Controllable Load Management Approaches in Smart Grids
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Advantages of Applying Large-Scale Energy Storage for Load-Generation Balancing
energies Article Advantages of Applying Large-Scale Energy Storage for Load-Generation Balancing Dawid Chudy * and Adam Le´sniak Institute of Electrical Power Engineering, Lodz University of Technology, Stefanowskiego Str. 18/22, PL 90-924 Lodz, Poland; [email protected] * Correspondence: [email protected] Abstract: The continuous development of energy storage (ES) technologies and their wider utiliza- tion in modern power systems are becoming more and more visible. ES is used for a variety of applications ranging from price arbitrage, voltage and frequency regulation, reserves provision, black-starting and renewable energy sources (RESs), supporting load-generation balancing. The cost of ES technologies remains high; nevertheless, future decreases are expected. As the most profitable and technically effective solutions are continuously sought, this article presents the results of the analyses which through the created unit commitment and dispatch optimization model examines the use of ES as support for load-generation balancing. The performed simulations based on various scenarios show a possibility to reduce the number of starting-up centrally dispatched generating units (CDGUs) required to satisfy the electricity demand, which results in the facilitation of load-generation balancing for transmission system operators (TSOs). The barriers that should be encountered to improving the proposed use of ES were also identified. The presented solution may be suitable for further development of renewables and, in light of strict climate and energy policies, may lead to lower utilization of large-scale power generating units required to maintain proper operation of power systems. Citation: Chudy, D.; Le´sniak,A. Keywords: load-generation balancing; large-scale energy storage; power system services modeling; Advantages of Applying Large-Scale power system operation; power system optimization Energy Storage for Load-Generation Balancing. -
Bioenergy's Role in Balancing the Electricity Grid and Providing Storage Options – an EU Perspective
Bioenergy's role in balancing the electricity grid and providing storage options – an EU perspective Front cover information panel IEA Bioenergy: Task 41P6: 2017: 01 Bioenergy's role in balancing the electricity grid and providing storage options – an EU perspective Antti Arasto, David Chiaramonti, Juha Kiviluoma, Eric van den Heuvel, Lars Waldheim, Kyriakos Maniatis, Kai Sipilä Copyright © 2017 IEA Bioenergy. All rights Reserved Published by IEA Bioenergy IEA Bioenergy, also known as the Technology Collaboration Programme (TCP) for a Programme of Research, Development and Demonstration on Bioenergy, functions within a Framework created by the International Energy Agency (IEA). Views, findings and publications of IEA Bioenergy do not necessarily represent the views or policies of the IEA Secretariat or of its individual Member countries. Foreword The global energy supply system is currently in transition from one that relies on polluting and depleting inputs to a system that relies on non-polluting and non-depleting inputs that are dominantly abundant and intermittent. Optimising the stability and cost-effectiveness of such a future system requires seamless integration and control of various energy inputs. The role of energy supply management is therefore expected to increase in the future to ensure that customers will continue to receive the desired quality of energy at the required time. The COP21 Paris Agreement gives momentum to renewables. The IPCC has reported that with current GHG emissions it will take 5 years before the carbon budget is used for +1,5C and 20 years for +2C. The IEA has recently published the Medium- Term Renewable Energy Market Report 2016, launched on 25.10.2016 in Singapore. -
Using AMR Data to Improve the Operation of the Electric Distribution System
Using AMR Data to Improve the Operation of the Electric Distribution System Glenn Pritchard Consulting Engineer Exelon/PECO Copyright © 2007 OSIsoft, Inc. All rights reserved. Objectives This session will discuss and present techniques for using data collected by an Automatic Meter Reading System to improve the operation and management of an Electric Distribution System. Specifically, several applications of PI System will be presented, they include: l Dynamic Load Management Modeling l Transformer Load Analysis l Curtailment Program Applications 2 Copyright © 2007 OSIsoft, Inc. All rights reserved. Agenda l PECO Background l Applications u System Load Management & Modeling § Transformer & Cable Load Analysis u Curtailment Program Applications l Meter Data Management 3 Copyright © 2007 OSIsoft, Inc. All rights reserved. Exelon / PECO l Subsidiary of Exelon Corp (NYSE: EXC) l Serving southeastern Pa. for over 100 years l Electric and Gas Utility u 1.7M Electric Customers u 470K Gas Customers l 2,400 sq. mi. service territory 4 Copyright © 2007 OSIsoft, Inc. All rights reserved. Scope of AMR at PECO l Cellnet provides a managedAMR service which includes network operations, meter reading and meter maintenance l PECO’s AMR installation project lasted from 1999 to 2003 l A Cellnet FixedRF Network solution was selected. u 99% of meters are read by the network u Others are driveby and MV90 dialup l Services/Data Delivered: u All meters are read Daily (Gas & Electric) u Additional services include: Demand, ½ Hour Interval, TOU, SLS u Reactive Power where required u Tamper & Outage Flags (LastGasp, PowerUp Messages) u OnDemand meter reading requests 5 Copyright © 2007 OSIsoft, Inc. -
Electric Vehicle Charging Impact on Load Profile
Electric Vehicle Charging Impact on Load Profile PIA GRAHN Licentiate Thesis Stockholm, Sweden 2013 School of Electrical Engineerging TRITA-EE 2012:065 Royal Institute of Technology ISSN 1653-5146 SE-100 44 Stockholm ISBN 978-91-7501-592-7 SWEDEN Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framlägges till offentlig granskning för avläggande av Teknologie licentiatexamen i elektrotekniska system torsdagen den 17 januari 2013 klockan 10.00 i i sal E3, Kungliga Tekniska Högskolan, Osquars backe 14, Stockholm. © Pia Grahn, January 2013 Tryck: Eprint AB 2012 iii Abstract One barrier to sustainable development is considered to be greenhouse gas emissions and pollution caused by transport, why climate targets are set around the globe to reduce these emissions. Electric vehicles (EVs), may be a sustainable alternative to internal combustion engine vehicles since having EVs in the car park creates an opportunity to reduce greenhouse gas emissions. This is due to the efficiency of the electric motor. For EVs with rechargeable batteries the opportunity to reduce emissions is also dependent on the genera- tion mix in the power system. EVs with the possibility to recharge the battery from the power grid are denoted plug-in electric vehicles (PEVs) or plug-in- hybrid electric vehicles (PHEVs). Hybrid electric vehicles (HEVs), without external recharging possibility, are not studied, hence the abbreviation EV further covers PHEV and PEV. With an electricity-driven private vehicle fleet, the power system will ex- perience an increased amount of variable electricity consumption that is de- pendent on the charging patterns of EVs. Depending on the penetration level of EVs and the charging patterns, EV integration creates new quantities in the overall load profile that may increase the load peaks. -
Hydroelectric Power -- What Is It? It=S a Form of Energy … a Renewable Resource
INTRODUCTION Hydroelectric Power -- what is it? It=s a form of energy … a renewable resource. Hydropower provides about 96 percent of the renewable energy in the United States. Other renewable resources include geothermal, wave power, tidal power, wind power, and solar power. Hydroelectric powerplants do not use up resources to create electricity nor do they pollute the air, land, or water, as other powerplants may. Hydroelectric power has played an important part in the development of this Nation's electric power industry. Both small and large hydroelectric power developments were instrumental in the early expansion of the electric power industry. Hydroelectric power comes from flowing water … winter and spring runoff from mountain streams and clear lakes. Water, when it is falling by the force of gravity, can be used to turn turbines and generators that produce electricity. Hydroelectric power is important to our Nation. Growing populations and modern technologies require vast amounts of electricity for creating, building, and expanding. In the 1920's, hydroelectric plants supplied as much as 40 percent of the electric energy produced. Although the amount of energy produced by this means has steadily increased, the amount produced by other types of powerplants has increased at a faster rate and hydroelectric power presently supplies about 10 percent of the electrical generating capacity of the United States. Hydropower is an essential contributor in the national power grid because of its ability to respond quickly to rapidly varying loads or system disturbances, which base load plants with steam systems powered by combustion or nuclear processes cannot accommodate. Reclamation=s 58 powerplants throughout the Western United States produce an average of 42 billion kWh (kilowatt-hours) per year, enough to meet the residential needs of more than 14 million people. -
Generation of Customer Load Profiles Based on Smart-Metering Time
Dipartimento di Ingegneria Industriale DII Dipartimento di Ingegneria dell'Informazione DEI TESI DI LAUREA MAGISTRALE IN INGEGNERIA DELL'ENERGIA ELETTRICA Generation of customer load profiles based on smart-metering time series, building-level data and aggregated measurements RELATORI: Prof. Andrea Alberto Pietracaprina Dipartimento di Ingegneria dell'Informazione (DEI) Universit`adegli Studi di Padova Dr. Andreas Ulbig Adaptricity AG, Power Systems Laboratory Swiss Federal Institute of Technology (ETH), Svizzera Prof. Pierre Pinson Department of Electrical Engineering Technical University of Denmark (DTU), Danimarca LAUREANDO: Damiano Toffanin ANNO ACCADEMICO 2015/2016 Abstract Many countries are rolling out new devices to measure household electricity consumption, the so-called \smart meters". These devices can be remotely read and are able to measure consumption multiple times per day, usually every 15 or 30 minutes in European countries. Such abundance of data allows to achieve very detailed insight on consumption patterns and power flows in distribution networks. Nevertheless, smart meters have not been rolled out everywhere yet: some areas of the distribution grid are only partially covered, others are not covered at all. The latter are \blind grid areas" from the perspective of the grid operator. This is likely to be the typical European situation, at least for the next decade. Therefore, it becomes important to provide an estimation on how these \blind grid areas" behave. This can be done by a proper exploitation of the previously unseen abundance of data. The research focus is to generate load profiles estimating a realistic consumption for a specific blind area. This thesis illustrates a model based on machine learning techniques and Markov chains for generating realistic Synthesized Load Profiles (SLPs) to model consumption of buildings not equipped with smart meters. -
Minnesota Energy Systems, a Primer Developed for the Clean Energy Resource Teams
Minnesota Energy Systems, A Primer Developed for the Clean Energy Resource Teams The Minnesota Project University of Minnesota’s Regional Sustainable Development Partnerships. March 2004 Communities and Local Energy Minnesota Energy Systems, A Primer Communities and Local Energy ENERGY SYSTEMS IN MINNESOTA This booklet provides CERTS members with a general overview of the systems that deliver the energy that runs our economy, keeps us warm, and provides necessities and conveniences of modern life. The energy system is divided into four end use sectors: residential, commercial, industrial and transportation. End use of energy refers to the point where energy is consumed to provide some benefit or service, such as light or heat. Basic energy resources are referred to a primary energy sources. Primary energy sources include resources like Figure 1. Energy End Use in coal, petroleum, natural gas, nuclear fuels, flowing water, Minnesota, 1999 wind, and solar radiation. Minnesota’s total energy use in the four end use sectors was approximately 1,700 trillion Btus in 2000. Industry and transportation are the largest end use sectors in the state. They each use somewhat more than one-third of the energy consumed in Minnesota. The remaining one- forth to one-third of energy consumption is divided between the residential and commercial sectors-with the residential sector taking a little larger share. Source: Minnesota Department of Commerce Fossil fuels Figure 2. Inputs Used to Produce dominate the market for primary energy sources in Energy Consumed in Minnesota, 1999 Minnesota. Petroleum, coal and natural gas supply about 88% of the energy used in Minnesota. -
Automatic Meter Reading and Load Management Using Power Line
ISSN (Print) : 2320 – 3765 ISSN (Online): 2278 – 8875 International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering (An ISO 3297: 2007 Certified Organization) Vol. 3, Issue 5, May 2014 Automatic Meter Reading and Load Management Using Power Line Carrier Communication M V Aleyas1, Nishin Antony2, Sandeep T3, Sudheesh Kumar M4, Vishnu Balakrishnan5 Professor, Dept of EEE, Mar Athanasius College of Engineering, Kothamangalam, India1 Student, Dept of EEE, Mar Athanasius College of Engineering, Kothamangalam, India 2,3,4,5 ABSTRACT: Energy crisis is the main problem faced by present day society. A suitable system to control the energy usage is one of the solutions for this crisis. Load shedding, power cut etc. helps to rearrange the available power but they can't be used to prevent the unwanted usage of energy, peak time load control etc. Also a system is needed to monitor the power consumption of an overall area to select the areas to suitably control the energy usage. One of the easiest solutions for this is by using power line communication. PLC is the communication technology that enables sending data over existing power cables. This means that with just power cables running to an electrical device, one can power it up and at the same time control/retrieve data from the device in full duplex manner. The major advantage of PLC is that it does not need extra cables. It uses existing wires. Thus by using power line communication we can monitor and control the usage of devices by providing a control the usage of devices by providing a control circuit at consumer end. -
Economics of Power Generation Prepared by the Legislative Finance Committee July 2017 Understanding Electric Power Generation
Economics of Power Generation Prepared by the Legislative Finance Committee July 2017 Understanding Electric Power Generation Following the Great Recession, electricity demand in the United States contracted, and energy efficiency improvements in buildings, lighting, and appliances stunted its recovery. Globally, a slowdown in Chinese coal demand depressed coal prices worldwide and reduced the market for U.S. exports, and coal demand in emerging markets is unlikely to make up for the slowdown in Chinese coal consumption. According to Columbia University’s Center on Global Energy Policy (CGEP), over half of the decline in coal company revenue between 2011 and 2015 is due to international factors.i Given current technological constraints, electricity cannot be stored on a large scale at a reasonable cost. Therefore, entities operating the transmission grid must keep supply and demand matched in “real-time” – from minute to minute. Imbalances in supply and demand can destroy machinery, cause power outages, and become very costly over time. The need to continually balance supply and demand plays a key role in how electricity generation sources are dispatched. In the 1980s, electricity supply was relatively straightforward, with less flexible coal and nuclear plants supplying base load power needs, and more flexible gas turbines and hydroelectric plants supplying peak load power needs. Developments over the last decade challenged this traditional mix of power generation. Natural gas, wind, and solar now meet 40 percent of U.S. power needs, up from 22 percent a decade ago. Early July 2017, The Wall Street Journal reported three of every 10 coal generators has closed permanently in the last five years. -
HYDROELECTRICITY FACT SHEET 1 an Overview of Hydroelectricity in Australia
HYDROELECTRICITY FACT SHEET 1 An overview of hydroelectricity in Australia About hydroelectricity in Australia → In 2011, hydroelectric plants produced a total of 67 per cent of Australia’s total clean energy generation1, enough energy to power the equivalent of 2.8 million average Australian homes. → Australia’s 124 operating hydro power plants generated 6.5 per cent of Australia’s annual electricity supply in 20112. → The Australian hydro power industry has already attracted over one billion dollars of investment to further develop Australian hydro power projects3. → Opportunities for further growth in the hydro power industry are principally in developing mini hydro plants or refurbishing, upgrading and modernising Australia’s current fleet. The Clean Energy Council’s most recent hydro report provides an overview of the industry and highlights opportunities for further growth. Climate Change and Energy Efficiency Minister Greg Combet stated: “This is a welcome report and highlights the importance of iconic Australian power generation projects such as the Snowy Mountains Scheme and Tasmanian hydro power. This report reminds us of the importance of the 20 per cent Renewable Energy Target, and the need for a carbon price to provide certainty to investors. Reinvestment in ageing hydro power assets will form an important part of the future energy market and efforts to reduce carbon pollution.” Source: Hydro Tasmania Hydro Source: 1 Clean Energy Council Clean Energy Australia Report 2011 pg. 28) 3 ibid 2 Clean Energy Council Hydro Sector Report 2010 pg 14 The Clean Energy Council is the peak body representing Australia’s clean energy sector. It is an industry association made up of more than 550 member companies operating in the fields of renewable energy and energy efficiency. -
Autonomous Fuzzy Controller Design for the Utilization of Hybrid PV-Wind Energy Resources in Demand Side Management Environment
electronics Article Autonomous Fuzzy Controller Design for the Utilization of Hybrid PV-Wind Energy Resources in Demand Side Management Environment Mohanasundaram Anthony 1,* , Valsalal Prasad 2, Raju Kannadasan 3 , Saad Mekhilef 4,5 , Mohammed H. Alsharif 6 , Mun-Kyeom Kim 7,* , Abu Jahid 8 and Ayman A. Aly 9 1 Department of Electrical and Electronics Engineering, Aalim Muhammed Salegh College of Engineering, Chennai 600055, India 2 Department of Electrical and Electronics Engineering, College of Engineering Guindy, Anna University, Chennai 600025, India; [email protected] 3 Department of Electrical and Electronics Engineering, Sri Venkateswara College of Engineering, Sriperumbudur, Chennai 602117, India; [email protected] 4 Power Electronics and Renewable Energy Research Laboratory (PEARL), Department of Electrical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; [email protected] 5 School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia 6 Department of Electrical Engineering, College of Electronics and Information Engineering, Sejong University, Seoul 05006, Korea; [email protected] 7 Department of Energy System Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea 8 Department of Electrical and Computer Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada; Citation: Anthony, M.; Prasad, V.; [email protected] Kannadasan, R.; Mekhilef, S.; 9 Department of Mechanical Engineering, College of Engineering, Taif University, P.O. Box 11099, Alsharif, M.H.; Kim, M.-K.; Jahid, A.; Taif 21944, Saudi Arabia; [email protected] Aly, A.A. Autonomous Fuzzy * Correspondence: [email protected] (M.A.); [email protected] (M.-K.K.) Controller Design for the Utilization of Hybrid PV-Wind Energy Resources Abstract: This work describes an optimum utilization of hybrid photovoltaic (PV)—wind energy in Demand Side Management for residential buildings on its occurrence with a newly proposed autonomous fuzzy controller Environment. -
Electric Power Grid Modernization Trends, Challenges, and Opportunities
Electric Power Grid Modernization Trends, Challenges, and Opportunities Michael I. Henderson, Damir Novosel, and Mariesa L. Crow November 2017. This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 United States License. Background The traditional electric power grid connected large central generating stations through a high- voltage (HV) transmission system to a distribution system that directly fed customer demand. Generating stations consisted primarily of steam stations that used fossil fuels and hydro turbines that turned high inertia turbines to produce electricity. The transmission system grew from local and regional grids into a large interconnected network that was managed by coordinated operating and planning procedures. Peak demand and energy consumption grew at predictable rates, and technology evolved in a relatively well-defined operational and regulatory environment. Ove the last hundred years, there have been considerable technological advances for the bulk power grid. The power grid has been continually updated with new technologies including increased efficient and environmentally friendly generating sources higher voltage equipment power electronics in the form of HV direct current (HVdc) and flexible alternating current transmission systems (FACTS) advancements in computerized monitoring, protection, control, and grid management techniques for planning, real-time operations, and maintenance methods of demand response and energy-efficient load management. The rate of change in the electric power industry continues to accelerate annually. Drivers for Change Public policies, economics, and technological innovations are driving the rapid rate of change in the electric power system. The power system advances toward the goal of supplying reliable electricity from increasingly clean and inexpensive resources. The electrical power system has transitioned to the new two-way power flow system with a fast rate and continues to move forward (Figure 1).