Wattle Seed Production in Low Rainfall Areas
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
LILY COX-RICHARD Sculptures the Size of Hailstones 17 February - 12 May 2018
LCR: In this show, I’m using found objects and sculptures I’ve made and The 2018 Cell Series is generously supported by trying to put them in positions where they can slip between multiple McGinnis Family Fund of Communities Foundation of Texas systems. In addition to lightning rods and scrap copper, I’m working on with additional funding from new sculptures that could fit in your hand. The “hail scale” is used to Susie and Joe Clack measure the size of hailstones by comparing them to common objects like Gene and Marsha Gray a walnut, golf ball, or teacup: hailstones the size of ____. Your earlier Amy and Patrick Kelly questions about context are really important here—what might be enor- mous for a hailstone might be a very modest size for a sculpture. Talking Sally and Robert Porter about the weather is often considered banal, but lately, the weather has been urgently claiming a lot more space for discussion. What happens when we ignore an important conversation or dismiss small talk (or small Past Cell Series artists: sculptures)? I’m interested in zooming in on details and giving them a lot DENNY PICKETT - 2008 | JEFFREY BROSK - 2009 | RANDY BACON - 2009 of space and attention. JOHN FROST - 2009 | NANCY LAMB - 2010 | JOHN ROBERT CRAFT - 2010 TERRI THORNTON - 2010 | ANNE ALLEN - 2011 | WILL HENRY - 2011 The sculptures the size of hailstones will sit on a large plaster plinth that ERIC ZIMMERMAN - 2011 | BILL DAVENPORT - 2012 | JUSTIN BOYD - 2012 has woven basket forms embedded in it, forming niches and craters. Often CAROL BENSON - 2012 | KANA HARADA - 2013 | BRAD TUCKER - 2013 pedestals and plinths are made to blend into their surroundings; but of ANTHONY SONNENBERG - 2013 | CHRIS SAUTER - 2014 course, they can never disappear. -
Sunt Bark Powder: Alternative Retanning Agent for Shoe Upper Leather Manufacture
International Journal of Advance Industrial Engineering E-ISSN 2320 –5539 ©2018 INPRESSCO®, All Rights Reserved Available at http://inpressco.com/category/ijaie/ Research Article Sunt Bark Powder: Alternative Retanning Agent for Shoe Upper Leather Manufacture * ^* # M.H Abdella , A.E Musa and S.B Ali #Department of Leather Engineering, School of Industrial Engineering and Technology, Sudan University of Science and Technology, Khartoum – Sudan ^Department of Leather Technology, College of Applied and Industrial Sciences, University of Bahri, Khartoum – Sudan Received 01 April 2018, Accepted 01 June 2018, Available online 05 June 2018, Vol.6, No.2 (June 2018) Abstract The retanning process is a very important step in leather manufacturing because it overcomes some of the disadvantages of chrome tannage and it can contributes to further stabilization of collagen fibers and good handle of leather, such as fullness, softness, elasticity and so on. In order to meet customers’ requirements, a wide variety of retanning agents are used in retanning process viz. vegetable tan and phenolic synthetic/organic tanning materials. Sunt bark, widely distributed in Sudan, has been evaluated for its utilization in the retanning of the leathers. In the present investigation, sunt bark powder has been used for the retanning of wet blue leathers. The effectiveness sunt bark in retanning of wet blue leathers has been compared with wattle retanning. The organoleptic properties of the leathers viz. softness, fullness, grain smoothness, grain tightness (break), general appearance, uniformity of dyeing of sunt bark retanned leather have been evaluated in comparison with wattle retanned leathers. Sunt retanning resulted in leathers with good grain tightness. -
0.00 Download Free
This is an Open Access publication. Visit our website for more OA publication, to read any of our books for free online, or to buy them in print or PDF. www.sidestone.com Check out some of our latest publications: ANALECTA PRAEHISTORICA LEIDENSIA 45 98163_APL_45_Voorwerk.indd I 16/07/15 13:00 98163_APL_45_Voorwerk.indd II 16/07/15 13:00 ANALECTA PRAEHISTORICA LEIDENSIA PUBLICATION OF THE FACULTY OF ARCHAEOLOGY LEIDEN UNIVERSITY EXCERPTA ARCHAEOLOGICA LEIDENSIA EDITED BY CORRIE BAKELS AND HANS KAMERMANS LEIDEN UNIVERSITY 2015 98163_APL_45_Voorwerk.indd III 16/07/15 13:00 Series editors: Corrie Bakels / Hans Kamermans Editor of illustrations: Joanne Porck Copyright 2015 by the Faculty of Archaeology, Leiden ISSN 0169-7447 ISBN 978-90-822251-2-9 Subscriptions to the series Analecta Praehistorica Leidensia can be ordered at: P.J.R. Modderman Stichting Faculty of Archaeology P.O. Box 9514 NL-2300 RA Leiden The Netherlands 98163_APL_45_Voorwerk.indd IV 16/07/15 13:00 Contents The stable isotopes 13C and 15N in faunal bone of the Middle Pleistocene site Schöningen (Germany): statistical modeling 1 Juliette Funck Thijs van Kolfschoten Hans van der Plicht ‘Trapping the past’? Hunting for remote capture techniques and planned coastal exploitation during MIS 5 at Blombos Cave and Klasies River, South Africa 15 Gerrit L. Dusseldorp Geeske H.J. Langejans A Late Neolithic Single Grave Culture burial from Twello (central Netherlands): environmental setting, burial ritual and contextualisation 29 Lucas Meurkens Roy van Beek Marieke Doorenbosch Harry -
The Black Wattle in Hawaii and Recommend the Same for Publication As Bulle Tin No
HAWAII AQRICULTVRAL EXPERIMENT STA'I'IO!i. :J. G. SI\IITH, SPECIAJ:, AGENT IN CHARGE. BULLETIN No. 11. ·THE BLACK·WATTLE (Acacia c!eCUt'f,ens) IN HAWAII. BY JARED G. SMITH, SPECIAL AGENT IN CHARGE, HAWAII AGRICULTURAL EXPERIMENT STATION. UNDER THE. _Sl,l'ERVISION .. OJ' OF'F_ICE OF EXPERIMENT STP.TIONS, U.S. !)epartment ofAgriculture. WASHINGTON: :: ·--<: ;,: .. '~. -- .'. GOVERN~IENT PRI)'<TING. OFFICE: 1996. 863 HAWAII AGRICULTURAL EXPERIMENT STATION. J. G. SMITH, SPECIAL AGENT IN CHARGE. BULLETIN No. 11. 'THE BLACK WATTLE (Acacia decurrens) IN HA\VAII. BY JARED G. SMITH, SPECIAL AGENT IN CHARGE, HAWAII AGRICULTURAL EXPERIMENT STATION. UNDER THE SUPERVISION OF OFFICE OF EXPERIMENT STATIONS, U. S. Department ofAgriculture. WASHINGTON: GOVERNMENT PRINTING OFFICE. I 9 06. HAWAII AGRICULTURAL EXPERIMENT STATION, HONOLULU. [Under the supervision of A. C. TRuE; Director of the Office of Experiment Stations, United States Department of Agriculture.] STATION STAFF. JARED G. SMITH, Special, Agent in Charge. D. L. VAN DINE, Entomotogist. EDMUND C. SHOREY, Chemist. J.E. HIGGINS, Horticulturist. F. G. KRAUSS, In Charge of Rice Investigations. Q. Q. BRADFORD, Farm Foreman. C. R; BLACOW; In Charge ofTobacco Experiments (P. 0., Paauilo, Hawaii). \2) LETTER OF TRANSMITl'AL. HONOLULU, HAWAII, January 1, 1906. Sm: I have the honor to transmit herewith a paper on The Black Wattle in Hawaii and recommend the same for publication as Bulle tin No. 11 of the Hawaii Agricultural Experiment Station. Very respectfully, JARED G. SMITH, Special Agent in Charge, Hawaii Agricultural Experiment Station. Dr. A. C. TRUE, Director, Office of Experiment Stations, U.S. Department of Agriculture, Washington, D. 0. -
Curriculum Vitae
H A I N E S G A L L E R Y DAVID NASH Born in Surrey, England, 1945 Lives and works in Blaenau Ffestiniog, North Wales, UK EDUCATION 1965 Kingston College of Art, UK 1970 Chelsea School of Art, London, UK SELECTED SOLO EXHIBITIONS 2019 David Nash: 200 Seasons, Towner Art Gallery, Eastbourne, UK David Nash: Trees, Galerie Lelong & Co., Paris, France David Nash: Sculpture through the Seasons, National Museum Cardiff, Wales 2018 Tout jaune, Galerie Simon Blais, Montreal, Canada Columns, Galerie Lelong & Co., Paris, France David Nash: Nature to Nature, Fondation Fernet-Branca, Saint-Louis, France David Nash: Wood, Metal, Pigment, Annely Judah Fine Art, London, UK First The Tree, Then The Shape, Museum Lothar Fischer, Neumarkt in der Oberpfalz, Germany 2017 With Space in Mind, Tremenheere Sculpture Gardens, Penzance, UK New Beginnings, Alan Cristea Gallery, London, UK David Nash, Galeria Simon Blais, Montreal, Canada David Nash, Galeria Alvaro Alcazar, Madrid, Spain Art Project, Krauhuegel & Art and Church, Kollegienkirche, Salzburg, Austria Tree Seasons, Plas Glyn-y-Weddw, Gwynedd, Wales 2016 David Nash: Columns, Peaks and Torso, Galerie Lelong, Paris, France 2015 With Space in Mind, Alan Cristea Gallery, London, UK Three Black Humps, Coalbrookdale Museum of Iron, Shropshire, UK King & Queen I, Keepers House The Royal Academy, London, UK 2014 David Nash Stencil Prints, Abbot’s Room, Kloster Schoenthal, Switzerland David Nash: Prints and Multiples, Galerie Lelong, Paris, France David Nash, Kukje Gallery, Seoul, South Korea David Nash: From -
TREES Botanical Common Acacia Aneura Mulga Acacia Berlandieri
TREES Botanical Common Acacia aneura Mulga Acacia berlandieri Guajillo Acacia craspedocarpa Leatherleaf Acacia Acacia farnesiana Sweet Acacia Acacia rigidula Blackbrush Acacia Acacia salicina Willow Acacia Acacia saligna Blue Leaf Wattle Acacia stenophylla Shoestring Acacia Acacia willardiana Palo Blanco Albizia julibrissin Silk tree, Mimosa Tree Arecastrum romanzoffianum Queen Palm Bauhinia blakeana Hong Kong Orchid Tree Bauhinia lunarioides White Orchid Tree Bauhinia Purpurea Purple Orchid Tree Bauhinia variegata Purple Orchid Tree Brachychiton populneus Bottle Tree Brahea armata Mexican Blue Palm Brahea edulis Guadalupe Island Palm Butia Capitata Pindo Palm Caesalpinia cacalaco Cascalote Callistemon viminalis Bottle Brush Tree Ceratonia siliqua Carob Tree Chamaerops humilis Mediterranean Fan Palm Chilopsis linearis Desert Willow Chitalpa X tashkentenis Chitalpa Chorisia speciosa Silk floss Tree, Kapok Cupressus arizonica Arizona Cypress Cupressus Sempervirens Italian Cypress Dalbergia sissoo Indian Rosewood Dalea spinosa Desert Smoke Tree Eriobotrya japonica Loquat, Japanese Plum Eucalyptus cinerea Silver-Dollar Tree Eucalyptus krusaena Kruses Eucalyptus Eucalyptus microtheca Coolibah Tree Eucalyptus papuana Ghost Gum Eucalyptus spathulata Swamp Mallee Eysenhardtia orthocarpa Kidneywood Fraxinus uhdei Evergreen Ash Geijera parviflora Australian Willow Jacaranda mimosifolia Jacaranda Koelreuteria bipinnata Chinese Flame Tree Lagerstroemia indica Crape Myrtle Lysiloma watsonii var. thornberi Feather Tree Melaleuca quinquenervia Cajeput -
MVG 16 Acacia Shrublands DRAFT
MVG 16 - ACACIA SHRUBLANDS Acacia hillii, Tanami Desert, NT (Photo: D. Keith) Overview The overstorey of MVG 16 is dominated by multi-stemmed acacia shrubs. The most widespread species is Acacia aneura (mulga). Mulga vegetation takes on a variety of structural expressions and is consequently classified partly within MVG 16 where the overstorey is dominated by multi-stemmed shrubs, partly within MVG 6 in accordance with the Kyoto Protocol definition of forest cover in Australia (trees > 2 m tall and crown cover > 20%, foliage projective cover > 10%); and partly within MVG 13 where the woody dominants are predominantly single-stemmed, but with crown cover less than 20%. Occurs where annual rainfall is below 250mm in southern Australia and below 350mm in northern Australia (Hodgkinson 2002; Foulkes et al. 2014). Species composition varies along rainfall gradients, with substrate and rainfall seasonality (Beadle 1981; Johnson and Burrows 1994). Transitions into MVG 13 Acacia woodlands with higher rainfall and varying soil types. Is most commonly found on red earth soils (Hodgkinson 2002). Facts and figures Major Vegetation Group MVG 16 - Acacia Shrublands Major Vegetation Subgroups 20. Stony mulga woodlands and shrublands NSW, (number of NVIS descriptions) NT, QLD, SA, WA 23. Sandplain Acacia woodlands and shrublands NSW, NT, QLD, SA, WA Typical NVIS structural formations Shrubland (tall, mid,) Open shrubland (tall, mid,) Sparse shrubland (tall, mid,) Number of IBRA regions 53 Most extensive in IBRA region Est. pre-1750 and present : Great Victoria Desert (WA and SA) Estimated pre-1750 extent (km2) 865 845 Present extent (km2) 851 274 Area protected (km2) 85 444 Acacia ligulata (sandhill wattle), SA (Photo: M. -
Wattle and Daub
Wattle and Daub ”The greatest part of our building in the cities and good towns of England consisteth only of timber, for as yet few of the houses of the communalty (except here and there in the west country towns) are made of stone….’these english’, quoth he [a Spaniard of Queen Mary’s day] , 'have their houses made of sticks and dirt, but they fare commonly so well as the king”. William Harrison, Description of England, 1587 Wattle and daub is the term for the panels of woven wood and mud used to fill between the timbers of many of the Museum’s buildings. This combination of materials has been used since at least the Bronze Age; fragmentary remains of daub-like mixtures bearing wattle imprints often survive in the archaeological record having been ‘fired’ as a building burnt down and waterlogged remains of wattle panels occasionally survive also. Brick nogging might also have been used to fill in between the timbers but this was also sometimes used to replace earlier wattle and daub. Evidence for the previous existence for wattle and daub panels may come from marks left on the main timbers by daub, and from auger holes drilled into the upper timber of the panel and grooves cut into the lower where the uprights for the wattle were fitted in. Timber framing with wattle and daub panels was the dominant form of building construction in many parts of England and Wales from the mid 12th century. It was common in some areas until the late 18th century and was used into the 19th century for lower status housing. -
Wattle and Daub (KS2)
Schools Wattle and Daub (KS2) How did people build houses in the Stone Age? Let’s go back in time and build one! Trees have been used to build houses for thousands of years. Wattle and daub are building materials used to make these houses in the Stone/Bronze/Iron Age across Britain and Western Europe. What you’ll need • Wattle and daub kits (can be loaned from City of Trees) • Air dry clay Subjects • Hay • Water History, Science, • Mixing bowl Art & design Learning Objectives: • Ability to address and devise historically relevant questions • Understanding of Stone/Bronze/Iron Age life • Ability to note connections and trends between Stone/Bronze/Iron Age technologies Lesson Plan: Warm up/Introduction Role-playing: Find the right materials to build a house. The children must first find a strong oak tree for the long posts of their house, then willow, hazel, or birch for the structure of the walls and then mud to complete their walls. A full script for this role-playing activity is in Appendix A. Main Learning 1. Split children into groups of 4 or 5 2. Half of the groups will make the ‘wattle’ and the other half the ‘daub.’ 3. Step by step instructions for each of these two components are in Appendix B 4. Once all the groups have finished making their wattle or daub, each daub groups will pair up with a wattle group to complete the build together as show in Appendix B. Additional Activities: Cave painting or Celtic runes If you build the wall in the morning using air dry clay, pop it on the windowsill or another warm place to let it dry. -
Aprasia Picturata (Squamata: Pygopodidae), a New Legless Lizard from the Interior of Western Australia
Journal of the Royal Society of Western Australia, 82:75-77, 1999 Aprasia picturata (Squamata: Pygopodidae), a new legless lizard from the interior of Western Australia LA Smith1 & J Henry2 1Western Australian Museum of Natural Science, Francis Street, Perth WA 6000 email: [email protected] 2 Ninox Wildlife Consulting, Lot 14, The Glade, Keysbrook WA 6206 Manuscript received November 1998; accepted April 1999 Abstract A new species of pygopod, Aprasia picturata is described from the arid interior of Western Australia. The two specimens of the new species are from stony terrain near Leonora about 250 km from Bungalbin sandplain where the nearest Aprasia (A. repens) has been collected. The head scalation of the new species is most like Aprasia rostrata, the colouration most like Aprasia smithi. Introduction The 35 species and eight genera of legless lizard (Pygopodidae) currently recognised are confined to Australia and New Guinea. Of these, 34 species and all eight genera occur in Australia (Cogger 1992) and in New Guinea there is one genus and two species (Kluge 1974). In Western Australia there are 23 species and six genera of pygopods (Storr et al. 1990). The monotypic genera Aclys and Pletholax and eight of the 10 known worm-like fossorial species of Aprasia are only found in Western Australia and then, almost exclusively, along the coast. In Western Australia, members of the genus Aprasia are found on Hermite Island in the north and on the mainland from North West Cape south and east to Esperance and the southeast coast east of the vicinity of Toolina Rockhole (Fig 1). -
Mud-Brick Architecture
UCLA UCLA Encyclopedia of Egyptology Title Mud-Brick Architecture Permalink https://escholarship.org/uc/item/4983w678 Journal UCLA Encyclopedia of Egyptology, 1(1) Author Emery, Virginia L. Publication Date 2011-02-19 Peer reviewed eScholarship.org Powered by the California Digital Library University of California MUD-BRICK ARCHITECTURE عمارة الطوب اللبن Virginia L. Emery EDITORS WILLEKE WENDRICH Editor-in-Chief Area Editor Material Culture University of California, Los Angeles JACCO DIELEMAN Editor University of California, Los Angeles ELIZABETH FROOD Editor University of Oxford JOHN BAINES Senior Editorial Consultant University of Oxford Short Citation: Emery, 2011, Mud-Brick Architecture. UEE. Full Citation: Emery, Virginia L., 2011, Mud-Brick Architecture. In Willeke Wendrich (ed.), UCLA Encyclopedia of Egyptology, Los Angeles. http://digital2.library.ucla.edu/viewItem.do?ark=21198/zz0026w9hb 1146 Version 1, February 2011 http://digital2.library.ucla.edu/viewItem.do?ark=21198/zz0026w9hb MUD-BRICK ARCHITECTURE عمارة الطوب اللبن Virginia L. Emery Ziegelarchitektur L’architecture en brique crue Mud-brick architecture, though it has received less academic attention than stone architecture, was in fact the more common of the two in ancient Egypt; unfired brick, made from mud, river, or desert clay, was used as the primary building material for houses throughout Egyptian history and was employed alongside stone in tombs and temples of all eras and regions. Construction of walls and vaults in mud-brick was economical and relatively technically uncomplicated, and mud-brick architecture provided a more comfortable and more adaptable living and working environment when compared to stone buildings. على الرغم أن العمارة بالطوب اللبن تلقت إھتماما أقل من العمارة الحجرية من قِبَل المتخصصين، فقد كانت في الواقع تلك العمارة ھي اﻷكثر شيوعا في مصر القديمة، وكان الطوب اللبن (أوالنيء) المصنوع من الطمي أو الطين الصحراوي مستخدما كمادة بناء بدائية للمنازل على مدار التاريخ المصري واستخدمت إلى جانب الحجارة في المقابر والمعابد في جميع المناطق وخﻻل جميع الفترات. -
Synoptic Overview of Exotic Acacia, Senegalia and Vachellia (Caesalpinioideae, Mimosoid Clade, Fabaceae) in Egypt
plants Article Synoptic Overview of Exotic Acacia, Senegalia and Vachellia (Caesalpinioideae, Mimosoid Clade, Fabaceae) in Egypt Rania A. Hassan * and Rim S. Hamdy Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; [email protected] * Correspondence: [email protected] Abstract: For the first time, an updated checklist of Acacia, Senegalia and Vachellia species in Egypt is provided, focusing on the exotic species. Taking into consideration the retypification of genus Acacia ratified at the Melbourne International Botanical Congress (IBC, 2011), a process of reclassification has taken place worldwide in recent years. The review of Acacia and its segregates in Egypt became necessary in light of the available information cited in classical works during the last century. In Egypt, various taxa formerly placed in Acacia s.l., have been transferred to Acacia s.s., Acaciella, Senegalia, Parasenegalia and Vachellia. The present study is a contribution towards clarifying the nomenclatural status of all recorded species of Acacia and its segregate genera. This study recorded 144 taxa (125 species and 19 infraspecific taxa). Only 14 taxa (four species and 10 infraspecific taxa) are indigenous to Egypt (included now under Senegalia and Vachellia). The other 130 taxa had been introduced to Egypt during the last century. Out of the 130 taxa, 79 taxa have been recorded in literature. The focus of this study is the remaining 51 exotic taxa that have been traced as living species in Egyptian gardens or as herbarium specimens in Egyptian herbaria. The studied exotic taxa are accommodated under Acacia s.s. (24 taxa), Senegalia (14 taxa) and Vachellia (13 taxa).