Mineral Phases in Raw and Processed Municipal Waste Incineration Residues-Towards a Chemical Stabilisation and Fixation of Heavy Metals

Total Page:16

File Type:pdf, Size:1020Kb

Mineral Phases in Raw and Processed Municipal Waste Incineration Residues-Towards a Chemical Stabilisation and Fixation of Heavy Metals MINERAL PHASES IN RAW AND PROCESSED MUNICIPAL WASTE INCINERATION RESIDUES-TOWARDS A CHEMICAL STABILISATION AND FIXATION OF HEAVY METALS Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften an der Fakultät für Geowissenschaften der Ruhr-Universität Bochum vorgelegt von Athanasius Priharyoto Bayuseno aus Ponorogo, Indonesien Bochum 2006 Die vorliegende Arbeit wurde von der Fakultät für Geowissenschaften der Ruhr- Universität Bochum 2006 als Dissertation angenommen. Erster Gutachter : Prof. Dr. Wolfgang W. Schmahl, LMU München Zweiter Gutachter : Prof. Dr. Hermann Gies Fachfremder Gutachter : Prof. Dr. Stefan Wohnlich Tag der mündlichen Prüfung : 4. Mai 2006 ii DANKSAGUNG An dieser Stelle möchte ich mich bei Herrn Prof. Dr. Wolfgang Schmahl herzlichst bedanken. Er hat zur Bearbeitung des Themas angeregt und durch seine stetige Unterstützung die vorliegende Arbeit ermöglicht. Durch seine Freude und seinen Enthusiasmus an der Kristallographie und Mineralogie hat er auch mich für dieses Fachgebiet begeistert. Über die Wissenschaft hinaus ist er in den drei Jahren zu einem richtigen Doktorvater für mich geworden. Mein besonderer Dank gilt Herrn Dr. Thomas Reinecke, der durch seine Förderung und fachliche Hilfe erheblich zum Gelingen dieser Arbeit beigetragen hat. Für die sehr gute Zusammenarbeit bedanke ich mich bei Herrn Dr. Heinrich Geiger, Frau Karin Bialas und vielen anderen Leuten am KAAD ( Katholischer Akademischer Austausch Dienst ) Bonn. Ohne ihre Hilfe und die finanzielle Unterstützung wäre diese Arbeit kaum möglich gewesen. Frau Dr. Anna Mielniczuk- Pastoors und Frau Ursula Röttsches beim Katholischen Hochschulzentrum Bochum danke ich recht herzlich für die Förderung zum Gelingen des KAAD Stipendiums. Für die finanzielle Unterstützung durch das Institut für Geologie, Mineralogie und Geophysik der Ruhr-Universität Bochum bedanke ich mich auch. Herrn Prof. Eko Budihardjo, Rektor der Diponegoro-Universität (UNDIP), Semarang, Indonesien, und seinen Mitarbeitern danke ich recht herzlich für die Förderung meines Studiums an der Ruhr-Universität Bochum. Mein besonderer Dank gilt Herrn Dr. Neuser und Herrn Dr. Bernhardt, die durch ihre fachliche Hilfe meine Arbeit am Rasterelektronenmikroskop und der Elektronenstrahlmikrosonde ermöglicht haben. Herrn Hendrik Narjes, Frau Astrid Michele, Frau Sandra Grabowski und Herrn Udo Trombach danke ich für chemische Analysen und Hilfe bei Laborexperimenten. Ich möchte hier Frau Antoinette für ihre praktische Hilfe danken, sowie auch allen Mitarbeitern des Mineralogischen Institutes der Ruhr-Universität Bochum und meinem Kollegen Mahamudul Hasan. Ebenfalls bedanken möchte ich mich bei Herrn Dr. Schlüter am Mineralogischen Museum der Universität Hamburg für die Beschaffung von Gordaite, und bei dem MHKW Essen und Herrn Dr. Müllejans vom MHKW Iserlohn für die Beschaffung der Materialproben. Von ganzem Herzen danke ich meiner Frau Nunuk, meiner Tochter Yustina und meinem Sohn Andreas, die die Arbeit jederzeit voll unterstützt haben. iii ZUSAMMENFASSUNG Die Eigenschaften von Filterstäuben und Schlacken aus deutschen Müllverbrennungsanlagen (MVA) und der chemisch-mineralogische Umsatz von Filterstäuben wurden mit dem Ziel erforscht, die enthaltenen Schwermetalle durch kristallchemische Substitution in beständigen Mineralphasen zu immobilisieren. Chemische Pauschalanalysen zeigen, dass die Schlacken Al, Si und Fe als Hauptkomponenten enthalten. Im Gegensatz dazu bestehen Filterstäube vor allem aus Ca, Na, K, Cl und S. Zusätzlich finden sich in den Filterstäuben hohe Konzentrationen toxischer Schwermetalle (z.B. Zink, Cadmium und Blei). Die Hauptgemengteile (>1 Gew.-%) der frischen Schlacken, die mit der Rietveldmethode quantitativ analysiert wurden, sind Silikate (z.B. Gehlenit, Augit, Diopsid, Quarz), Oxide (z.B. Magnetit, Spinel, Hämatit) und Karbonate (z.B. Calcit), außerdem ist ein hoher Gehalt an Glas (>30 Gew.-%) vorhanden. Als untergeordnete Phasen kommen Baryt, Rutil und Wüstit vor. Die frischen Filterstäube erhalten eine erhebliche Menge Glas (> 40 Gew.-%) und unterschiedliche kristalline Phasen wie Kalziumtetrachlorozinkat (K 2ZnCl 4), Gehlenit, Halit, Quarz und Feldspat. Andere identifizierte Phasen sind Magnetit, Hämatit, Kalk und verschiedene Ca-Sulfate. Die magnetische Fraktion der Filterstäube, die Magnetit, Hematit und weitere untergeordnete Phasen enthält, konnte abgetrennt werden. Der Einfluß der natürlichen Alterung auf die Mineralstabilität in Schlacken und Filterstäuben wurde mit Röntgenbeugungsmethoden untersucht. Der Alterungsprozeß in den Schlacken führt zur Bildung neuer Minerale wie Ettringit und Hydrocalumit. Die Alterung der Minerale in den Filterstäuben führt zur Neubildung von Syngenit, Gips und Hydrocalumit. Gordaite wurde in gealterten Proben gefunden, die zuvor mit Wasser vermischt worden waren. Es ist erkennbar, dass die Alterung von Schlacken und Filterstäuben eine Abnahme des pH-Wertes bewirkt. Einzelne Partikel von ausgewählten Schlacken und Filterstäuben wurden mit der Elektronenstrahlmikrosonde analysiert. Die groben Partikel der Schlacken enthalten vor allem CaO, SiO 2, Al 2O3 und Fe 2O3, und bestehen aus den Mineralen Quarz, Spinel, Melilit, und Glasphase mit Si-oder Fe-reichen aluminosilikatischen Zusammensetzungen. Dagegen enthalten die feinen Partikel der Filterstäube vor allem SiO 2, Al 2O3 und Fe 2O3, außerdem erhöhte Konzentrationen toxischer Schwermetalle (z.B. Zn, Pb und Cd). Die Partikel der Filterstäube bestehen aus sehr heterogenen iv Anteilen von Glas, Metall und anderen kristallinen Phasen, in denen die Schwermetalle verteilt sind. Das Glas hat eine Ca-reiche Aluminosilikat-Zusammensetzung. Außerdem wurde die mineralogische Alterung von Schlacken und Filterstäuben mit Röntgenbeugungsmethoden über einen Zeitraum von 6 Monaten untersucht. Portlandit und Ettringit bildeten sich sofort in der abgeschreckten Schlacke. Ettringit wurde nachfolgend zum stabileren Gips und Hydrocalumit abgebaut. In Abhängigkeit von der chemischen Zusammensetzung der Filterstäube führte ihre Alterung zu einer beträchtlichen Neubildung von Syngenit, Gips, Hydrocalumit und Gordait. Zur Feststellung der Extrahierbarkeit wasserlöslicher Phasen und Schwermetalle aus Filterstäuben dienten zwei Arten von Versuchen. Einerseits wurden die Filterstäube ausgewaschen, um lösliche Salze abzutrennen. Andererseits wurde das Soxhlet- Verfahren mit heißem Wasser als Lösungsmittel angewandt. Das Löslichkeitsprodukt der Alkalichloride (NaCl und KCl) ist verantwortlich für die Freisetzung von Na, K und Cl aus den Filterstäuben. Lösungs-Fällungsgleichgewichte zwischen Ca-, K-, Al-, und 2− SO 4 -haltigen Mineralen führten zur Bildung der Hydratphasen Gips, Syngenit, und Ettringit. Sowohl die Auswaschung als auch das Soxhlet-Verfahren sind offenbar keine wirksamen Methoden zur Extraktion von Schwermetallen aus Filterstäuben. Die pozzolanische Verfestigung der Filterstäube wurde mit der Rietveld Methode in Abhängigkeit von der Reaktionszeit untersucht. Das Massenverhältnis von Lösung zu Feststoff betrug in den Experimenten 3 bzw. 10. Syngenit und Gips bildeten sich in den verfestigten Original-Filterstäuben. Zusätzlich entstanden nur geringe Mengen Ettringit, Hydrocalumit und CSH Phasen. Auch die gewaschenen Filterstäube weisen zementartige Eigenschaften auf. Bei der Hydratation scheint die Glasphase zu Kristalhydratphasen zu reagieren. Der hydrothermale Umsatz der ungewaschenen Filterstäube mit wässrigen NaOH- und KOH-Lösungen unterschiedlicher Molarität bei verschiedenen Temperaturen (90 O -180 OC) und Reaktionszeiten wurde mit der Rietveld Methode untersucht. Bei 180 OC, 48 h entstand in Gegenwart von 0.5 M NaOH-Lösung eine erhebliche Menge Al-substituierten 11Å-Tobermorits und Katoits. Bei ähnlichen Bedingungen bildete sich in Anwesenheit von KOH-Lösung eine nur geringe Menge Al-substituierten 11Å-Tobermorits. Eine Kristallisation von Zeolithen (Analcim und Hydroxylcancrinit) ließ sich nicht erreichen. Ein erheblicher Anteil der v Aluminosilikatglas-Matrix wandelte sich beim hydrothermalen Umsatz zu kristallinen Phasen um. Zudem war eine dramatische Abnahme des Quarzanteils im Verhältnis zu den unbehandelten Filterstäuben beobachten. Der hydrothermale Umsatz gewaschener Filterstäube mit 0.5 M NaOH-Lösung bei 180 OC erzeugte in 48 h in gleicher Weise wie beim ungewaschenen Edukt das gemischte Produkt Al-Tobermorit und Katoit. Das Waschen der Filteraschen erwies sich im hydrothermalen Umsatz als wichtige Voraussetzung für die Bildung von Zeolithen (Analcim, Hydrocrancrinit). Die Löslichkeit der Minerale von Filterstäuben in sauren wässrigen Lösungen wurde ebenfalls untersucht. Minerale wie NaCl, KCl und K2ZnCl 4 in den unbehandelten Filterstäuben lösten sich gut, ebenso Syngenit, Ettringit, Hydrocalumit und Gordaite in den gewaschenen Filterstäuben. Auch in den verfestigten Produkten gewaschener Filterstäube ging Ettringit und CSH-Phase in Lösung. Dagegen lösten sich die Produktphasen des hydrothermalen Umsatzes, nämlich 11Å-Tobermorit, Analcim und Hydroxylcancrinit nicht in sauren Lösungen. Diese Ergebnisse zeigen, dass der hydrothermale Umsatz von Filterstäuben eine stabile Produktparagenese erzeugt. Schließlich wurden Auswaschversuche nach dem TCLP-Verfahren ( toxicity characteristic leaching procedure test ) zur Untersuchung der potentiell toxischen Materialien durchgeführt. Aus den unbehandelten und gewaschenen Filterstäuben und ihren verfestigten Folgeprodukten ließen sich die Schwermetalle, insbesondere Zn, Pb und Cd, in Konzentrationen herauslösen,
Recommended publications
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Mineralogy and Chemistry of Rare Earth Elements in Alkaline Ultramafic Rocks and Fluorite in the Western Kentucky Fluorspar District Warren H
    Mineralogy and Chemistry of Rare Earth Elements in Alkaline Ultramafic Rocks and Fluorite in the Western Kentucky Fluorspar District Warren H. Anderson Report of Investigations 8 doi.org/10.13023/kgs.ri08.13 Series XIII, 2019 Cover Photo: Various alkaline ultramafic rocks showing porphyritic, brecciated, and aphanitic textures, in contact with host limestone and altered dike texture. From left to right: • Davidson North dike, Davidson core, YH-04, 800 ft depth. Lamprophyre with calcite veins, containing abundant rutile. • Coefield area, Billiton Minner core BMN 3. Intrusive breccia with lamprophyric (al- nöite) matrix. • Maple Lake area, core ML-1, 416 ft depth. Lamprophyre intrusive. • Maple Lake area, core ML-2, 513 ft depth. Lamprophyre (bottom) in contact with host limestone (top). Kentucky Geological Survey University of Kentucky, Lexington Mineralogy and Chemistry of Rare Earth Elements in Alkaline Ultramafic Rocks and Fluorite in the Western Kentucky Fluorspar District Warren H. Anderson Report of Investigations 8 doi.org/10.13023/kgs.ri08.13 Series XIII, 2019 Our Mission The Kentucky Geological Survey is a state-supported research center and public resource within the University of Kentucky. Our mission is to sup- port sustainable prosperity of the commonwealth, the vitality of its flagship university, and the welfare of its people. We do this by conducting research and providing unbiased information about geologic resources, environmen- tal issues, and natural hazards affecting Kentucky. Earth Resources—Our Common Wealth www.uky.edu/kgs © 2019 University of Kentucky For further information contact: Technology Transfer Officer Kentucky Geological Survey 228 Mining and Mineral Resources Building University of Kentucky Lexington, KY 40506-0107 Technical Level General Intermediate Technical Statement of Benefit to Kentucky Rare earth elements are used in many applications in modern society, from cellphones to smart weapons systems.
    [Show full text]
  • Article Benefited from Construc- Ering the Co Dominance Among the Non-Cu Metal Atoms, Tive Reviews by Jochen Schlüter and Taras Panikorovskii
    Eur. J. Mineral., 32, 637–644, 2020 https://doi.org/10.5194/ejm-32-637-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Gobelinite, the Co analogue of ktenasite from Cap Garonne, France, and Eisenzecher Zug, Germany Stuart J. Mills1, Uwe Kolitsch2,3, Georges Favreau4, William D. Birch1, Valérie Galea-Clolus5, and Johannes Markus Henrich6 1Geosciences, Museums Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia 2Mineralogisch-Petrographische Abt., Naturhistorisches Museum, Burgring 7, 1010 Vienna, Austria 3Institut für Mineralogie und Kristallographie, Universität Wien, Althanstraße 14, 1090 Vienna, Austria 4independent researcher: 421 Avenue Jean Monnet, 13090 Aix-en-Provence, France 5independent researcher: 10 rue Combe Noire, 83210 Solliès-Toucas, France 6independent researcher: Im Großen Garten 3, 57548 Kirchen (Sieg), Germany Correspondence: Stuart J. Mills ([email protected]) Received: 13 April 2020 – Revised: 30 October 2020 – Accepted: 9 November 2020 – Published: 25 November 2020 Abstract. The new mineral gobelinite, ideally CoCu4.SO4/2.OH/6 6H2O, is a new member of the ktenasite group and the Co analogue of ktenasite, ZnCu4.SO4/2.OH/6 6H2O.q It occurs at Cap Garonne (CG), Var, France (type locality), and Eisenzecher Zug (EZ), Siegerland, Northq Rhine-Westphalia, Germany (cotype lo- cality). The mineral forms pale green, bluish green or greyish green, blocky to thin, lath-like crystals. They are transparent and non-fluorescent, with a vitreous, sometimes also pearly, lustre and a white streak having a pale-green cast. Mohs hardness is about 2.5. The crystals are brittle with an irregular fracture; no cleav- age was observed.
    [Show full text]
  • Gordaite Nazn4(S04)(OH)6CI-6H20
    Gordaite NaZn4(S04)(OH)6CI-6H20 Crystal Data: Hexagonal. Point Group: 3. As thin tabular flakes with hexagonal outline or as blades, to 2 ern; in roset telike aggregates. Physical Properties: Cleavage: On {OOOI}, perfect. Tenacity: Flexible. Hardness = ",2.5 D(meas.) = 2.627 D( calc.) = 2.640 Optical Properties: Transparent to translucent. Color: Colorless to white, pale green if cuprian. Luster: Vitreous to pearly. Optical Class: Uniaxial (-). w = 1.5607(8) e = 1.5382(4) Cell Data: Space Group: P3. a = 8.3556(3) c = 13.025(1) Z = 2 X-ray Powder Pattern: San Francisco mine, Chile; strong preferred orientation on {0001}. 12.95 (100), 6.501 (23),4.339 (15), 3.258 (14),2.967 (10), 2.523 (6),2.676 (5) Chemistry: (1) (2) S03 15.33 12.79 ZnO 52.85 51.99 Na20 9.15 4.95 CI 6.46 5.66 H2O 12.33 25.89 -0 = Cl2 1.46 1.28 Total 94.66 100.00 (1) San Francisco mine, Chile; by electron microprobe, H20 by CHN analyzer; low analytical total due to loss of H20 during grinding, Na too high due to peak overlaps with Zn; after adjusting Na20 to 5.5% from AA, and partitioning H between H20 and (OH)l- according to crystal-structure analysis, corresponds to Na1.54Zn3.39(S04)1.0o(OH)6Clo.95 -6H20. (2) NaZn4(S04)(OH)6CI-6H20. Occurrence: In the oxidized portions of a Cu-Zn sulfide deposit (San Francisco mine, Chile); on weathered mine dumps (Helbra, Germany); on the outside oxidized portions of a sea floor chimney formed by the mixing of hydrothermal fluids with sea water (Juan de Fuca Ridge).
    [Show full text]
  • STRONG and WEAK INTERLAYER INTERACTIONS of TWO-DIMENSIONAL MATERIALS and THEIR ASSEMBLIES Tyler William Farnsworth a Dissertati
    STRONG AND WEAK INTERLAYER INTERACTIONS OF TWO-DIMENSIONAL MATERIALS AND THEIR ASSEMBLIES Tyler William Farnsworth A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry. Chapel Hill 2018 Approved by: Scott C. Warren James F. Cahoon Wei You Joanna M. Atkin Matthew K. Brennaman © 2018 Tyler William Farnsworth ALL RIGHTS RESERVED ii ABSTRACT Tyler William Farnsworth: Strong and weak interlayer interactions of two-dimensional materials and their assemblies (Under the direction of Scott C. Warren) The ability to control the properties of a macroscopic material through systematic modification of its component parts is a central theme in materials science. This concept is exemplified by the assembly of quantum dots into 3D solids, but the application of similar design principles to other quantum-confined systems, namely 2D materials, remains largely unexplored. Here I demonstrate that solution-processed 2D semiconductors retain their quantum-confined properties even when assembled into electrically conductive, thick films. Structural investigations show how this behavior is caused by turbostratic disorder and interlayer adsorbates, which weaken interlayer interactions and allow access to a quantum- confined but electronically coupled state. I generalize these findings to use a variety of 2D building blocks to create electrically conductive 3D solids with virtually any band gap. I next introduce a strategy for discovering new 2D materials. Previous efforts to identify novel 2D materials were limited to van der Waals layered materials, but I demonstrate that layered crystals with strong interlayer interactions can be exfoliated into few-layer or monolayer materials.
    [Show full text]
  • 6, a New Mineral Isotructural with Claringbullite: Description and Crystal Structure
    Mineralogical Magazine, December 2014, Vol. 78(7), pp. 1755–1762 Barlowite, Cu4FBr(OH)6, a new mineral isotructural with claringbullite: description and crystal structure 1,2, 3 2 PETER ELLIOTT *, MARK A. COOPER AND ALLAN PRING 1 School of Earth and Environmental Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia 2 South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia 3 Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada [Received 22 April 2014; Accepted 22 June 2014; Associate Editor: G. D. Gatta] ABSTRACT The new mineral species barlowite, ideally Cu4FBr(OH)6, has been found at the Great Australia mine, Cloncurry, Queensland, Australia. It is the Br and F analogue of claringbullite. Barlowite forms thin blue, platy, hexagonal crystals up to 0.5 mm wide in a cuprite-quartz-goethite matrix associated with gerhardtite and brochantite. Crystals are transparent to translucent with a vitreous lustre. The streak is sky blue. The Mohs hardness is 2À2.5. The tenacity is brittle, the fracture is irregular and there is one perfect cleavage on {001}. Density could not be measured; the mineral sinks in the heaviest liquid available, diluted Clerici solution (D &3.8 g/cm3). The density calculated from the empirical formula is 4.21 g/cm3. Crystals are readily soluble in cold dilute HCl. The mineral is optically non-pleochroic and uniaxial (À). The following optical constants measured in white light vary slightly suggesting a small variation in the proportions of F, Cl and Br: o 1.840(4)À1.845(4) and e 1.833(4)À1.840(4).
    [Show full text]
  • Shin-Skinner January 2018 Edition
    Page 1 The Shin-Skinner News Vol 57, No 1; January 2018 Che-Hanna Rock & Mineral Club, Inc. P.O. Box 142, Sayre PA 18840-0142 PURPOSE: The club was organized in 1962 in Sayre, PA OFFICERS to assemble for the purpose of studying and collecting rock, President: Bob McGuire [email protected] mineral, fossil, and shell specimens, and to develop skills in Vice-Pres: Ted Rieth [email protected] the lapidary arts. We are members of the Eastern Acting Secretary: JoAnn McGuire [email protected] Federation of Mineralogical & Lapidary Societies (EFMLS) Treasurer & member chair: Trish Benish and the American Federation of Mineralogical Societies [email protected] (AFMS). Immed. Past Pres. Inga Wells [email protected] DUES are payable to the treasurer BY January 1st of each year. After that date membership will be terminated. Make BOARD meetings are held at 6PM on odd-numbered checks payable to Che-Hanna Rock & Mineral Club, Inc. as months unless special meetings are called by the follows: $12.00 for Family; $8.00 for Subscribing Patron; president. $8.00 for Individual and Junior members (under age 17) not BOARD MEMBERS: covered by a family membership. Bruce Benish, Jeff Benish, Mary Walter MEETINGS are held at the Sayre High School (on Lockhart APPOINTED Street) at 7:00 PM in the cafeteria, the 2nd Wednesday Programs: Ted Rieth [email protected] each month, except JUNE, JULY, AUGUST, and Publicity: Hazel Remaley 570-888-7544 DECEMBER. Those meetings and events (and any [email protected] changes) will be announced in this newsletter, with location Editor: David Dick and schedule, as well as on our website [email protected] chehannarocks.com.
    [Show full text]
  • Mineralogical Characterisation of a Black Smoker From
    MASTERARBEIT Titel der Masterarbeit Mineralogical characterisation of a black smoker from the "Vienna woods" hydrothermal field, Manus Basin, Papua New Guinea: complex sulphide ores from a deep-sea hydrothermal system. verfasst von Simon Steger, BSc angestrebter akademischer Grad Master of Science (MSc) Wien, 2015 Studienkennzahl lt. Studienblatt: A 066 815 Studienrichtung lt. Studienblatt: Masterstudium Erdwissenschaften Betreut von: Univ.-Prof. Dr. Lutz Nasdala ii Acknowledgements First of all, I thank Lutz Nasdala, who gave me the opportunity to work on this thesis and invested a lot of time supervising it. I am grateful to Christian L. Lengauer, Michael Götzinger, Christian Baal, Andreas Artač, Wolfgang Zirbs, Andreas Wagner and Max Svoboda for technical support. Constructive comments by Anton Beran, Wilfried Körner and Eugen Libowitzky are gratefully acknowledged. Xiasong Li is thanked for providing the NAA measurements. Special thanks go to my parents Claudia and Bernhard and my sister Katharina for supporting me in many different ways. iii iv Declaration I declare that this thesis was written by me and that it does not contains material, which has been submitted or accepted for an award of any other degree or diploma in any university or institution. All cited literature is listed without exception in the bibliography. To the best of my knowledge and belief this thesis contains no material previously published by any other person except where acknowledgment has been made. Vienna, 2015 _______________________ Simon Steger v vi Abstract This thesis summarises results of a MSc research that has addressed the examination and characterisation of the mineralogical relationships and chemical composition of a black smoker specimen origination from the “Vienna Woods” hydrothermal field.
    [Show full text]
  • New Mineral Names*,†
    American Mineralogist, Volume 100, pages 1319–1332, 2015 New Mineral Names*,† FERNANDO CÁMARA1, OLIVIER C. GAGNÉ2, DMITRIY I. BELAKOVSKIY3 AND YULIA UVAROVA4 1Dipartimento di Scienze della Terrá, Universitá di degli Studi di Torino, Via Valperga Caluso, 35-10125 Torino, Italy 2Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada 3Fersman Mineralogical Museum, Russian Academy of Sciences, Leninskiy Prospekt 18 korp. 2, Moscow 119071, Russia 4Mineral Resources Flagship, CSIRO, ARRC, 26 Dick Perry Avenue, Kensington, Western Australia 6151, Australia IN THIS ISSUE This New Mineral Names has entries for 25 new minerals, including alcaparrosaite, bastnäsite-(Nd), calciolangbeinite, chovanite, chromio-pargasite (ehimeite), chukhrovite-(Ca), dzhuluite, eltyubyuite, ferrisepiolite, hereroite, hielscherite, iseite, itsiite, jakobssonite, kazanskiite, meisserite, nashite, omsite, schindlerite, tanohataite, tazzoliite, vapnikite, vladkrivovichevite, wernerbaurite, and wopmayite. ALCAPARROSAITE* r < v. The optical orientation is X = b; Y ^ c = 27° in the obtuse A.R. Kampf, S.J. Mills, R.M. Housley, P.A. Williams, and M. angle β. No pleochroism was observed. The average of 4 electron 4+ 3+ probe analyses gives [wt% (range)]: Na2O 0.32 (0.16–0.51), K2O Dini (2012) Alcaparrosaite, K3Ti Fe (SO4)4O(H2O)2, a new hydrophobic Ti4+ sulfate from Alcaparrosa, Chile. Mineralogi- 20.44 (20.30–20.67), Fe2O3 11.58 (11.41–11.71), TiO2 11.77 cal Magazine, 76(4), 851–861. (11.54–12.18), P2O5 0.55 (0.48–0.68), SO3 47.52 (46.57–48.06), H2O 5.79 (calculated from structure refinement); total 97.97 wt%. 4+ 3+ 4+ This gives the empirical formula (K2.89Na0.07)Σ2.96Ti0.98Fe0.97(S0.99 Alcaparrosaite (IMA 2011-024), ideally K3Ti 3+ P0.01O4)4O0.72(OH)0.28(H2O)2 based on 19 O pfu.
    [Show full text]
  • IMA–CNMNC Approved Mineral Symbols
    Mineralogical Magazine (2021), 85, 291–320 doi:10.1180/mgm.2021.43 Article IMA–CNMNC approved mineral symbols Laurence N. Warr* Institute of Geography and Geology, University of Greifswald, 17487 Greifswald, Germany Abstract Several text symbol lists for common rock-forming minerals have been published over the last 40 years, but no internationally agreed standard has yet been established. This contribution presents the first International Mineralogical Association (IMA) Commission on New Minerals, Nomenclature and Classification (CNMNC) approved collection of 5744 mineral name abbreviations by combining four methods of nomenclature based on the Kretz symbol approach. The collection incorporates 991 previously defined abbreviations for mineral groups and species and presents a further 4753 new symbols that cover all currently listed IMA minerals. Adopting IMA– CNMNC approved symbols is considered a necessary step in standardising abbreviations by employing a system compatible with that used for symbolising the chemical elements. Keywords: nomenclature, mineral names, symbols, abbreviations, groups, species, elements, IMA, CNMNC (Received 28 November 2020; accepted 14 May 2021; Accepted Manuscript published online: 18 May 2021; Associate Editor: Anthony R Kampf) Introduction used collection proposed by Whitney and Evans (2010). Despite the availability of recommended abbreviations for the commonly Using text symbols for abbreviating the scientific names of the studied mineral species, to date < 18% of mineral names recog- chemical elements
    [Show full text]
  • [email protected] 1–408–923–6800
    www.minresco.com [email protected] 1–408–923–6800 Systematic Mineral List ABERNATHYITE - Rivieral, Lodeve, Herault Dept., France ABHURITE - Wreck of SS Cheerful, 14 Miles NNW of St. Ives, Cornwall, England ACANTHITE – Alberoda, Erzgebirge, Saxony, Germany ACANTHITE – Brahmaputra Vein, Alberoda, Schlema-Hartenstein District, Erzgebirge, Saxony, Germany ACANTHITE – Centennial Eureka Mine, Tintic District, Juab County, Utah ACANTHITE – Horn Silver Mine, near Frisco, Beaver County, Utah ACANTHITE – Ingleterra Mine, Santa Eulalia, Chihuahua, Mexico ACANTHITE – Pribram-Trebsco, Central Bohemia, Czech Republic ACANTHITE – Tombstone, Cochise County, Arizona ACHTARAGDITE - Achtaragda River/Wilui River District, Sakha Republic (Yakutia), Russian Fed. ADAMITE Var. Cuproadamite – Kintore Opencut, Broken Hill, New South Wales, Australia ADAMITE Var. Cuproadamite - Mine de Cap-Garonne, near Hyers, Dept. Var, France ADAMITE Var. Cuproadamite - Tsumcorp Mine, Tsumeb, Namibia ADAMITE Var. Cuproadamite – Zinc Hill, Darwin, Inyo County, California ADAMITE Var. Manganoan Adamite – El Potosi Mine, Santa Eulalia, Chihuahua, Mexico ADREALITE – Moorba Cave, Jurien Bay, W.A., Australia AEGIRINE Var. Blanfordite - Tirodi Mines, Madhya Pradesh, Central Provinces, India T AENIGMATITE – Chibiny (Khibina) Massif, Kola Peninsula, Russia AERINITE - Estopinan, Pyrenees Mountains, Huesca Province, Spain AESCHYNITE-(Y) (Priorite) – Arendal, Aust-Adger, Norway AFGHANITE – Casa Collina, Pitigliano, Grosseto, Tuscany (Toscana), Italy AFGHANITE - Laacher See Region, Ettringen,
    [Show full text]
  • Crystal Chemistry of Cadmium Oxysalt and Associated Minerals from Broken Hill, New South Wales
    Crystal Chemistry of Cadmium Oxysalt and associated Minerals from Broken Hill, New South Wales Peter Elliott, B.Sc. (Hons) Geology and Geophysics School of Earth and Environmental Sciences The University of Adelaide This thesis is submitted to The University of Adelaide in fulfilment of the requirements for the degree of Doctor of Philosophy September 2010 Table of contents Abstract.......................................................................................................................vii Declaration................................................................................................................ viii Acknowlegements........................................................................................................ix List of published papers ..............................................................................................x Chapter 1. Introduction ..............................................................................................1 1.1 General introduction ............................................................................................1 1.2 Crystal Chemistry ................................................................................................2 1.2.1 Characteristics of Cadmium..........................................................................3 1.2.2 Characteristics of Lead .................................................................................4 1.2.3 Characteristics of Selenium ..........................................................................5
    [Show full text]