Mineralogical Characterisation of a Black Smoker From
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Washington Division of Geology and Earth Resources Open File Report
l 122 EARTHQUAKES AND SEISMOLOGY - LEGAL ASPECTS OPEN FILE REPORT 92-2 EARTHQUAKES AND Ludwin, R. S.; Malone, S. D.; Crosson, R. EARTHQUAKES AND SEISMOLOGY - LEGAL S.; Qamar, A. I., 1991, Washington SEISMOLOGY - 1946 EVENT ASPECTS eanhquak:es, 1985. Clague, J. J., 1989, Research on eanh- Ludwin, R. S.; Qamar, A. I., 1991, Reeval Perkins, J. B.; Moy, Kenneth, 1989, Llabil quak:e-induced ground failures in south uation of the 19th century Washington ity of local government for earthquake western British Columbia [abstract). and Oregon eanhquake catalog using hazards and losses-A guide to the law Evans, S. G., 1989, The 1946 Mount Colo original accounts-The moderate sized and its impacts in the States of Califor nel Foster rock avalanches and auoci earthquake of May l, 1882 [abstract). nia, Alaska, Utah, and Washington; ated displacement wave, Vancouver Is Final repon. Maley, Richard, 1986, Strong motion accel land, British Columbia. erograph stations in Oregon and Wash Hasegawa, H. S.; Rogers, G. C., 1978, EARTHQUAKES AND ington (April 1986). Appendix C Quantification of the magnitude 7.3, SEISMOLOGY - NETWORKS Malone, S. D., 1991, The HAWK seismic British Columbia earthquake of June 23, AND CATALOGS data acquisition and analysis system 1946. [abstract). Berg, J. W., Jr.; Baker, C. D., 1963, Oregon Hodgson, E. A., 1946, British Columbia eanhquak:es, 1841 through 1958 [ab Milne, W. G., 1953, Seismological investi earthquake, June 23, 1946. gations in British Columbia (abstract). stract). Hodgson, J. H.; Milne, W. G., 1951, Direc Chan, W.W., 1988, Network and array anal Munro, P. S.; Halliday, R. J.; Shannon, W. -
Mineral Processing
Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19 -
OCEAN/ESS 410 1 Lab 3. the Juan De Fuca Plate Please Write out Your
OCEAN/ESS 410 Lab 3. The Juan de Fuca Plate Please write out your answers on a separate sheet of paper. In this exercise you are going to be looking at the bathymetry of the Juan de Fuca plate region, identifying interesting features and their characteristics, and attempting to interpret what you see. Some of the questions may be difficult for you to answer now (although hopefully not at the end of the Quarter) – part of the objective is to get you to look carefully at the maps and think rather that immediately writing down an answer. The Instructor and TAs will be coming around the lab answering questions. Figure 1 shows the plate boundaries for the Juan de Fuca plate region and you will use this as your road map as you explore the Juan de Fuca plate with the program GeoMapApp, a versatile program that is used by researchers to look at bathymetry and other seafloor data. To run GeoMapApp do the following 1. Start GeoMapApp on the lab computer from the Start menu or from the Desktop Icon if you have one. If it asks you to install a new version you do not have to. 2. Select the default Mercator Base Map (left hand map) 3. Learn to use the “Zoom In”, “Zoom Out” and “Pan the Map” tools. You can use the “Zoom In” tool either by clicking on the map or holding the mouse button down to rubber-band a box of interest. The Overlays menu allows you to add a Distance Scale and Color Bar. -
Recent Movements of the Juan De Fuca Plate System
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 89, NO. B8, PAGES 6980-6994, AUGUST 10, 1984 Recent Movements of the Juan de Fuca Plate System ROBIN RIDDIHOUGH! Earth PhysicsBranch, Pacific GeoscienceCentre, Departmentof Energy, Mines and Resources Sidney,British Columbia Analysis of the magnetic anomalies of the Juan de Fuca plate system allows instantaneouspoles of rotation relative to the Pacific plate to be calculatedfrom 7 Ma to the present.By combiningthese with global solutions for Pacific/America and "absolute" (relative to hot spot) motions, a plate motion sequencecan be constructed.This sequenceshows that both absolute motions and motions relative to America are characterizedby slower velocitieswhere younger and more buoyant material enters the convergencezone: "pivoting subduction."The resistanceprovided by the youngestportion of the Juan de Fuca plate apparently resulted in its detachmentat 4 Ma as the independentExplorer plate. In relation to the hot spot framework, this plate almost immediately began to rotate clockwisearound a pole close to itself such that its translational movement into the mantle virtually ceased.After 4 Ma the remainder of the Juan de Fuca plate adjusted its motion in responseto the fact that the youngest material entering the subductionzone was now to the south. Differencesin seismicityand recent uplift betweennorthern and southernVancouver Island may reflect a distinction in tectonicstyle betweenthe "normal" subductionof the Juan de Fuca plate to the south and a complex "underplating"occurring as the Explorer plate is overriddenby the continent.The history of the Explorer plate may exemplifythe conditionsunder which the self-drivingforces of small subductingplates are overcomeby the influenceof larger, adjacent plates. The recent rapid migration of the absolutepole of rotation of the Juan de Fuca plate toward the plate suggeststhat it, too, may be nearingthis condition. -
The Official Magazine of The
OceTHE OFFICIALa MAGAZINEn ogOF THE OCEANOGRAPHYra SOCIETYphy CITATION Smith, L.M., J.A. Barth, D.S. Kelley, A. Plueddemann, I. Rodero, G.A. Ulses, M.F. Vardaro, and R. Weller. 2018. The Ocean Observatories Initiative. Oceanography 31(1):16–35, https://doi.org/10.5670/oceanog.2018.105. DOI https://doi.org/10.5670/oceanog.2018.105 COPYRIGHT This article has been published in Oceanography, Volume 31, Number 1, a quarterly journal of The Oceanography Society. Copyright 2018 by The Oceanography Society. All rights reserved. USAGE Permission is granted to copy this article for use in teaching and research. Republication, systematic reproduction, or collective redistribution of any portion of this article by photocopy machine, reposting, or other means is permitted only with the approval of The Oceanography Society. Send all correspondence to: [email protected] or The Oceanography Society, PO Box 1931, Rockville, MD 20849-1931, USA. DOWNLOADED FROM HTTP://TOS.ORG/OCEANOGRAPHY SPECIAL ISSUE ON THE OCEAN OBSERVATORIES INITIATIVE The Ocean Observatories Initiative By Leslie M. Smith, John A. Barth, Deborah S. Kelley, Al Plueddemann, Ivan Rodero, Greg A. Ulses, Michael F. Vardaro, and Robert Weller ABSTRACT. The Ocean Observatories Initiative (OOI) is an integrated suite of instrumentation used in the OOI. The instrumented platforms and discrete instruments that measure physical, chemical, third section outlines data flow from geological, and biological properties from the seafloor to the sea surface. The OOI ocean platforms and instrumentation to provides data to address large-scale scientific challenges such as coastal ocean dynamics, users and discusses quality control pro- climate and ecosystem health, the global carbon cycle, and linkages among seafloor cedures. -
High-Silica Lava Morphology at Ocean Spreading Ridges: Machine-Learning Seafloor Classification at Alarcon Rise
Article High-Silica Lava Morphology at Ocean Spreading Ridges: Machine-Learning Seafloor Classification at Alarcon Rise Christina H. Maschmeyer 1,†, Scott M. White 1,*, Brian M. Dreyer 2 and David A. Clague 3 1 School of the Earth, Ocean and Environment, University of South Carolina, Columbia, SC 29208, USA; [email protected] 2 Institute of Marine Sciences, University of California, Santa Cruz, CA 95064, USA; [email protected] 3 Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA; [email protected] † Now at: Fugro USA Marine, Inc. Geoconsulting Exploration, 6100 Hillcroft Ave, Houston, TX 77081, USA * Correspondence: [email protected] Received 31 March 2019; Accepted 28 May 2019; Published: 1 June 2019 Abstract: The oceanic crust consists mostly of basalt, but more evolved compositions may be far more common than previously thought. To aid in distinguishing rhyolite from basaltic lava and help guide sampling and understand spatial distribution, we constructed a classifier using neural networks and fuzzy inference to recognize rhyolite from its lava morphology in sonar data. The Alarcon Rise is ideal to study the relationship between lava flow morphology and composition, because it exhibits a full range of lava compositions in a well‐mapped ocean ridge segment. This study shows that the most dramatic geomorphic threshold in submarine lava separates rhyolitic lava from lower‐silica compositions. Extremely viscous rhyolite erupts as jagged lobes and lava branches in submarine environments. An automated classification of sonar data is a useful first‐order tool to differentiate submarine rhyolite flows from widespread basalts, yielding insights into eruption, emplacement, and architecture of the ocean crust. -
Winter 2006 Newsletter
DEEP OCEAN EXPLORATION INSTITUTE INVESTIGATING EARTH’S DYNAMIC PROCESSES Winter 2006 Newsletter the National Science Foundation. In undertaken by our students. Matt’s February 2006, I was asked to participate award by the AGU reflects the very high in a conference on the Oceans in the caliber of our students and acknowledges Nuclear Age at UC Berkeley, where their achievements. there was considerable discussion about The seafloor geodetic experiment the policy and science of nuclear waste being carried out by Jeff McGuire and disposal in the oceans – past and future. Mark Behn underscores how important Public and educational outreach is also technology development is to conducting a focus of DOEI through the Dive and world-class experiments on fundamental Discover™ Web site. Dive and Discover™ earth and ocean science problems. Their (http://www.divediscover.whoi.edu) experiment is unique. It will provide Dan and his able assistant Riley provides a fun and interactive educational not only crucial tests of hypotheses about Director’s Notes program for K-12 students and the how ocean island flanks deform, but their general public. In 2005, Dive and instrumentation will also play a major In 2005, DOEI funded six new Discover™ hosted Expedition 9, a revisit role in the understanding of oceanic research projects, with investigators to the Galapagos Rift that included Alvin transform behavior and, by analogy, how representing all WHOI departments dives and deep-sea camera exploration faults behave and how their movements and encompassing all of the Institute’s for hydrothermal vents. Currently, Dive may be better predicted. research themes - Seafloor Observatory and Discover™ Expedition 10 is ongoing As I write these notes, many investi- Science, Fluid Flow in Geologic Systems, in the Antarctic’s Southern Ocean. -
Mineralogy and Chemistry of Rare Earth Elements in Alkaline Ultramafic Rocks and Fluorite in the Western Kentucky Fluorspar District Warren H
Mineralogy and Chemistry of Rare Earth Elements in Alkaline Ultramafic Rocks and Fluorite in the Western Kentucky Fluorspar District Warren H. Anderson Report of Investigations 8 doi.org/10.13023/kgs.ri08.13 Series XIII, 2019 Cover Photo: Various alkaline ultramafic rocks showing porphyritic, brecciated, and aphanitic textures, in contact with host limestone and altered dike texture. From left to right: • Davidson North dike, Davidson core, YH-04, 800 ft depth. Lamprophyre with calcite veins, containing abundant rutile. • Coefield area, Billiton Minner core BMN 3. Intrusive breccia with lamprophyric (al- nöite) matrix. • Maple Lake area, core ML-1, 416 ft depth. Lamprophyre intrusive. • Maple Lake area, core ML-2, 513 ft depth. Lamprophyre (bottom) in contact with host limestone (top). Kentucky Geological Survey University of Kentucky, Lexington Mineralogy and Chemistry of Rare Earth Elements in Alkaline Ultramafic Rocks and Fluorite in the Western Kentucky Fluorspar District Warren H. Anderson Report of Investigations 8 doi.org/10.13023/kgs.ri08.13 Series XIII, 2019 Our Mission The Kentucky Geological Survey is a state-supported research center and public resource within the University of Kentucky. Our mission is to sup- port sustainable prosperity of the commonwealth, the vitality of its flagship university, and the welfare of its people. We do this by conducting research and providing unbiased information about geologic resources, environmen- tal issues, and natural hazards affecting Kentucky. Earth Resources—Our Common Wealth www.uky.edu/kgs © 2019 University of Kentucky For further information contact: Technology Transfer Officer Kentucky Geological Survey 228 Mining and Mineral Resources Building University of Kentucky Lexington, KY 40506-0107 Technical Level General Intermediate Technical Statement of Benefit to Kentucky Rare earth elements are used in many applications in modern society, from cellphones to smart weapons systems. -
Article Benefited from Construc- Ering the Co Dominance Among the Non-Cu Metal Atoms, Tive Reviews by Jochen Schlüter and Taras Panikorovskii
Eur. J. Mineral., 32, 637–644, 2020 https://doi.org/10.5194/ejm-32-637-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Gobelinite, the Co analogue of ktenasite from Cap Garonne, France, and Eisenzecher Zug, Germany Stuart J. Mills1, Uwe Kolitsch2,3, Georges Favreau4, William D. Birch1, Valérie Galea-Clolus5, and Johannes Markus Henrich6 1Geosciences, Museums Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia 2Mineralogisch-Petrographische Abt., Naturhistorisches Museum, Burgring 7, 1010 Vienna, Austria 3Institut für Mineralogie und Kristallographie, Universität Wien, Althanstraße 14, 1090 Vienna, Austria 4independent researcher: 421 Avenue Jean Monnet, 13090 Aix-en-Provence, France 5independent researcher: 10 rue Combe Noire, 83210 Solliès-Toucas, France 6independent researcher: Im Großen Garten 3, 57548 Kirchen (Sieg), Germany Correspondence: Stuart J. Mills ([email protected]) Received: 13 April 2020 – Revised: 30 October 2020 – Accepted: 9 November 2020 – Published: 25 November 2020 Abstract. The new mineral gobelinite, ideally CoCu4.SO4/2.OH/6 6H2O, is a new member of the ktenasite group and the Co analogue of ktenasite, ZnCu4.SO4/2.OH/6 6H2O.q It occurs at Cap Garonne (CG), Var, France (type locality), and Eisenzecher Zug (EZ), Siegerland, Northq Rhine-Westphalia, Germany (cotype lo- cality). The mineral forms pale green, bluish green or greyish green, blocky to thin, lath-like crystals. They are transparent and non-fluorescent, with a vitreous, sometimes also pearly, lustre and a white streak having a pale-green cast. Mohs hardness is about 2.5. The crystals are brittle with an irregular fracture; no cleav- age was observed. -
Gordaite Nazn4(S04)(OH)6CI-6H20
Gordaite NaZn4(S04)(OH)6CI-6H20 Crystal Data: Hexagonal. Point Group: 3. As thin tabular flakes with hexagonal outline or as blades, to 2 ern; in roset telike aggregates. Physical Properties: Cleavage: On {OOOI}, perfect. Tenacity: Flexible. Hardness = ",2.5 D(meas.) = 2.627 D( calc.) = 2.640 Optical Properties: Transparent to translucent. Color: Colorless to white, pale green if cuprian. Luster: Vitreous to pearly. Optical Class: Uniaxial (-). w = 1.5607(8) e = 1.5382(4) Cell Data: Space Group: P3. a = 8.3556(3) c = 13.025(1) Z = 2 X-ray Powder Pattern: San Francisco mine, Chile; strong preferred orientation on {0001}. 12.95 (100), 6.501 (23),4.339 (15), 3.258 (14),2.967 (10), 2.523 (6),2.676 (5) Chemistry: (1) (2) S03 15.33 12.79 ZnO 52.85 51.99 Na20 9.15 4.95 CI 6.46 5.66 H2O 12.33 25.89 -0 = Cl2 1.46 1.28 Total 94.66 100.00 (1) San Francisco mine, Chile; by electron microprobe, H20 by CHN analyzer; low analytical total due to loss of H20 during grinding, Na too high due to peak overlaps with Zn; after adjusting Na20 to 5.5% from AA, and partitioning H between H20 and (OH)l- according to crystal-structure analysis, corresponds to Na1.54Zn3.39(S04)1.0o(OH)6Clo.95 -6H20. (2) NaZn4(S04)(OH)6CI-6H20. Occurrence: In the oxidized portions of a Cu-Zn sulfide deposit (San Francisco mine, Chile); on weathered mine dumps (Helbra, Germany); on the outside oxidized portions of a sea floor chimney formed by the mixing of hydrothermal fluids with sea water (Juan de Fuca Ridge). -
Mobility and Immobility of Mid-Ocean Ridges and Their Implications to Mantle Dynamics
Mobility and immobility of mid-ocean ridges and their implications to mantle dynamics Item Type Journal Contribution Authors Masalu, D.C.P. Citation Tanzanian Journal of Science , 28 (1), p. 77-85 Download date 24/09/2021 07:52:09 Link to Item http://hdl.handle.net/1834/734 Mobility and immobility of mid-ocean ridges and their implications to mantle dynamics D.C.P. Masalu Institute of Marine Sciences, University of Dar es Salaam, P.O. Box 668, Zanzibar, Tanzania ABSTRACT In the past two decades, the mobility of mid-ocean ridges relative to the mantle (absolute migration) has been correlated with major observable features, such as spreading asymmetry and asymmetry in the abundance of seamounts. The mobility of mid-ocean ridges is also thought to be an important factor that influences the diversity of ridge-crest basalts. However, this mobility has not yet been defined and mapped. The absolute migration of global mid-ocean ridges since 85 Ma has been computed and mapped. Global mid-ocean ridges have migrated extensively at varying velocities during that period. Presently, the fast-migrating ridges are the Pacific- Antarctic, Central Indian Ridge, Southeast Indian Ridge, Juan de Fuca, Pacific-Nazca, Antarctic-Nazca, and the Australia-Antarctic ridges, migrating at velocities of between 3.3 and 5.5 cm/yr. The slow-migrating ridges are the Mid-Atlantic and the Southwest Indian ridges, migrating at velocities between 0.3 and 2.0 cm/yr. Comparison of these results with mantle tomography results show that the slow-migrating ridges have deeper depth of origin than the fast-migrating ones, suggesting a correlation between the absolute migration velocity and the depth of origin of ridges. -
STRONG and WEAK INTERLAYER INTERACTIONS of TWO-DIMENSIONAL MATERIALS and THEIR ASSEMBLIES Tyler William Farnsworth a Dissertati
STRONG AND WEAK INTERLAYER INTERACTIONS OF TWO-DIMENSIONAL MATERIALS AND THEIR ASSEMBLIES Tyler William Farnsworth A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry. Chapel Hill 2018 Approved by: Scott C. Warren James F. Cahoon Wei You Joanna M. Atkin Matthew K. Brennaman © 2018 Tyler William Farnsworth ALL RIGHTS RESERVED ii ABSTRACT Tyler William Farnsworth: Strong and weak interlayer interactions of two-dimensional materials and their assemblies (Under the direction of Scott C. Warren) The ability to control the properties of a macroscopic material through systematic modification of its component parts is a central theme in materials science. This concept is exemplified by the assembly of quantum dots into 3D solids, but the application of similar design principles to other quantum-confined systems, namely 2D materials, remains largely unexplored. Here I demonstrate that solution-processed 2D semiconductors retain their quantum-confined properties even when assembled into electrically conductive, thick films. Structural investigations show how this behavior is caused by turbostratic disorder and interlayer adsorbates, which weaken interlayer interactions and allow access to a quantum- confined but electronically coupled state. I generalize these findings to use a variety of 2D building blocks to create electrically conductive 3D solids with virtually any band gap. I next introduce a strategy for discovering new 2D materials. Previous efforts to identify novel 2D materials were limited to van der Waals layered materials, but I demonstrate that layered crystals with strong interlayer interactions can be exfoliated into few-layer or monolayer materials.