100% Variable Renewable Energy Grid
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Impact of Variable Renewable Energy on System Operations
GRID INTEGRATION SERIES: IMPACT OF VARIABLE RENEWABLE ENERGY ON SYSTEM OPERATIONS Scaling Up Renewable Energy June 2020 DISCLAIMER This publication was produced for review by the United States Agency for International Development. It was prepared by the Scaling Up Renewable Energy Project (Tetra Tech ES, Inc., prime contractor). The views expressed in this publication do not necessarily reflect the views of the United States Agency for International Development or the United States Government. GRID INTEGRATION SERIES: IMPACT OF VARIABLE RENEWABLE ENERGY ON SYSTEM OPERATIONS Prepared for: Energy and Infrastructure Office U.S. Agency for International Development 1300 Pennsylvania Ave NW Washington, DC 20523 Submitted by: Tetra Tech ES, Inc. 1320 North Courthouse, Suite 600 Arlington, VA 22201 www.tetratech.com USAID TASK ORDER AID-OAA-I-13-00019/AID-OAA-TO-17-00011 DISCLAIMER This report was prepared by Tetra Tech ES, Inc., ICF (subcontractor), and IWE (subcontractor). Authors included Jairo Gutierrez, Adrian Paz, and Arai Monteforte from Tetra Tech; Sanjay Chandra and Rakesh Maurya from ICF; Pramod Jain from IWE; and Sarah Lawson, Jennifer Leisch, and Kristen Madler from the United States Agency for International Development (USAID). The views expressed in this publication do not necessarily reflect the views of the United States Agency for International Development or the United States Government. CONTENTS EXECUTIVE SUMMARY 1 INTRODUCTION 4 POWER SYSTEMS WITH VARIABLE RENEWABLE ENERGY 6 VARIABILITY AND UNCERTAINTY IN ELECTRICITY SYSTEMS 6 FLEXIBILITY OF POWER SYSTEMS 7 OPERATING A SYSTEM WITH A HIGH SHARE OF VARIABLE RENEWABLE ENERGY 9 SELECTED COUNTRY EXPERIENCE 13 COLOMBIA 15 INDIA 16 MEXICO 19 THE PHILIPPINES 20 VIETNAM 22 CONCLUSIONS AND RECOMMENDATIONS 24 BIBLIOGRAPHY 27 ANNEX A. -
Advantages of Applying Large-Scale Energy Storage for Load-Generation Balancing
energies Article Advantages of Applying Large-Scale Energy Storage for Load-Generation Balancing Dawid Chudy * and Adam Le´sniak Institute of Electrical Power Engineering, Lodz University of Technology, Stefanowskiego Str. 18/22, PL 90-924 Lodz, Poland; [email protected] * Correspondence: [email protected] Abstract: The continuous development of energy storage (ES) technologies and their wider utiliza- tion in modern power systems are becoming more and more visible. ES is used for a variety of applications ranging from price arbitrage, voltage and frequency regulation, reserves provision, black-starting and renewable energy sources (RESs), supporting load-generation balancing. The cost of ES technologies remains high; nevertheless, future decreases are expected. As the most profitable and technically effective solutions are continuously sought, this article presents the results of the analyses which through the created unit commitment and dispatch optimization model examines the use of ES as support for load-generation balancing. The performed simulations based on various scenarios show a possibility to reduce the number of starting-up centrally dispatched generating units (CDGUs) required to satisfy the electricity demand, which results in the facilitation of load-generation balancing for transmission system operators (TSOs). The barriers that should be encountered to improving the proposed use of ES were also identified. The presented solution may be suitable for further development of renewables and, in light of strict climate and energy policies, may lead to lower utilization of large-scale power generating units required to maintain proper operation of power systems. Citation: Chudy, D.; Le´sniak,A. Keywords: load-generation balancing; large-scale energy storage; power system services modeling; Advantages of Applying Large-Scale power system operation; power system optimization Energy Storage for Load-Generation Balancing. -
THE FUTURE ELECTRICITY GRID Key Questions and Considerations for Developing Countries
THE FUTURE ELECTRICITY GRID Key questions and considerations for developing countries BHARATH JAIRAJ, SARAH MARTIN, JOSH RYOR, SHANTANU DIXIT, ASHWIN GAMBHIR, ADITYA CHUNEKAR, RANJIT BHARVIRKAR, GILBERTO JANNUZZI, SAMAT SUKENALIEV, AND TAO WANG WRI.ORG The Future Electricity Grid: Key Questions and Considerations for Developing Countries i AUTHORS: Bharath Jairaj, Sarah Martin, and Josh Ryor World Resources Institute Shantanu Dixit, Ashwin Gambhir, and Aditya Chunekar Prayas, Energy Group (PEG) Ranjit Bharvirkar The Regulatory Assistance Project (RAP) Gilberto Jannuzzi International Energy Initiative (IEI) Samat Sukenaliev UNISON Group Tao Wang DESIGN AND LAYOUT BY: Jen Lockard [email protected] TABLE OF CONTENTS 1 Foreword 3 Executive Summary 7 Introduction 13 The Traditional Electricity Sector Model 21 The Changing Electricity Sector: Current Trends 35 Implications for the Future Grid 45 Considerations for Developing Country Stakeholders 51 Conclusion 54 Glossary 56 Annex 1 57 Annex 2 58 References 65 Endnotes iv WRI.org FOREWORD Electricity systems around the world are balancing New policies that support these non-utility a diverse set of challenges, ranging from energy ▪ generators and aim to increase clean energy use security and access to environmental and public are expanding. health concerns. At the same time, the energy land- □ Since 2004, the number of countries scape is changing rapidly as a result of three trends putting in place renewable energy targets disrupting the status quo. These include: has tripled from 48 to 164 (REN21 2015). These trends are happening in New, more cost effective technologies, includ- both high income countries and lower ▪ ing variable renewable energy, energy effi- income countries. ciency, small distributed generation and storage that are being deployed at larger scale. -
Bioenergy's Role in Balancing the Electricity Grid and Providing Storage Options – an EU Perspective
Bioenergy's role in balancing the electricity grid and providing storage options – an EU perspective Front cover information panel IEA Bioenergy: Task 41P6: 2017: 01 Bioenergy's role in balancing the electricity grid and providing storage options – an EU perspective Antti Arasto, David Chiaramonti, Juha Kiviluoma, Eric van den Heuvel, Lars Waldheim, Kyriakos Maniatis, Kai Sipilä Copyright © 2017 IEA Bioenergy. All rights Reserved Published by IEA Bioenergy IEA Bioenergy, also known as the Technology Collaboration Programme (TCP) for a Programme of Research, Development and Demonstration on Bioenergy, functions within a Framework created by the International Energy Agency (IEA). Views, findings and publications of IEA Bioenergy do not necessarily represent the views or policies of the IEA Secretariat or of its individual Member countries. Foreword The global energy supply system is currently in transition from one that relies on polluting and depleting inputs to a system that relies on non-polluting and non-depleting inputs that are dominantly abundant and intermittent. Optimising the stability and cost-effectiveness of such a future system requires seamless integration and control of various energy inputs. The role of energy supply management is therefore expected to increase in the future to ensure that customers will continue to receive the desired quality of energy at the required time. The COP21 Paris Agreement gives momentum to renewables. The IPCC has reported that with current GHG emissions it will take 5 years before the carbon budget is used for +1,5C and 20 years for +2C. The IEA has recently published the Medium- Term Renewable Energy Market Report 2016, launched on 25.10.2016 in Singapore. -
Hydroelectric Power -- What Is It? It=S a Form of Energy … a Renewable Resource
INTRODUCTION Hydroelectric Power -- what is it? It=s a form of energy … a renewable resource. Hydropower provides about 96 percent of the renewable energy in the United States. Other renewable resources include geothermal, wave power, tidal power, wind power, and solar power. Hydroelectric powerplants do not use up resources to create electricity nor do they pollute the air, land, or water, as other powerplants may. Hydroelectric power has played an important part in the development of this Nation's electric power industry. Both small and large hydroelectric power developments were instrumental in the early expansion of the electric power industry. Hydroelectric power comes from flowing water … winter and spring runoff from mountain streams and clear lakes. Water, when it is falling by the force of gravity, can be used to turn turbines and generators that produce electricity. Hydroelectric power is important to our Nation. Growing populations and modern technologies require vast amounts of electricity for creating, building, and expanding. In the 1920's, hydroelectric plants supplied as much as 40 percent of the electric energy produced. Although the amount of energy produced by this means has steadily increased, the amount produced by other types of powerplants has increased at a faster rate and hydroelectric power presently supplies about 10 percent of the electrical generating capacity of the United States. Hydropower is an essential contributor in the national power grid because of its ability to respond quickly to rapidly varying loads or system disturbances, which base load plants with steam systems powered by combustion or nuclear processes cannot accommodate. Reclamation=s 58 powerplants throughout the Western United States produce an average of 42 billion kWh (kilowatt-hours) per year, enough to meet the residential needs of more than 14 million people. -
Minnesota Energy Systems, a Primer Developed for the Clean Energy Resource Teams
Minnesota Energy Systems, A Primer Developed for the Clean Energy Resource Teams The Minnesota Project University of Minnesota’s Regional Sustainable Development Partnerships. March 2004 Communities and Local Energy Minnesota Energy Systems, A Primer Communities and Local Energy ENERGY SYSTEMS IN MINNESOTA This booklet provides CERTS members with a general overview of the systems that deliver the energy that runs our economy, keeps us warm, and provides necessities and conveniences of modern life. The energy system is divided into four end use sectors: residential, commercial, industrial and transportation. End use of energy refers to the point where energy is consumed to provide some benefit or service, such as light or heat. Basic energy resources are referred to a primary energy sources. Primary energy sources include resources like Figure 1. Energy End Use in coal, petroleum, natural gas, nuclear fuels, flowing water, Minnesota, 1999 wind, and solar radiation. Minnesota’s total energy use in the four end use sectors was approximately 1,700 trillion Btus in 2000. Industry and transportation are the largest end use sectors in the state. They each use somewhat more than one-third of the energy consumed in Minnesota. The remaining one- forth to one-third of energy consumption is divided between the residential and commercial sectors-with the residential sector taking a little larger share. Source: Minnesota Department of Commerce Fossil fuels Figure 2. Inputs Used to Produce dominate the market for primary energy sources in Energy Consumed in Minnesota, 1999 Minnesota. Petroleum, coal and natural gas supply about 88% of the energy used in Minnesota. -
Economics of Power Generation Prepared by the Legislative Finance Committee July 2017 Understanding Electric Power Generation
Economics of Power Generation Prepared by the Legislative Finance Committee July 2017 Understanding Electric Power Generation Following the Great Recession, electricity demand in the United States contracted, and energy efficiency improvements in buildings, lighting, and appliances stunted its recovery. Globally, a slowdown in Chinese coal demand depressed coal prices worldwide and reduced the market for U.S. exports, and coal demand in emerging markets is unlikely to make up for the slowdown in Chinese coal consumption. According to Columbia University’s Center on Global Energy Policy (CGEP), over half of the decline in coal company revenue between 2011 and 2015 is due to international factors.i Given current technological constraints, electricity cannot be stored on a large scale at a reasonable cost. Therefore, entities operating the transmission grid must keep supply and demand matched in “real-time” – from minute to minute. Imbalances in supply and demand can destroy machinery, cause power outages, and become very costly over time. The need to continually balance supply and demand plays a key role in how electricity generation sources are dispatched. In the 1980s, electricity supply was relatively straightforward, with less flexible coal and nuclear plants supplying base load power needs, and more flexible gas turbines and hydroelectric plants supplying peak load power needs. Developments over the last decade challenged this traditional mix of power generation. Natural gas, wind, and solar now meet 40 percent of U.S. power needs, up from 22 percent a decade ago. Early July 2017, The Wall Street Journal reported three of every 10 coal generators has closed permanently in the last five years. -
HYDROELECTRICITY FACT SHEET 1 an Overview of Hydroelectricity in Australia
HYDROELECTRICITY FACT SHEET 1 An overview of hydroelectricity in Australia About hydroelectricity in Australia → In 2011, hydroelectric plants produced a total of 67 per cent of Australia’s total clean energy generation1, enough energy to power the equivalent of 2.8 million average Australian homes. → Australia’s 124 operating hydro power plants generated 6.5 per cent of Australia’s annual electricity supply in 20112. → The Australian hydro power industry has already attracted over one billion dollars of investment to further develop Australian hydro power projects3. → Opportunities for further growth in the hydro power industry are principally in developing mini hydro plants or refurbishing, upgrading and modernising Australia’s current fleet. The Clean Energy Council’s most recent hydro report provides an overview of the industry and highlights opportunities for further growth. Climate Change and Energy Efficiency Minister Greg Combet stated: “This is a welcome report and highlights the importance of iconic Australian power generation projects such as the Snowy Mountains Scheme and Tasmanian hydro power. This report reminds us of the importance of the 20 per cent Renewable Energy Target, and the need for a carbon price to provide certainty to investors. Reinvestment in ageing hydro power assets will form an important part of the future energy market and efforts to reduce carbon pollution.” Source: Hydro Tasmania Hydro Source: 1 Clean Energy Council Clean Energy Australia Report 2011 pg. 28) 3 ibid 2 Clean Energy Council Hydro Sector Report 2010 pg 14 The Clean Energy Council is the peak body representing Australia’s clean energy sector. It is an industry association made up of more than 550 member companies operating in the fields of renewable energy and energy efficiency. -
Technical and Economic Aspects of Load Following with Nuclear Power Plants
Nuclear Development June 2011 www.oecd-nea.org Technical and Economic Aspects of Load Following with Nuclear Power Plants NUCLEAR ENERGY AGENCY Nuclear Development Technical and Economic Aspects of Load Following with Nuclear Power Plants © OECD 2011 NUCLEAR ENERGY AGENCY ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT Foreword Nuclear power plants are used extensively as base load sources of electricity. This is the most economical and technically simple mode of operation. In this mode, power changes are limited to frequency regulation for grid stability purposes and shutdowns for safety purposes. However for countries with high nuclear shares or desiring to significantly increase renewable energy sources, the question arises as to the ability of nuclear power plants to follow load on a regular basis, including daily variations of the power demand. This report considers the capability of nuclear power plants to follow load and the associated issues that arise when operating in a load following mode. The report was initiated as part of the NEA study “System effects of nuclear power”. It provided a detailed analysis of the technical and economic aspects of load-following with nuclear power plants, and summarises the impact of load-following on the operational mode, fuel performance and ageing of large equipment components of the plant. 3 Acknowledgements Valuable comments and contributions were received from Mr. Philippe Lebreton, Electricité de France, Dr. Holger Ludwig, Areva GMBH, Dr. Michael Micklinghoff, E.ON Kernkraft and Dr. M.A.Podshibyakin, OKB “GIDROPRESS”. This report was prepared by Dr. Alexey Lokhov of the NEA Nuclear Development Division. Detailed review and comments were provided by Dr. -
Grid Energy Storage
Grid Energy Storage U.S. Department of Energy December 2013 Acknowledgements We would like to acknowledge the members of the core team dedicated to developing this report on grid energy storage: Imre Gyuk (OE), Mark Johnson (ARPA-E), John Vetrano (Office of Science), Kevin Lynn (EERE), William Parks (OE), Rachna Handa (OE), Landis Kannberg (PNNL), Sean Hearne & Karen Waldrip (SNL), Ralph Braccio (Booz Allen Hamilton). Table of Contents Acknowledgements ....................................................................................................................................... 1 Executive Summary ....................................................................................................................................... 4 1.0 Introduction .......................................................................................................................................... 7 2.0 State of Energy Storage in US and Abroad .......................................................................................... 11 3.0 Grid Scale Energy Storage Applications .............................................................................................. 20 4.0 Summary of Key Barriers ..................................................................................................................... 30 5.0Energy Storage Strategic Goals .......................................................................................................... 32 6.0 Implementation of its Goals ............................................................................................................... -
Small Modular Reactors – Key to Future Nuclear Power Generation in the U.S.1,2
Small Modular Reactors – Key to Future Nuclear Power Generation in the U.S.1,2 Robert Rosner and Stephen Goldberg Energy Policy Institute at Chicago The Harris School of Public Policy Studies Contributor: Joseph S. Hezir, Principal, EOP Foundation, Inc. Technical Paper, Revision 1 November, 2011 1 The research described in this paper was funded by the U.S. DOE through Argonne National Laboratory, which is operated by UChicago Argonne, LLC under contract No. DE-AC02-06CH1357. This report was prepared as an account of work sponsored by the United States Department of Energy. Neither the United States Government nor any agency thereof, nor the University of Chicago, nor any of their employees or officers, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, Argonne National Laboratory, or the institutional opinions of the University of Chicago. 2 This paper is a major update of an earlier paper, July 2011. This -
U.S. Electric Company Investment and Innovation in Energy Storage Leading the Way U.S
June 2021 Leading the Way U.S. Electric Company Investment and Innovation in Energy Storage Leading the Way U.S. ELECTRIC COMPANY INVESTMENT AND INNOVATION IN ENERGY STORAGE Table of Contents CASE STUDIES CenterPoint Energy (In alphabetical order by holding company) 14 Solar Plus Storage Project AES Corporation Consolidated Edison Company of New York AES Indiana 15 Commercial Battery Storage 1 Harding Street Station Battery (Beyond Behind-the-Meter) Energy Storage System 16 Gateway Center Mall Battery 17 Ozone Park Battery Alliant Energy Dominion Energy 2 Decorah Energy Storage Project 3 Marshalltown Solar Garden and Storage 18 Bath County Pumped Storage Station 4 Sauk City Microgrid 5 Storage System Solar Demonstration Project DTE Energy 6 Wellman Battery Storage 19 EV Fast Charging-Plus-Storage Pilot Ameren Corporation Duke Energy Ameren Illinois 20 Rock Hill Community 9 MW Battery System 7 Thebes Battery Project 21 Camp Atterbury Microgrid 22 Nabb Battery Site Avangrid New York State Electric & Gas Edison International 8 Aggregated Behind-the-Meter Energy Storage Southern California Edison 9 Distribution Circuit Deployed Battery 23 Alamitos Energy Storage Storage System Pilot Project 24 Ice Bear 25 John S. Eastwood Pumped Storage Plant Rochester Gas & Electric Corporation 26 Mira Loma Substation Battery Storage Project 10 Integrated Electric Vehicle Charging & Battery Storage System Green Mountain Power 11 Peak Shaving Pilot Project 27 Essex Solar and Storage Microgrid 28 Ferrisburgh Solar and Storage Microgrid Berkshire Hathaway Energy 29 Milton Solar and Storage Microgrid MidAmerican Energy Company Hawaiian Electric Companies 12 Knoxville Battery Energy Storage System 30 Schofield Hawaii Public Purpose Microgrid PacifiCorp – Rocky Mountain Power 13 Soleil Lofts Virtual Power Plant i Leading the Way U.S.