego, CA 92101 12999 Deer Creek Canyon Road Littleton, CO 80127-5146 A current version of this document can be found, in electronic form, on the Internet at: http://www.ilslaunch.com ii ATLAS LAUNCH SYSTEM MISSION PLANNER’S GUIDE ATLAS V ADDENDUM (AVMPG) REVISIONS Revision Date Rev No.
    [Show full text]
  • Orion Capsule Launch Abort System Analysis
    Orion Capsule Launch Abort System Analysis Assignment 2 AE 4802 Spring 2016 – Digital Design and Manufacturing Georgia Institute of Technology Authors: Tyler Scogin Michel Lacerda Jordan Marshall Table of Contents 1. Introduction ......................................................................................................................................... 4 1.1 Mission Profile ............................................................................................................................. 7 1.2 Literature Review ........................................................................................................................ 8 2. Conceptual Design ............................................................................................................................. 13 2.1 Design Process ........................................................................................................................... 13 2.2 Vehicle Performance Characteristics ......................................................................................... 15 2.3 Vehicle/Sub-Component Sizing ................................................................................................. 15 3. Vehicle 3D Model in CATIA ................................................................................................................ 22 3.1 3D Modeling Roles and Responsibilities: .................................................................................. 22 3.2 Design Parameters and Relations:............................................................................................
    [Show full text]
  • Lunar Life Sciences Payload Assessment
    Lunar Surface Science Workshop 2020 (LPI Contrib. No. 2241) 5077.pdf LUNAR LIFE SCIENCES PAYLOAD ASSESSMENT. S. C. Sun1, F. Karouia2, M. P. Lera3, M. P. Parra1, H. E. Ray4, A. J. Ricco1, S. M. Spremo1. 1NASA Ames Research Center, 2Blue Marble Space Institute of Science, 3KBR, 4ASRC Federal Space and Defense, Inc. Introduction: The Moon provides a unique site to ISS, including systems that integrate into EXPRESS study living organisms. The fractional gravity and (EXpedite the PRocessing of ExperimentS for Space) unique radiation environment have similarities to Mars Racks or are external space exposure research facilities. and will help us understand how life will respond to These same systems can be the basis for future payload conditions on the red planet. Martian and lunar envi- systems for experiments to be performed beyond Low ronments can be simulated on the ground but not to high Earth Orbit. Such facilities would need to be adapted to fidelity. Altered gravity and increased radiation are dif- be compatible with the new research platforms and ficult to replicate simultaneously, which makes study- function in the harsher radiation environment found out- ing their combined effect difficult. The International side the magnetosphere. If Gateway and a lunar based- Space Station, and previously, the Space Shuttle, pro- lab could provide EXPRESS-compatible interfaces, lev- vided a microgravity environment, and could simulate eraging hardware developed for ISS would be more fea- fractional-g only via an onboard centrifuge. Because sible. the ISS and Space Shuttle orbits were within the Earth’s Gaps in Capabilities: Many of the payload systems magnetosphere, experiments on those platforms have that have been developed require human tending.
    [Show full text]
  • 19700031865.Pdf
    1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. NASA TM X-2075 4. Title and Subtitle 5. Report Date EFFECTOFRETROROCKETCANTANGLEON October 1970 6. Performing Organization Code GROUND EROSION - A SCALED VIKING STUDY 7. Author(s) 8. Performing Organization Report No. Leonard V. Clark L-7376 IO. Work Unit No. 9. Performing Organization Name and Address 124-08-29-01 NASA Langley Research Center 11. Contract or Grant No. Hampton, Va. 23365 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address Technical Memorandum National Aeronautics and Space Administration 14. Sponsoring Agency Code Washington, D.C. 20546 ~ 16. Abstract An experimental study was conducted at the Langley Research Center to evaluate the relative merits of canting the Viking lander retrorockets toward the spacecraft center line as a means of reducing rocket-exhaust disturbance of the surface of Mars. This paper describes the experimental study, outlines the scaling scheme of the tests, and briefly dis- cusses significant data trends. The results of this exploratory study indicate that canting of the retrorockets toward the center of the spacecraft does reduce ground erosion of the landing site from that produced by a lander configuration with downward-directed retro- rockets. Obviously, before canting the Viking lander retrorockets, it would be necessary to weigh this reduction in surface disturbance against the attendant loss of thrust due to canting. 17. Key Words (Suggested by Author(s) ) 18. Distribution Statement Jet impingement Unclassified - Unlimited Rocket-exhaust effects 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No.
    [Show full text]
  • 18Th EANA Conference European Astrobiology Network Association
    18th EANA Conference European Astrobiology Network Association Abstract book 24-28 September 2018 Freie Universität Berlin, Germany Sponsors: Detectability of biosignatures in martian sedimentary systems A. H. Stevens1, A. McDonald2, and C. S. Cockell1 (1) UK Centre for Astrobiology, University of Edinburgh, UK ([email protected]) (2) Bioimaging Facility, School of Engineering, University of Edinburgh, UK Presentation: Tuesday 12:45-13:00 Session: Traces of life, biosignatures, life detection Abstract: Some of the most promising potential sampling sites for astrobiology are the numerous sedimentary areas on Mars such as those explored by MSL. As sedimentary systems have a high relative likelihood to have been habitable in the past and are known on Earth to preserve biosignatures well, the remains of martian sedimentary systems are an attractive target for exploration, for example by sample return caching rovers [1]. To learn how best to look for evidence of life in these environments, we must carefully understand their context. While recent measurements have raised the upper limit for organic carbon measured in martian sediments [2], our exploration to date shows no evidence for a terrestrial-like biosphere on Mars. We used an analogue of a martian mudstone (Y-Mars[3]) to investigate how best to look for biosignatures in martian sedimentary environments. The mudstone was inoculated with a relevant microbial community and cultured over several months under martian conditions to select for the most Mars-relevant microbes. We sequenced the microbial community over a number of transfers to try and understand what types microbes might be expected to exist in these environments and assess whether they might leave behind any specific biosignatures.
    [Show full text]
  • Reusable Rocket Upper Stage Development of a Multidisciplinary Design Optimisation Tool to Determine the Feasibility of Upper Stage Reusability L
    Reusable Rocket Upper Stage Development of a Multidisciplinary Design Optimisation Tool to Determine the Feasibility of Upper Stage Reusability L. Pepermans Technische Universiteit Delft Reusable Rocket Upper Stage Development of a Multidisciplinary Design Optimisation Tool to Determine the Feasibility of Upper Stage Reusability by L. Pepermans to obtain the degree of Master of Science at the Delft University of Technology, to be defended publicly on Wednesday October 30, 2019 at 14:30 AM. Student number: 4144538 Project duration: September 1, 2018 – October 30, 2019 Thesis committee: Ir. B.T.C Zandbergen , TU Delft, supervisor Prof. E.K.A Gill, TU Delft Dr.ir. D. Dirkx, TU Delft This thesis is confidential and cannot be made public until October 30, 2019. An electronic version of this thesis is available at http://repository.tudelft.nl/. Cover image: S-IVB upper stage of Skylab 3 mission in orbit [23] Preface Before you lies my thesis to graduate from Delft University of Technology on the feasibility and cost-effectiveness of reusable upper stages. During the accompanying literature study, it was determined that the technology readiness level is sufficiently high for upper stage reusability. However, it was unsure whether a cost-effective system could be build. I have been interested in the field of Entry, Descent, and Landing ever since I joined the Capsule Team of Delft Aerospace Rocket Engineering (DARE). During my time within the team, it split up in the Structures Team and Recovery Team. In September 2016, I became Chief Recovery for the Stratos III student-built sounding rocket. During this time, I realised that there was a lack of fundamental knowledge in aerodynamic decelerators within DARE.
    [Show full text]
  • Reusable Stage Concepts Design Tool
    DOI: 10.13009/EUCASS2019-421 8TH EUROPEAN CONFERENCE FOR AERONAUTICS AND AEROSPACE SCIENCES (EUCASS) DOI: ADD DOINUMBER HERE Reusable stage concepts design tool Lars Pepermans?, Barry Zandbergeny ?Delft University of Technology Kluyverweg 1, 2629 HS Delft [email protected] yDelft University of Technology Kluyverweg 1, 2629 HS Delft Abstract Reusable launch vehicles hold the promise of substantially reducing the cost of access to space. Many different approaches towards realising a reusable rocket exist or are being proposed. This work focuses on the use of an optimisation method for conceptual design of non-winged reusable upper stages, thereby allowing it to take into account landing on land, sea or mid-air retrieval as well as landing the full stage or the engine only. As the optimisation criterion, the ratio of the specific launch cost of the reusable to the expendable version is used. The tool also provides for a Monte Carlo analysis, which allows for investigating the ruggedness of the design solution(s) found. The article will describe the methods implemented in the Conceptual Reusability Design Tool (CRDT) together with the modifications made to ParSim v3, a simulation tool by Delft Aerospace Rocket Engi- neering. Furthermore, it will present the steps taken to verify and validate CRDT. Finally, several example cases are presented based on the Atlas V-Centaur launch vehicle. The cases demonstrate the tools capa- bility of finding optimum and the sensitivity of the found optimum. However, it also shows the optimum when the user disables some Entry Descent and Landing (EDL) options. 1. Introduction To make space more accessible, one can reduce the cost of an orbital launch.
    [Show full text]
  • NASA Ames to Establish Nationwide Lunar Science Institute
    November 2007 Worden gives upbeat message about future work for Ames BY JOHN BLUCK "We have switched material to In an upbeat talk to a crowd that phenolic impregnated carbon abla- filled the Ames main auditorium, tor (PICA), a (heat shield) material Ames Center Director S. Pete Worden developed here," Worden noted. His outlined an exciting future at Ames projected slide also listed Ames as that includes new work in exploration, leading PICA development and test- science and aeronautics -- each about a ing both for the Crew Exploration Ve- third of the center's efforts, he said. "I hicle, now called Orion, and the Mars have a gazillion charts to go through," Science Laboratory (MSL), which has photo by Eric James NASA he said. a planned launch date in fall 2009. His wide-ranging presentation Worden said that Ames' arc jets about Ames touched on moon explo- facility "a unique facility in the world." ration, a lunar institute, moon dust re- He added, "We want to upgrade search, heat shield work for spacecraft them." destined for the moon and Mars, a Mars sample "cache box" assignment, Life Sciences rising supercomputer capability, small "We are getting additional life Ames Center Director S. Pete Worden responds satellite work with a potential for support tasks assigned by Johnson to a question during the recent upbeat talk he many missions, increased astrobiology (and Marshall)," Worden said. "This is gave to the center about the future of Ames. work, growing cooperation among significant." continued on page 5 academia, and commercial partners and Ames and much more.
    [Show full text]
  • 6 FOTON RETRIEVABLE CAPSULES This Section Is Aimed at Providing New and Experienced Users with Basic Utilisation Information Regarding Foton Retrievable Capsules
    6 FOTON RETRIEVABLE CAPSULES This section is aimed at providing new and experienced users with basic utilisation information regarding Foton retrievable capsules. It begins with an introduction to the Foton capsule. 6.1 Introduction to Foton Capsules 6.1.1 What Are Foton Capsules? Foton capsules (Figure 6-1 and Figure 6-2) are unmanned, retrievable capsules, derived from the design of the 1960’s Soviet Vostok manned spacecraft and the Zenit military reconnaissance satellite. These capsules are very similar to the Bion and Resurs-F satellites introduced by the Soviets in the 1970’s, for biological research and Earth natural resources investigation, respectively. The first Foton capsule was launched in 1985 as Cosmos 1645 and only with the fourth launch in 1988 was the spacecraft officially designated Foton (Foton-4). These capsules are launched into near-circular, low-earth orbits by a Soyuz-U rocket, providing researchers with gravity levels less than 10 -5 g, for missions lasting approximately 2 weeks. The earlier Foton missions were conceived primarily for materials science research, but later missions also began to include experiments in the fields of fluid physics, biology and radiation dosimetry. ESA’s participation in the Foton programme began in 1991 with a protein crystallisation experiment on-board Foton-7, followed by a further 35 experiments up to and including the Foton- 12 mission in 1999. In 2002, ESA provided a large number of experiments for the Foton-M1 mission (the first flight of an upgraded version of the Foton spacecraft). This mission ended in disaster when the Soyuz launcher rocket exploded shortly after lift-off due to a malfunction in one of its engines.
    [Show full text]
  • Genesat (Launched Dec 2006), – Pre-Sat/Nanosail-D (Aug 2008) – Pharmasat (Launched May 2009), – O/OREOS (Planned May
    National Aeronautics and Space Administration Free Flyer Utilization for Biology Research John W. Hines Chief Technologist, Engineering Directorate Technical Director, Nanosatellite Missions NASA-Ames Research Center NASA Applications of BioScience/BioTechnology HumanHuman ExplorationExploration EmphasisEmphasis FundamentalFundamental ExploratiExploratioonn Subsystems BiologyBiology Subsystems EmphasisEmphasis HumansHumans SmallSmall OrganismsOrganisms (Mice,(Mice, Rats) Rats) TiTissussue,e, O Orrgansgans MammalianMammalian CellsCells Human Health Emphasis ModelModel Organisms, BioMolecules Organisms, BioMolecules MicrobesMicrobes 2 4 Free-Flyer Utilization Free Flyer Features • Advantage: Relatively inexpensive means to increase number of flight opportunities • Capabilities: – Returnable capsule to small secondary non-recoverable satellites, and/or – In-situ measurement and control with autonomous sample management • Command and Control: Fully automated or uplinked command driven investigations. • Research data: Downlink and/or receipt of the samples • Collaborations: Interagency, academic, commercial and international Russian Free Flyers Early Free Flyers NASA Biosatellite I, II, 1966-67 NASA Biosatellite III, 1969 Nominal 3d flights Nominal 20d flight • Response to microgravity & • Spaceflight responses of non-human radiation: various biological species primates • Onboard radiation source Timeline of Russian-NASA Biology Spaceflights Collaborations Bion* Characteristics Bion Rationale • Increases access to space • Proven Platforms
    [Show full text]