United States Patent Office Patented June 27, 1967 1

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent Office Patented June 27, 1967 1 3,328,470 United States Patent Office Patented June 27, 1967 1. 2 3,328,470 GREATER SELECTIVITY IN THE GUERBET As stated, the reaction is carried out at an elevated tem REACTION perature which can lie between about 200 C. and about Ronald L. Poe, Ponca City, Okla., assignor to Continental 300° C. The particular temperature employed will de Oil Company, Ponca City, Okla., a corporation of pend on the alcohol which is being converted, the particu Delaware 5 lar catalyst used and the other operating conditions. Pref No Drawing. Filed Oct. 3, 1963, Ser. No. 313,440 erably, the reaction is carried out in the presence of 16 Claims. (C. 260-642) potassium hydroxide as the catalyst and at a temperature between about 240° C. and 270° C. This invention relates to preparation of alcohols and Pressure is of importance in the process, primarily as particularly to the preparation of 2-branched alcohols by O a means of maintaining the reactants in the desired physi the dimerization of primary alcohols. cal state. Thus, sufficient pressure is employed to main The Guerbet reaction is a reaction which is well-known tain the starting alcohol in the liquid state and this pres to the organic chemist. According to the Guerbet reaction, sure will vary depending on the temperature at which a primary or secondary alcohol which contains a methyl the reaction is carried out. More elevated pressures can ene group attached to the carbon atom of the carbinol be employed if desired, however, they are not ncessary group is condensed with itself (or with another alcohol and where possible, the reaction is ordinarily carried out of the class just described) to form as the principal at atmospheric pressure. product a higher alcohol containing double the number The reaction proceeds readily with the time required of carbon atoms of the starting alcohol, for example, varying inversely with catalyst concentration and tempera n-butanol is condensed to 2-ethylhexanol. Similarly, a 20 ture. Broadly, the reaction time can vary from about 0.1 mixture of n-butanol and ethanol can react to form 2 hour to as high as about 50 hours or higher. Preferably, ethylhexanol (by condensation of two molecules of n however, the reaction is carried out within a time period butanol), n-butanol (by condensation of two molecules of between about 1 and about 8 hours. of ethanol), n-hexanol and 2-ethylbutanol (by condensa A wide variety of alcohols can be converted to the tion of a molecule of n-butanol with a molecule of 25 dimer alcohol within the scope of the invention. In the ethanol). It is also apparent that a certain amount of broad aspect of the invention, these alcohols are defined condensation can occur between the principal higher alco as primary alcohols having at least one hydrogen on the hol product and unreacted starting alcohol, as well as beta carbon atom and can be expressed structurally by between two molecules of the principal higher alcohol the following formula: product, and on up the line, forming a series of higher molecular weight alcohols by condensation which theo 30 retically can involve any two molecules present in the reaction mixture at a given time, if at least one of the two materials undergoing condensation contains a methyl wherein at least one R is hydrogen and at least one R ene group attached to the carbon atom of the carbinol is hydrocarbon, e.g., alkyl, aryl, cycloalkyl, alkaryl and group. 35 aralkyl. While there is no particular limitation on the In the conventional Guerbet reaction, large amounts of number of carbon atoms which can be present in the catalysts are used which have the disadvantage of pro hydrocarbon groups, more usually the alcohols include moting the undersirable reactions, for example, the those containing from 3 to about 20 carbon atoms. Of formation of acid. Conventionally, approximately 33 mole the various types of alcohols which can be used in carry percent catalyst is added to the alcohol to be dimerized. 40 ing out the invention, there are included preferably the It is an object of this invention to provide an improved normal primary alcohols, such as, n-propanol, n-hexanol, process for the dimerization of primary alcohols. n-dodecanol. In addition, the alcohols include the It is another object of this invention to provide an im branched chain primary alcohols, such as, 2-methyl proved process for increasing product selectivity in the butanol, 2 - butyloctanol, 2 - octyldodecanol, 2-methyl dimerization of primary alcohols. 45 octanol and the like; and primary alcohols containing Still another object of this invention is to provide an cyclic Substituents and aromatic substituents, such as, 2 improved process for the dimerization of primary alcohols phenylethanol, 2-benzyloctanol, 2-cyclopentyldodecanol, employing an alkali metal or alkali-metal compound as 2 - cyclohexylphentanol, 2-methylcyclohexylheptanol, 2 the catalyst. benzylpentanol and the like. The foregoing objects are realized broadly by the 50 The catalyst which is employed in effecting the dimeri process of converting primary alcohol having at least one zation reaction is preferably selected from the alkali-metal hydrogen on the beta carbon to 2-branched alcohol in the hydroxides, that is, sodium hydroxide, potassium hy presence of a small amount of an alkali metal or alkali droxide, lithium hydroxide, etc. In addition, the alkali metal compound catalyst. This process is exemplified by metals can also be employed as catalysts and the catalysts the following reaction: 55 also include the alkali-metal alcoholates in which the hy Fr drocarbon portion of the alcoholate corresponds to the - ; H hydrocarbon portion of the alcohol reactant. Sodium hy E.--- droxide and potassium hydroxide are the catalysts which ------ KOH CHg OH -- CEs-CH-CHOH - 60 are more usually employed and of these, potassium hy -------- droxide is preferred. CH-CH-CHOH + H2O The amount of catalyst employed in carrying out the dimerization reaction is important since a high degree of Hg selectivity is obtained only within a relatively narrow In carrying out the process of this invention, the alcohol range of catalyst concentraton. Thus, the amount of cata is contacted with the dimerization catalyst preferably at 65 lyst employed in the practice of the invention must be less an elevated temperature for a period of time sufficient to than 3 mole percent based on the alcohol reactant and convert a substantial portion of the alcohol to the 2 preferably, is not greater than about 2 percent. The cata branched dimer. By appropriately controlling the oper lyst concentration affects not only selectivity but also is ating conditions under which the reaction is carried out a very important factor in the reaction time, with the time and by utilizing an alkali-metal catalyst, it is possible to 70 required decreasing as the catalyst concentration is in obtain selective conversion to the desired dimer alcohol creased. In view of this, it is preferred to use as much in amounts exceeding 90 percent. catalyst as possible, preferably at least 1 percent, however, 3,328,470 4 3 In order to obtain the high degree of selectivity which Smaller amounts of catalyst can effectively be employed, characterizes the process of this invention, it is necessary and any catalytic amount as readily ascertained by those that Water which forms during the dimerization reaction within the skill of the art can be used in carrying out the be removed from contact with the reaction mixture. This invention.Numerous examples could be presented to illustrate 5 can be accomplished in several ways, for example, the specific alcohols and catalysts employed and their conver- Water is readily removed by carrying out the reaction in sion. The following examples are submitted only by way the presence of a dehydrating agent such as calcium hy of illustration and not of limitation, to exemplify various droxide or calcium hydride. Water removal can also be specific aspects of the invention. effected by distillation and which readily occurs with many 10 of the alcohol reactants since the reaction conditions of temperature and pressure are such that water formed in EXAMPLES the reaction is distilled therefrom. In those instances where the reaction conditions are not conducive to the R1 H removal of water, this deficiency can be remedied by Alcohol--------------- R- d -(- OE 5 employment of an azeotrope such as xylene, benzene and Catalyst the like. R3 H The yields which are obtained in the dimerization reac tion will vary depending upon the alcohol reactant, the R1 R2 Rs catalyst and amount thereof and the particular reaction 20 conditions employed. Any alcohol which is not converted H. C1021 C8H17 NaOE in the reaction can be separated from the reaction product EI C6H5CH2 C6H13 K and if desired, recycled to the reaction. The reaction can C2Es be carried out either as a batch process or as a continuous H CH3 Cas CH-C-C-OK process, preferably with recycle of unconverted alcohol. h 25 The following examples are presented in illustration of g-H, the invention. Examples H. C6H11 C3H C6H11 g C-ONa Normal dodecanol was added to a three-necked glass H 30 flask equipped with a stirrer, thermometer and a trap H C6H13 CH KOH attached to a condenser. Potassium hydroxide catalyst H C65 Na was added to the flask and the mixture was heated and C19H21 maintained at an elevated temperature until the reaction H C5Hg C10H1 C.H.-b-c-oNa was complete (distillation of water stopped). The flask h 35 Was then cooled to about 70° C. to 90°. C. and acidified With 25 percent hydrochloric acid. After separation, the H CHg CH KOH organic layer was washed with hot water until a pH of E.
Recommended publications
  • Enlarging Knowledge on Lager Beer Volatile Metabolites Using Multidimensional Gas Chromatography
    foods Article Enlarging Knowledge on Lager Beer Volatile Metabolites Using Multidimensional Gas Chromatography Cátia Martins 1 , Tiago Brandão 2, Adelaide Almeida 3 and Sílvia M. Rocha 1,* 1 Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, Campus Universitário Santiago, 3810-193 Aveiro, Portugal; [email protected] 2 Super Bock Group, Rua do Mosteiro, 4465-703 Leça do Balio, Portugal; [email protected] 3 Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário Santiago, 3810-193 Aveiro, Portugal; [email protected] * Correspondence: [email protected]; Tel.: +351-234-401-524 Received: 30 July 2020; Accepted: 6 September 2020; Published: 11 September 2020 Abstract: Foodomics, emergent field of metabolomics, has been applied to study food system processes, and it may be useful to understand sensorial food properties, among others, through foods metabolites profiling. Thus, as beer volatile components represent the major contributors for beer overall and peculiar aroma properties, this work intends to perform an in-depth profiling of lager beer volatile metabolites and to generate new data that may contribute for molecules’ identification, by using multidimensional gas chromatography. A set of lager beers were used as case-study, and 329 volatile metabolites were determined, distributed over 8 chemical families: acids, alcohols, esters, monoterpenic compounds, norisoprenoids, sesquiterpenic compounds, sulfur compounds, and volatile phenols. From these, 96 compounds are reported for the first time in the lager beer volatile composition. Around half of them were common to all beers under study. Clustering analysis allowed a beer typing according to production system: macro- and microbrewer beers. Monoterpenic and sesquiterpenic compounds were the chemical families that showed wide range of chemical structures, which may contribute for the samples’ peculiar aroma characteristics.
    [Show full text]
  • 1.1 10 Oxidation of Alcohols and Aldehydes
    1.1 10 Oxidation of alcohols and aldehydes By the end of this spread, you should be able to … 1Describe the oxidation of primary alcohols to form aldehydes and carboxylic acids. 1Describe the oxidation of secondary alcohols to form ketones. 1Describe the oxidation of aldehydes to form carboxylic acids. Key definition Oxidation of alcohols You will recall from your AS chemistry studies that primary and secondary alcohols can A redox reaction is one in which both reduction and oxidation take place. be oxidised using an oxidising agent. s !SUITABLEOXIDISINGAGENTISASOLUTIONCONTAININGACIDIlEDDICHROMATEIONS + 2− H /Cr2O7 . s 4HEOXIDISINGMIXTURECANBEMADEFROMPOTASSIUMDICHROMATE +2Cr2O7, and sulfuric acid, H2SO. During the reaction, the acidified potassium dichromate changes from orange to green. Remember that tertiary alcohols are not oxidised by acidified dichromate ions. Primary alcohols Primary alcohols can be oxidised to aldehydes and to carboxylic acids (see AS Chemistry spread 2.2.3). H H H O H O Oxidation Oxidation H CCOH H CC H CC H H H H H OH Primary alcohol Aldehyde Carboxylic acid Figure 1 Ethanol oxidised to ethanal, and finally to ethanoic acid The equation for the oxidation of ethanol to the aldehyde ethanal is shown below. Note that the oxidising agent is shown as [O] – this simplifies the equation. CH3CH2OH + [O] }m CH3CHO + H2O When preparing aldehydes in the laboratory, you will need to distil the aldehyde from the reaction mixture as it is formed. This prevents the aldehyde from being oxidised further to a carboxylic acid. Key definition When making the carboxylic acid, the reaction mixture is usually heated under reflux before distilling the product off.
    [Show full text]
  • Development and Optimization of Organic Based Monoliths for Use in Affinity Chromatography
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Student Research Projects, Dissertations, and Theses - Chemistry Department Chemistry, Department of Winter 12-2-2011 Development and Optimization of Organic Based Monoliths for Use in Affinity Chromatography Erika L. Pfaunmiller University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/chemistrydiss Part of the Analytical Chemistry Commons Pfaunmiller, Erika L., "Development and Optimization of Organic Based Monoliths for Use in Affinity Chromatography" (2011). Student Research Projects, Dissertations, and Theses - Chemistry Department. 28. https://digitalcommons.unl.edu/chemistrydiss/28 This Article is brought to you for free and open access by the Chemistry, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Student Research Projects, Dissertations, and Theses - Chemistry Department by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. DEVELOPMENT AND OPTIMIZATION OF ORGANIC BASED MONOLITHS FOR USE IN AFFINITY CHROMATOGRAPHY by Erika L. Pfaunmiller A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfilment of Requirements For the Degree of Master of Science Major: Chemistry Under the Supervision of Professor David S. Hage Lincoln, Nebraska December, 2011 DEVELOPMENT AND OPTIMIZATION OF ORGANIC BASED MONOLITHS FOR USE IN AFFINITY CHROMATOGRAPHY Erika L. Pfaunmiller, M.S. University of Nebraska, 2011 Adviser: David S. Hage Affinity chromatography is an important and useful tool for studying biological interactions, such as the binding of an antibody with an antigen. Monolithic supports offer many advantages over traditional packed bed supports in affinity chromatography, including their ease of preparation, low back pressures and good mass transfer properties.
    [Show full text]
  • SYNTHESIS of NOVEL CROWN ETHER COMPOUNDS and Lonomer MODIFICATION of NAFION
    SYNTHESIS OF NOVEL CROWN ETHER COMPOUNDS AND lONOMER MODIFICATION OF NAFION by JONG CHAN LEE, B.S., M.S. A DISSERTATION IN CHEMISTRY Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Approved August, 1992 L3 ACKNOWLEDGEMENTS I am deeply indebted to Dr. Richard A. Bartsch for his constant encouragement and patience throughout my graduate career. His diligent pursuit of excellence in science inspired me to perform research for the love of it. I would like to thank Drs. Robert D. Walkup, Allan D. Headley, Dennis C. Shelly, Bruce R. Whittlesey. John N. Marx for their willingness to provide help and advice. I would also like to thank friendly co-workers. Dr. T. Hayashita, Marty Utterback, John Knobeloch, Zuan Cong Lu, J. S. Kim, and Dr. Joe McDonough for the wonderful times in the laboratory. I would like to thank Dow Chemical Company U. S. A. and Texas Advanced Technology Program for much of the funding of this research project. I would like to extend gratitude to my wonderful parents and sisters for their support throughout the years that I have spent abroad. Most importantly, I thank my wife Sun Yong without whose endless love and patience none of this would have been possible. 11 TABLE OF CONTENTS ACKNOWLEDGEMENS ii LIST OF TABLES xi LISTOFHGURES xii I. INTRODUCnON 1 Crown Ether Background 1 Cation Complexation by Crown Ethers 2 Synthesis of Monobenzo and Dibenzocrown Ethers 4 Lariat Ethers 1 0 Chromogenic Crown Ethers 1 3 Acyclic Polyether Compounds 1 5 Nafion® lonomer Membrane 1 7 Statement of Research Goal 2 0 II.
    [Show full text]
  • Dodecanol Ddn
    DODECANOL DDN CAUTIONARY RESPONSE INFORMATION 4. FIRE HAZARDS 7. SHIPPING INFORMATION 4.1 Flash Point: 260°F C.C. 7.1 Grades of Purity: 98.5-99.5% Common Synonyms Thick liquid Colorless Sweet odor 4.2 Flammable Limits in Air: Currently not 7.2 Storage Temperature: Ambient Dodecyl alcohol available Lauryl alcohol 7.3 Inert Atmosphere: No requirement 4.3 Fire Extinguishing Agents: Alcohol foam, Floats on water. Freezing point is 75°F. 7.4 Venting: Open (flame arrester) carbon dioxide, dry chemical 7.5 IMO Pollution Category: B Call fire department. 4.4 Fire Extinguishing Agents Not to Be Avoid contact with liquid. Used: Water or foam may cause 7.6 Ship Type: 3 Notify local health and pollution control agencies. frothing. 7.7 Barge Hull Type: Currently not available 4.5 Special Hazards of Combustion Combustible. Products: Not pertinent Fire 8. HAZARD CLASSIFICATIONS Extinguish with dry chemical, alcohol foam, or carbon dioxide. 4.6 Behavior in Fire: Not pertinent Water may be ineffective on fire. 8.1 49 CFR Category: Not listed Cool exposed containers with water. 4.7 Auto Ignition Temperature: 527°F 4.8 Electrical Hazards: Not pertinent 8.2 49 CFR Class: Not pertinent 8.3 49 CFR Package Group: Not listed. Exposure CALL FOR MEDICAL AID. 4.9 Burning Rate: Currently not available 4.10 Adiabatic Flame Temperature: Currently 8.4 Marine Pollutant: No LIQUID not available 8.5 NFPA Hazard Classification: Irritating to skin. 4.11 Stoichometric Air to Fuel Ratio: 85.7 Category Classification Will burn eyes. (calc.) Flush affected areas with plenty of water.
    [Show full text]
  • Long Chain Alcohols (C6-22 Primary Aliphatic Alcohols)
    SIAM 22, 18-21 April 2006 UK/ICCA SIDS INITIAL ASSESSMENT PROFILE Chemical Category Name Long Chain Alcohols (C6-22 primary aliphatic alcohols) Chemical name CAS no. Chemical name CAS no. 1-Hexanol 111-27-3 Alcohols, C16-18 67762-27-0 1-Octanol 111-87-5 Alcohols, C14-18 67762-30-5 1-Decanol 112-30-1 Alcohols, C10-16 67762-41-8 1-Undecanol 112-42-5 Alcohols, C8-18 68551-07-5 1-Tridecanol 112-70-9 Alcohols, C14-16 68333-80-2 1-Tetradecanol 112-72-1 Alcohols, C6-12 68603-15-6 1-Pentadecanol 629-76-5 Alcohols, C12-16 68855-56-1 1-Hexadecanol 36653-82-4 Alcohols, C12-13 75782-86-4 CAS Nos 1-Eicosanol 629-96-9 Alcohols, C14-15 75782-87-5 1-Docosanol 661-19-8 Alcohols, C12-14 80206-82-2 Alcohols, C12-15 63393-82-8 Alcohols, C8-10 85566-12-7 Alcohols, C9-11 66455-17-2 Alcohols, C10-12 85665-26-5 Alcohols, C12-18 67762-25-8 Alcohols, C18-22 97552-91-5 9-Octadecen-1-ol 143-28-2 Alcohols, C14-18. 68155-00-0 (9Z)- & C16-18-unsatd Alcohols, C16-18 68002-94-8 Tridecanol, 90583-91-8 & C18 Unsaturated branched & linear Structural Formula CH3(CH2)nCH2OH Linear n = 4 to 20 CH3(CH2)nCHCH2OH 2-Alkyl branched n + m = 3 to 18, and m is predominantly (CH2)mCH3 = 0. Present in essentially-linear alcohols CH3(CH2)nCH(CH2)mOH Other-methyl branching n + m= 9 or 10 CH3 Present in essentially-linear Fischer- Tropsch derived alcohols CH3(CH2)7CH=CH(CH2)7CH2O Unsaturated H 9-Z unsaturated components are present in some commercial products.
    [Show full text]
  • Transcription 12.01.12
    Lecture 2B • 01/12/12 We covered three different reactions for converting alcohols into leaving groups. One was to turn an alcohol into an alkyl chloride, that was using thionyl chloride. Second reaction was using tosyl chloride; the primary difference between those two reactions is one of stereochemistry. An inversion of stereochemistry does occur if you use thionyl chloride, because it does affect the carbon-oxygen bond, but because forming a tosylate does not touch the carbon-oxygen bond, only the oxygen- hydrogen bond, there’s no change in stereochemistry there. We then saw phosphorus tribromide that reacts very similarly to the thionyl chloride; you get an alkyl bromide instead, but it also has inversion of configuration. The last reaction is not a new mechanism, it is just an Sn2 reaction, it’s called the Finkelstein reaction. Really this works, in a sense, off of Le Châtelier’s principle. In solution, in theory, sodium iodide can displace bromide, but sodium bromide can displace iodide, so you can have an Sn2 reaction that goes back and forth and back and forth and back and forth. Except, sodium iodide is somewhat soluble in acetone, while sodium chloride and sodium bromide are not. So, in fact, one of the things that we get out of this as a by-product is sodium bromide, which, again, is not soluble in acetone and therefore precipitates out and is no longer part of the reaction mixture, so there’s no reverse reaction possible. Because of this solubility trick, it allows this reaction to be pulled forward, which means you can get the alkyl iodide.
    [Show full text]
  • Formation of Lipid Vesicles in Situ Utilizing the Thiol-Michael Reaction
    Soft Matter Formation of Lipid Vesicles in situ Utilizing the Thiol-Michael Reaction Journal: Soft Matter Manuscript ID SM-ART-06-2018-001329.R1 Article Type: Paper Date Submitted by the Author: 24-Aug-2018 Complete List of Authors: Konetski, Danielle; University of Colorado, Department of Chemical and Biological Engineering Baranek, Austin; University of Colorado, Department of Chemical and Biological Engineering Mavila, Sudheendran; University of Colorado, Department of Chemical & Biological Engineering Zhang, Xinpeng; University of Colorado Bowman, Christopher; University of Colorado, Department of Chemical and Biological Engineering Page 1 of 26 Soft Matter Formation of Lipid Vesicles in situ Utilizing the Thiol- Michael Reaction Danielle Konetskia, Austin Baraneka, Sudheendran Mavilaa, Xinpeng Zhanga and Christopher N. Bowmana* a. Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Avenue, JSC Biotech Building, Boulder, Colorado 80303, United States *[email protected] (303-492-3247) Abstract Synthetic unilamellar liposomes, functionalized to enable novel characteristics and behavior, are of great utility to fields such as drug delivery and artificial cell membranes. However, the generation of these liposomes is frequently highly labor-intensive and time consuming whereas in situ liposome formation presents a potential solution to this problem. A novel method for in situ lipid formation is developed here through the covalent addition of a thiol-functionalized lysolipid to an acrylate-functionalized tail via the thiol-Michael addition reaction with potential for inclusion of additional functionality via the tail. Dilute, stoichiometric mixtures of a thiol lysolipid and an acrylate tail reacted in an aqueous media at ambient conditions for 48 hours reached nearly 90% conversion, forming the desired thioether-containing phospholipid product.
    [Show full text]
  • Unit 11 Halogen Derivatives
    UNIT 11 HALOGEN DERIVATIVES Structure 11.1 Introduction Objectives 11.2 Classification of Halogen Derivatives 11.3 Preparation of Halogen Derivatives Alkyl Halides Aryl Halides Alkenyl Halides 11.4 Structure and Properties of Halogen Derivatives Structure of Halogen Derivatives Physical Properties of Halogen Derivatives Spectral Properties of Halogen Derivatives Chemical Properties of Alkyl Halides Chemical Properties of Aryl and Alkenyl Halides 11.5 Organometallic Compounds 11.6 Polyhalogen Derivatives Dihalogen Derivatives Trihalogen Derivatives 11.7 Uses of Halogen Derivatives 11.8 Lab Detection 11.9 Summary 11.10 Terminal Questions 11.11 Answers 11.1 INTRODUCTION In Block 2, we have described the preparation and reactions of hydrocarbons and some heterocyclic compounds. In this unit and in the next units, we will srudy some derivatives of hydrocarbons. Replacement of one or more hydrogen atoms in a hycimcarbon by halogen atom(s) [F, CI, Br, or I:] gives the halogen derivatives. These compounds are important laboratory and industrial solvents and serve as intermediates in the synthesis of other organic compounds. Many chlorohydrocarbons have acquired importance as insecticides. Although there are not many naturally occurring halogen derivatives yet you might be familiar with one such compound, thyroxin-a thyroid hormone. In this unit, we shall take up the chemistry of the halogen derivatives in detail beginning with classification of halogen derivatives and then going over to methods of their preparation. We shall also discuss the reactivity'of halogen compounds and focus our attention specially, on some important reactions such as nucleophilic substitution (SN)and elimination (E) reactions. Finally, we shall take up uses of halogen derivatives and the methods for their detection.
    [Show full text]
  • Reactions of Alcohols & Ethers 1
    REACTIONS OF ALCOHOLS & ETHERS 1. Combustion (Extreme Oxidation) alcohol + oxygen carbon dioxide + water 2 CH3CH2OH + 6 O2 4 CO2 + 6 H2O 2. Elimination (Dehydration) ° alcohol H 2 S O 4/ 1 0 0 C alkene + water H2SO4/100 ° C CH3CH2CH2OH CH3CH=CH2 + H2O 3. Condensation ° excess alcohol H 2 S O 4 / 1 4 0 C ether + water H2SO4/140 ° C 2 CH3CH2OH CH3CH2OCH2CH3 + H2O 4. Substitution Lucas Reagent alcohol + hydrogen halide Z n C l2 alkyl halide + water ZnCl2 CH3CH2OH + HCl CH3CH2Cl + H2O • This reaction with the Lucas Reagent (ZnCl2) is a qualitative test for the different types of alcohols because the rate of the reaction differs greatly for a primary, secondary and tertiary alcohol. • The difference in rates is due to the solubility of the resulting alkyl halides • Tertiary Alcohol→ turns cloudy immediately (the alkyl halide is not soluble in water and precipitates out) • Secondary Alcohol → turns cloudy after 5 minutes • Primary Alcohol → takes much longer than 5 minutes to turn cloudy 5. Oxidation • Uses an oxidizing agent such as potassium permanganate (KMnO4) or potassium dichromate (K2Cr2O7). • This reaction can also be used as a qualitative test for the different types of alcohols because there is a distinct colour change. dichromate → chromium 3+ (orange) → (green) permanganate → manganese (IV) oxide (purple) → (brown) Tertiary Alcohol not oxidized under normal conditions CH3 KMnO4 H3C C OH NO REACTION K2Cr2O7 CH3 tertbutyl alcohol Secondary Alcohol ketone + hydrogen ions H O KMnO4 H3C C CH3 + K2Cr2O7 C + 2 H H3C CH3 OH propanone 2-propanol Primary Alcohol aldehyde + water carboxylic acid + hydrogen ions O KMnO4 O H H KMnO H H 4 + CH3CH2CH2OH C C C H C C C H + 2 H K2Cr2O7 + H2O K Cr O H H H 2 2 7 HO H H 1-propanol propanal propanoic acid 6.
    [Show full text]
  • Chapter 18 Ethers and Epoxides; Thiols and Sulfides Ethers
    Chapter 18 Ethers and Epoxides; Thiols and Sulfides Ethers • Ethers (R–O–R’): – Organic derivatives of water, having two organic groups bonded to the same oxygen atom © 2016 Cengage Learning 2 NAMES AND PROPERTIES OF ETHERS 3 Nomenclature: Common Names • Simple ethers are named by identifying two organic substituents and adding the word ether – Name the groups in alphabetical order – Symmetrical: Use dialkyl or just alkyl © 2016 Cengage Learning 4 Nomenclature: IUPAC Names • The more complex alkyl group is the parent name • The group with the oxygen becomes an alkoxy group © 2016 Cengage Learning 5 Nomenclature: Cyclic Ethers (Heterocycles) • Heterocyclic: Oxygen is part of the ring. O • Epoxides (oxiranes) H2C CH2 O • Oxetanes • Furans (Oxolanes) O O • Pyrans (Oxanes) O O O • Dioxanes O © 2013 Pearson Education, Inc. 6 Epoxide Nomenclature • Name the starting alkene and add “oxide” © 2013 Pearson Education, Inc. 7 Epoxide Nomenclature • The oxygen can be treated as a substituent (epoxy) on the compound • Use numbers to specify position • Oxygen is 1, the carbons are 2 and 3 • Substituents are named in alphabetical order © 2013 Pearson Education, Inc. 8 Properties of Ethers • Possess nearly the same geometry as water – Oxygen atom is sp3-hybridized – Bond angles of R–O–R bonds are approximately tetrahedral • Polar C—O bonds © 2013 Pearson Education, Inc. 9 Properties of Ethers: Hydrogen Bond • Hydrogen bond is a attractive interaction between an electronegative atom and a hydrogen atom bonded to another electronegative atom • Ethers cannot hydrogen bond with other ether molecules, so they have a lower boiling point than alcohols • Ether molecules can hydrogen bond with water and alcohol molecules • They are hydrogen bond acceptors © 2013 Pearson Education, Inc.
    [Show full text]
  • Soln-2212-PT3-S20-Ch-16-18.Pdf
    1. 2. H2SO4 H2SO4 H2SO41) BH3, THF 1) BH3, THF 1) BH3, THF - - - 2) OH , H2O2, H2O2) OH , H2O2, H2O 2) OH , H2O2, H2O OH OH OH 3. OH OH OH H2SO4 1) BH3, THF - 2) OH , H2O2, H2O OH PBr3 PBr3 PBr3 Pyridine Pyridine Pyridine OH PBr3 Pyridine O O O Mg Mg Mg HO HO HO1) 1) 1) Ether Ether Ether 2) HCl 2) HCl 2) HCl Br Br Br MgBr MgBr MgBr O Mg HO 1) Ether 2) HCl Br 4. MgBr **This reaction reduces an aldehyde to a primary alcohol and a ketone to a secondary alcohol. Since only one EQ of reagent is given the most reactive functional group will be reduced (in this case the aldehyde) **ketones are less reactive than aldehydes and the more steric hindrance surrounding the ketone the less reactive it is. Note: NaBH4 reduces ketones but is too weak to reduce an ester/double/triple bonds 5. ** With these reagents a tertiary amide will be reduced to a tertiary amine, a secondary amide will be reduced to a secondary amine, and a primary amide will be reduced to a primary amine 6. ** Recall from chapter 7, OChem 1 H2 and Lindlars catalyst always reduces an alkyne to a CIS ALKENE ** Li/Na and liquid NH3 always reduces an alkyne to a TRANS ALKENE 7. **A ketone/aldehyde reacts with primary amines in trace acid to produce an imine, and reacts with a secondary amine in trace acid to produce an enamine (double bond forms between the alpha and beta carbons) **Sodium cyanoborohydride (NaBH3CN) is used to reduce imines/enamines back to their respective secondary/tertiary amines 8.
    [Show full text]