Winter 2006 Newsletter

Total Page:16

File Type:pdf, Size:1020Kb

Winter 2006 Newsletter DEEP OCEAN EXPLORATION INSTITUTE INVESTIGATING EARTH’S DYNAMIC PROCESSES Winter 2006 Newsletter the National Science Foundation. In undertaken by our students. Matt’s February 2006, I was asked to participate award by the AGU reflects the very high in a conference on the Oceans in the caliber of our students and acknowledges Nuclear Age at UC Berkeley, where their achievements. there was considerable discussion about The seafloor geodetic experiment the policy and science of nuclear waste being carried out by Jeff McGuire and disposal in the oceans – past and future. Mark Behn underscores how important Public and educational outreach is also technology development is to conducting a focus of DOEI through the Dive and world-class experiments on fundamental Discover™ Web site. Dive and Discover™ earth and ocean science problems. Their (http://www.divediscover.whoi.edu) experiment is unique. It will provide Dan and his able assistant Riley provides a fun and interactive educational not only crucial tests of hypotheses about Director’s Notes program for K-12 students and the how ocean island flanks deform, but their general public. In 2005, Dive and instrumentation will also play a major In 2005, DOEI funded six new Discover™ hosted Expedition 9, a revisit role in the understanding of oceanic research projects, with investigators to the Galapagos Rift that included Alvin transform behavior and, by analogy, how representing all WHOI departments dives and deep-sea camera exploration faults behave and how their movements and encompassing all of the Institute’s for hydrothermal vents. Currently, Dive may be better predicted. research themes - Seafloor Observatory and Discover™ Expedition 10 is ongoing As I write these notes, many investi- Science, Fluid Flow in Geologic Systems, in the Antarctic’s Southern Ocean. gators at WHOI will be pondering their and Earth’s Deep Biosphere. Some DOEI is also looking to the future upcoming proposal submissions to DOEI of those projects are well underway in terms of identifying important cross- for consideration of funding in 2006. I in collecting data, while a few are still disciplinary science topics with great look forward to reviewing what I am waiting for time to go to sea to deploy promise for developing into national sure will be seminal ideas for innovative instruments. By this fall, most of the and international programs. NSF’s research that will continue to push at the experiments will have results in hand. recently approved Ocean Observatory boundaries of our knowledge about deep In addition, DOEI currently supports Initiative ties into DOEI thematic ocean and earth processes. two research fellows (Stan Hart and research in many ways, and WHOI - Dan Fornari, March 3, 2006 Greg Hirth, both of the Geology & investigators will, no doubt, continue to Geophysics Department), one post- think creatively about these and other Table of Contents doctoral fellow and a graduate student, opportunities. DOEI is committed to Notes from the DOEI Director in its efforts to expand the research help with these endeavors and other Dan Fornari . 1 options available to scientists and science programs to ensure the viability Student Highlights engineers in all departments at WHOI. of WHOI and its scientific, engineering Emily Van Ark, geology research . 2 (See the DOEI Web site at and technical staff. Matt Jackson, student paper award . 2 http://www.whoi.edu/institutes/doei Research highlighted in this Investigators Spotlight for more information). We expect to newsletter reflects the breadth and inno- Mark Behn & Jeff McGuire . 3 add a Claudia S. Heyman Institute vative nature of science being carried out DOEI Fieldtrip Fellow in 2006 to those already in place. by DOEI investigators at WHOI. First AUV adventure . 4 DOEI-sponsored activities have also and foremost, WHOI and DOEI realize Deep Ocean Exploration Institute included outreach in various forms. that investing in our students is key www.whoi.edu/institutes/doei For example, in September 2005 I met to the current and future health of the WOODS HOLE OCEANOGRAPHIC INSTITUTION with delegations in the US Congress Institution and ocean sciences. Emily Dan Fornari email: [email protected] to discuss the importance of basic Van Ark’s and Matt Jackson’s research Andrew Daly email: [email protected] science and oceanographic research projects embody the range in geographic Audrey Rogerson email: [email protected] and to support increased funding for and disciplinary breadth of work being Editor: Alison Kline email: [email protected] DOEI Newsletter March 2006 Student Highlights Research: Geology & Geophysics seismic reflection data, which she later Graduate Student, Emily Van Ark processed into images of the ocean crust. And, with MIT Professor Emily Van Ark is interested in Stephane Rondenay, she is using a magma and volcanism in Earth’s seismic wave propagation model to mantle and crust under the ocean. find signatures of molten regions As a member of the MIT/WHOI within the core-mantle boundary that Joint Program, she is working on might be targeted for identification in three research projects. The first is seismograms recorded at the surface of focused on the volcanic production the earth. of the Hawaiian Islands and their Through all of her research, Emily undersea continuation, the Hawaiian hopes to gain a greater understanding and Emperor seamounts. The second of the dynamics of Earth’s interior involves the magma chambers at the Emily Van Ark on a May 2005 Field School trip (spon- sored by the NSF’s Ridge 2000 program) studying the and the interactions that occur at the Juan de Fuca Ridge off the coast of Troodos Ophiolite in Cyprus. An ophiolite is a section boundaries between the ocean and the Oregon and Washington states (figure of oceanic crust that has been deposited on dry land, allowing geologists to get “up close and personal” with crust, the crust and the mantle, and below). For the third project, Emily the rocks. the mantle and the core. She wants to is working with models of partially know why Hawaii is where it is, how molten mantle, deep in the earth near by satellites to estimate how much new ocean crust forms at mid-ocean the core-mantle boundary. the ocean crust has been thickened spreading centers, how that crustal Emily uses a variety of geophysical by volcanism. For the Juan de Fuca formation interacts with the amazing techniques to study these problems. Ridge project, she spent a month at hydrothermal chemical and biological For the Hawaiian islands seamount sea with WHOI Senior Scientist Bob systems on the ocean floor, and whether project, she worked with WHOI Senior Detrick and Associate Scientist Pablo there is just as much fascinating Scientist Jian Lin using small variations Canales along with collaborators from variation at the core-mantle boundary in the strength of gravity measured other institutions, collecting marine as there is at the surface of the planet. AGU Outstanding Student Paper Award Please join us in con- gratulating MIT/WHOI Joint Program Student, Matt Jackson, for receiving an Outstanding Student Paper Award for his presentation at the American Geophysical Union (AGU) Fall meeting in October 2005. Matt’s paper, “Implications of New High 3He/4He Values from Matt Jackson, recipient of an Outstanding Student Paper Award at the American Geophysical Union. Matt the Samoan Hotspot,” will explains about his research: “Helium isotopes (3He and be listed in an upcoming 4He) are produced by fusion inside stars. Both were publication of Eos, the trapped inside Earth’s mantle when it coalesced from the solar nebula 4.5 billion years ago. Therefore, when we Map of the Juan de Fuca Ridge off the coast of Oregon and weekly paper of AGU, and find rare, high helium isotope ratios in volcanic rocks, we Washington states. The map shows the location of one of he will receive a certificate think we are looking at an ancient piece of Earth’s mantle Emily’s research areas, the Endeavour segment (upper black of achievement at the next that has managed to remain isolated, preserving part of box). Inset: tectonic setting of the Juan de Fuca Ridge, where its early-Earth signature.” Matt is working with WHOI JdF = Juan de Fuca Plate, Exp = Explorer Plate, Grd = Gorda AGU meeting in May 2006. Senior Scientist, Mark Kurz, of the Marine Chemistry Plate, and Pacific = Pacific Plate. (Lower black box outlines and Geochemistry Department, on this project. location of main map). [Van Ark et al., submitted.] 2 Investigators Spotlight A Seafloor Geodetic Experiment to away along a system of seaward-dipping appears to be accommodated Monitor Deformation on the Slope faults that transport material to the aseismically; and, prior to this project, of Kilauea Volcano, Hawaii southeast at rates of approximately ten no submarine geodetic measurements Co-PIs: Mark Behn and Jeff McGuire centimeters per year (see figure). had resolved horizontal motions on the Two competing theories explain the flank. Seafloor geodesy represents an movement of the Hilina slump. One Project ‘AHOLO involves exciting new field in marine geophysics. posits that this extension may represent an eight-month deployment of a In geodesy, the size and shape of Earth’s merely the upper-flank expression of a new acoustic extensometer system surface can be mapped through a more massive slump sliding coherently developed at WHOI to monitor network of accurately surveyed points seaward. Alternatively, several recent deformation in Kilauea’s submarine of geographic position using longitude, studies have proposed that volcanic flank. Extensometers measure small latitude and elevation, while taking spreading associated with magma increments of deformation. When into account the curvature of the injection at the summit of Kilauea many are used in a network, a earth through precise mathematical causes the upper flanks to extend continuous time series can be obtained, calculations.
Recommended publications
  • Washington Division of Geology and Earth Resources Open File Report
    l 122 EARTHQUAKES AND SEISMOLOGY - LEGAL ASPECTS OPEN FILE REPORT 92-2 EARTHQUAKES AND Ludwin, R. S.; Malone, S. D.; Crosson, R. EARTHQUAKES AND SEISMOLOGY - LEGAL S.; Qamar, A. I., 1991, Washington SEISMOLOGY - 1946 EVENT ASPECTS eanhquak:es, 1985. Clague, J. J., 1989, Research on eanh- Ludwin, R. S.; Qamar, A. I., 1991, Reeval­ Perkins, J. B.; Moy, Kenneth, 1989, Llabil­ quak:e-induced ground failures in south­ uation of the 19th century Washington ity of local government for earthquake western British Columbia [abstract). and Oregon eanhquake catalog using hazards and losses-A guide to the law Evans, S. G., 1989, The 1946 Mount Colo­ original accounts-The moderate sized and its impacts in the States of Califor­ nel Foster rock avalanches and auoci­ earthquake of May l, 1882 [abstract). nia, Alaska, Utah, and Washington; ated displacement wave, Vancouver Is­ Final repon. Maley, Richard, 1986, Strong motion accel­ land, British Columbia. erograph stations in Oregon and Wash­ Hasegawa, H. S.; Rogers, G. C., 1978, EARTHQUAKES AND ington (April 1986). Appendix C Quantification of the magnitude 7.3, SEISMOLOGY - NETWORKS Malone, S. D., 1991, The HAWK seismic British Columbia earthquake of June 23, AND CATALOGS data acquisition and analysis system 1946. [abstract). Berg, J. W., Jr.; Baker, C. D., 1963, Oregon Hodgson, E. A., 1946, British Columbia eanhquak:es, 1841 through 1958 [ab­ Milne, W. G., 1953, Seismological investi­ earthquake, June 23, 1946. gations in British Columbia (abstract). stract). Hodgson, J. H.; Milne, W. G., 1951, Direc­ Chan, W.W., 1988, Network and array anal­ Munro, P. S.; Halliday, R. J.; Shannon, W.
    [Show full text]
  • OCEAN/ESS 410 1 Lab 3. the Juan De Fuca Plate Please Write out Your
    OCEAN/ESS 410 Lab 3. The Juan de Fuca Plate Please write out your answers on a separate sheet of paper. In this exercise you are going to be looking at the bathymetry of the Juan de Fuca plate region, identifying interesting features and their characteristics, and attempting to interpret what you see. Some of the questions may be difficult for you to answer now (although hopefully not at the end of the Quarter) – part of the objective is to get you to look carefully at the maps and think rather that immediately writing down an answer. The Instructor and TAs will be coming around the lab answering questions. Figure 1 shows the plate boundaries for the Juan de Fuca plate region and you will use this as your road map as you explore the Juan de Fuca plate with the program GeoMapApp, a versatile program that is used by researchers to look at bathymetry and other seafloor data. To run GeoMapApp do the following 1. Start GeoMapApp on the lab computer from the Start menu or from the Desktop Icon if you have one. If it asks you to install a new version you do not have to. 2. Select the default Mercator Base Map (left hand map) 3. Learn to use the “Zoom In”, “Zoom Out” and “Pan the Map” tools. You can use the “Zoom In” tool either by clicking on the map or holding the mouse button down to rubber-band a box of interest. The Overlays menu allows you to add a Distance Scale and Color Bar.
    [Show full text]
  • Recent Movements of the Juan De Fuca Plate System
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 89, NO. B8, PAGES 6980-6994, AUGUST 10, 1984 Recent Movements of the Juan de Fuca Plate System ROBIN RIDDIHOUGH! Earth PhysicsBranch, Pacific GeoscienceCentre, Departmentof Energy, Mines and Resources Sidney,British Columbia Analysis of the magnetic anomalies of the Juan de Fuca plate system allows instantaneouspoles of rotation relative to the Pacific plate to be calculatedfrom 7 Ma to the present.By combiningthese with global solutions for Pacific/America and "absolute" (relative to hot spot) motions, a plate motion sequencecan be constructed.This sequenceshows that both absolute motions and motions relative to America are characterizedby slower velocitieswhere younger and more buoyant material enters the convergencezone: "pivoting subduction."The resistanceprovided by the youngestportion of the Juan de Fuca plate apparently resulted in its detachmentat 4 Ma as the independentExplorer plate. In relation to the hot spot framework, this plate almost immediately began to rotate clockwisearound a pole close to itself such that its translational movement into the mantle virtually ceased.After 4 Ma the remainder of the Juan de Fuca plate adjusted its motion in responseto the fact that the youngest material entering the subductionzone was now to the south. Differencesin seismicityand recent uplift betweennorthern and southernVancouver Island may reflect a distinction in tectonicstyle betweenthe "normal" subductionof the Juan de Fuca plate to the south and a complex "underplating"occurring as the Explorer plate is overriddenby the continent.The history of the Explorer plate may exemplifythe conditionsunder which the self-drivingforces of small subductingplates are overcomeby the influenceof larger, adjacent plates. The recent rapid migration of the absolutepole of rotation of the Juan de Fuca plate toward the plate suggeststhat it, too, may be nearingthis condition.
    [Show full text]
  • The Official Magazine of The
    OceTHE OFFICIALa MAGAZINEn ogOF THE OCEANOGRAPHYra SOCIETYphy CITATION Smith, L.M., J.A. Barth, D.S. Kelley, A. Plueddemann, I. Rodero, G.A. Ulses, M.F. Vardaro, and R. Weller. 2018. The Ocean Observatories Initiative. Oceanography 31(1):16–35, https://doi.org/10.5670/oceanog.2018.105. DOI https://doi.org/10.5670/oceanog.2018.105 COPYRIGHT This article has been published in Oceanography, Volume 31, Number 1, a quarterly journal of The Oceanography Society. Copyright 2018 by The Oceanography Society. All rights reserved. USAGE Permission is granted to copy this article for use in teaching and research. Republication, systematic reproduction, or collective redistribution of any portion of this article by photocopy machine, reposting, or other means is permitted only with the approval of The Oceanography Society. Send all correspondence to: [email protected] or The Oceanography Society, PO Box 1931, Rockville, MD 20849-1931, USA. DOWNLOADED FROM HTTP://TOS.ORG/OCEANOGRAPHY SPECIAL ISSUE ON THE OCEAN OBSERVATORIES INITIATIVE The Ocean Observatories Initiative By Leslie M. Smith, John A. Barth, Deborah S. Kelley, Al Plueddemann, Ivan Rodero, Greg A. Ulses, Michael F. Vardaro, and Robert Weller ABSTRACT. The Ocean Observatories Initiative (OOI) is an integrated suite of instrumentation used in the OOI. The instrumented platforms and discrete instruments that measure physical, chemical, third section outlines data flow from geological, and biological properties from the seafloor to the sea surface. The OOI ocean platforms and instrumentation to provides data to address large-scale scientific challenges such as coastal ocean dynamics, users and discusses quality control pro- climate and ecosystem health, the global carbon cycle, and linkages among seafloor cedures.
    [Show full text]
  • High-Silica Lava Morphology at Ocean Spreading Ridges: Machine-Learning Seafloor Classification at Alarcon Rise
    Article High-Silica Lava Morphology at Ocean Spreading Ridges: Machine-Learning Seafloor Classification at Alarcon Rise Christina H. Maschmeyer 1,†, Scott M. White 1,*, Brian M. Dreyer 2 and David A. Clague 3 1 School of the Earth, Ocean and Environment, University of South Carolina, Columbia, SC 29208, USA; [email protected] 2 Institute of Marine Sciences, University of California, Santa Cruz, CA 95064, USA; [email protected] 3 Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA; [email protected] † Now at: Fugro USA Marine, Inc. Geoconsulting Exploration, 6100 Hillcroft Ave, Houston, TX 77081, USA * Correspondence: [email protected] Received 31 March 2019; Accepted 28 May 2019; Published: 1 June 2019 Abstract: The oceanic crust consists mostly of basalt, but more evolved compositions may be far more common than previously thought. To aid in distinguishing rhyolite from basaltic lava and help guide sampling and understand spatial distribution, we constructed a classifier using neural networks and fuzzy inference to recognize rhyolite from its lava morphology in sonar data. The Alarcon Rise is ideal to study the relationship between lava flow morphology and composition, because it exhibits a full range of lava compositions in a well‐mapped ocean ridge segment. This study shows that the most dramatic geomorphic threshold in submarine lava separates rhyolitic lava from lower‐silica compositions. Extremely viscous rhyolite erupts as jagged lobes and lava branches in submarine environments. An automated classification of sonar data is a useful first‐order tool to differentiate submarine rhyolite flows from widespread basalts, yielding insights into eruption, emplacement, and architecture of the ocean crust.
    [Show full text]
  • Mobility and Immobility of Mid-Ocean Ridges and Their Implications to Mantle Dynamics
    Mobility and immobility of mid-ocean ridges and their implications to mantle dynamics Item Type Journal Contribution Authors Masalu, D.C.P. Citation Tanzanian Journal of Science , 28 (1), p. 77-85 Download date 24/09/2021 07:52:09 Link to Item http://hdl.handle.net/1834/734 Mobility and immobility of mid-ocean ridges and their implications to mantle dynamics D.C.P. Masalu Institute of Marine Sciences, University of Dar es Salaam, P.O. Box 668, Zanzibar, Tanzania ABSTRACT In the past two decades, the mobility of mid-ocean ridges relative to the mantle (absolute migration) has been correlated with major observable features, such as spreading asymmetry and asymmetry in the abundance of seamounts. The mobility of mid-ocean ridges is also thought to be an important factor that influences the diversity of ridge-crest basalts. However, this mobility has not yet been defined and mapped. The absolute migration of global mid-ocean ridges since 85 Ma has been computed and mapped. Global mid-ocean ridges have migrated extensively at varying velocities during that period. Presently, the fast-migrating ridges are the Pacific- Antarctic, Central Indian Ridge, Southeast Indian Ridge, Juan de Fuca, Pacific-Nazca, Antarctic-Nazca, and the Australia-Antarctic ridges, migrating at velocities of between 3.3 and 5.5 cm/yr. The slow-migrating ridges are the Mid-Atlantic and the Southwest Indian ridges, migrating at velocities between 0.3 and 2.0 cm/yr. Comparison of these results with mantle tomography results show that the slow-migrating ridges have deeper depth of origin than the fast-migrating ones, suggesting a correlation between the absolute migration velocity and the depth of origin of ridges.
    [Show full text]
  • The Fate of the Juan De Fuca Plate: Implications for a Yellowstone Plume Head
    The Fate of the Juan de Fuca Plate: Implications for a Yellowstone Plume Head Mei Xue Richard M. Allen Department of Earth and Planetary Science, University of California-Berkeley Submitted to EPSL March 22, 2007 Modified April 4, 2007 Revised Sept 24, 2007 Accepted Sept 29, 2007 Corresponding author: Richard Allen, [email protected], tel 510-642-1275, fax 510- 643-5811, Dept Earth and Planetary Science, University of California Berkeley, 307 McCone Hall, Berkeley, CA 94720-4767, USA 1 Abstract Beneath the Pacific Northwest the Juan de Fuca plate, a remnant of the Farallon plate, continues subducting beneath the North American continent. To the east of the Cascadia subduction zone lies the Yellowstone hotspot track. The origins of this track can be traced back to the voluminous basaltic outpourings in the Columbia Plateau around 17 Ma. If these basalts are the result of a large melting anomaly rising through the mantle to the base of the North America continent, such as a mantle plume head, the anomaly would need to punch through the subducting Juan de Fuca slab. Here, we use teleseismic body wave travel time tomography to investigate the fate of the subducted slab and its possible interaction with a plume head. Our dataset is derived from the Oregon Array for Teleseismic Study (OATS) deployment in Oregon and all other available seismic data in this region. We image the subducted Juan de Fuca plate in the mantle east of the Cascades beneath Oregon, where the slab has not been imaged before, to a depth of 400 km but no deeper.
    [Show full text]
  • Oceanographyra Spocietyhy
    OceThe OfficiaaL MaganZineog of the Oceanographyra Spocietyhy CITATION Rubin, K.H., S.A. Soule, W.W. Chadwick Jr., D.J. Fornari, D.A. Clague, R.W. Embley, E.T. Baker, M.R. Perfit, D.W. Caress, and R.P. Dziak. 2012. Volcanic eruptions in the deep sea. Oceanography 25(1):142–157, http://dx.doi.org/10.5670/oceanog.2012.12. DOI http://dx.doi.org/10.5670/oceanog.2012.12 COPYRIGHT This article has been published inOceanography , Volume 25, Number 1, a quarterly journal of The Oceanography Society. Copyright 2012 by The Oceanography Society. All rights reserved. USAGE Permission is granted to copy this article for use in teaching and research. Republication, systematic reproduction, or collective redistribution of any portion of this article by photocopy machine, reposting, or other means is permitted only with the approval of The Oceanography Society. Send all correspondence to: [email protected] or The Oceanography Society, PO Box 1931, Rockville, MD 20849-1931, USA. downLoaded from http://www.tos.org/oceanography OCEANIC SPREADING CENTER PROCESSES | Ridge 2000 PROGRAM RESEARCH Volcanic Eruptions in the Deep Sea BY KEnnETH H. RUBIN, S. ADAM SOULE, WILLIAM W. CHADWICK JR., DANIEL J. FORNARI, DAVID A. CLAGUE, RobERT W. EMBLEY, EDWARD T. BAKER, MICHAEL R. PERFIT, DAVID W. CAREss, AND RobERT P. DZIAK Eruption of molten lapilli, ash, and sulfur-rich fumes at Hades vent, West Mata Volcano. 142 Oceanography | Vol. 25, No. 1 AbsTRACT. Volcanic eruptions are important events in Earth’s cycle of magma eruptions, we also discuss submarine generation and crustal construction. Over durations of hours to years, eruptions eruptions in other settings because produce new deposits of lava and/or fragmentary ejecta, transfer heat and magmatic volcanism is a continuum of conditions volatiles from Earth’s interior to the overlying air or seawater, and significantly and processes across the full range of modify the landscape and perturb local ecosystems.
    [Show full text]
  • Growth Kinetics and Constraints Related to Metabolic Diversity And
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Open Access Dissertations 2-2011 Growth Kinetics and Constraints Related to Metabolic Diversity and Abundances of Hyperthermophiles in Deep-Sea Hydrothermal Vents Helene Chavanne Ver Eecke University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/open_access_dissertations Part of the Microbiology Commons Recommended Citation Ver Eecke, Helene Chavanne, "Growth Kinetics and Constraints Related to Metabolic Diversity and Abundances of Hyperthermophiles in Deep-Sea Hydrothermal Vents" (2011). Open Access Dissertations. 362. https://scholarworks.umass.edu/open_access_dissertations/362 This Open Access Dissertation is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Open Access Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. GROWTH KINETICS AND CONSTRAINTS RELATED TO METABOLIC DIVERSITY AND ABUNDANCES OF HYPERTHERMOPHILES IN DEEP-SEA HYDROTHERMAL VENTS A Dissertation Presented By HELENE C. VER EECKE Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY February 2011 Department of Microbiology © Copyright by Helene C. Ver Eecke 2011 All Rights Reserved GROWTH KINETICS AND CONSTRAINTS RELATED TO METABOLIC DIVERSITY AND ABUNDANCES OF HYPERTHERMOPHILES IN DEEP-SEA HYDROTHERMAL VENTS A Dissertation Presented By HELENE C. VER EECKE Approved as to style and content by: James F. Holden, Chairperson Klaus R. Nüsslein, Member Susan B. Leschine, Member Steven T. Petsch, Member John M. Lopes, Department Head Department of Microbiology DEDICATION To each youth being told they learn differently ACKNOWLEDGEMENTS I would foremost like to thank Dr.
    [Show full text]
  • Mineralogical Characterisation of a Black Smoker From
    MASTERARBEIT Titel der Masterarbeit Mineralogical characterisation of a black smoker from the "Vienna woods" hydrothermal field, Manus Basin, Papua New Guinea: complex sulphide ores from a deep-sea hydrothermal system. verfasst von Simon Steger, BSc angestrebter akademischer Grad Master of Science (MSc) Wien, 2015 Studienkennzahl lt. Studienblatt: A 066 815 Studienrichtung lt. Studienblatt: Masterstudium Erdwissenschaften Betreut von: Univ.-Prof. Dr. Lutz Nasdala ii Acknowledgements First of all, I thank Lutz Nasdala, who gave me the opportunity to work on this thesis and invested a lot of time supervising it. I am grateful to Christian L. Lengauer, Michael Götzinger, Christian Baal, Andreas Artač, Wolfgang Zirbs, Andreas Wagner and Max Svoboda for technical support. Constructive comments by Anton Beran, Wilfried Körner and Eugen Libowitzky are gratefully acknowledged. Xiasong Li is thanked for providing the NAA measurements. Special thanks go to my parents Claudia and Bernhard and my sister Katharina for supporting me in many different ways. iii iv Declaration I declare that this thesis was written by me and that it does not contains material, which has been submitted or accepted for an award of any other degree or diploma in any university or institution. All cited literature is listed without exception in the bibliography. To the best of my knowledge and belief this thesis contains no material previously published by any other person except where acknowledgment has been made. Vienna, 2015 _______________________ Simon Steger v vi Abstract This thesis summarises results of a MSc research that has addressed the examination and characterisation of the mineralogical relationships and chemical composition of a black smoker specimen origination from the “Vienna Woods” hydrothermal field.
    [Show full text]
  • Juan De Fuca Ridge and Sovanco Fracture Zone RP-5-OC-71
    U.S. DEPARTMENT OF COMMERCE Peter G. Peterson, Secretary NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION Robert M. White, Administrator ENVIRONMENTAL RESEARCH LABORATORIES Wilmot N. Hess, Director NOAA TECHNICAL REPORT ERl 234-POl 11 Juan de Fuca Ridge and .Sovanco Fracture Zone RP-5-0C-71 WILLIAM H. LUCAS BOULDER, COLO. May 1972 For sale by the Superintendent of Documents, U. S. Government Printing Office, Washington, D. C. 20402 Pri ce 50 cents Table of Contents Page ABSTRACT 1 1. INTRODUCTION 1 1.1 Purpose 1 1.2 Geologic Setting 2 1.3 Location :3 l- 2. DATA REDUCTION ) 2.1 Field Methods and Data Processing 5 2.2 P.O.L. Data Processing 7 3. TRi.CKLINE OPERATIm~s 7 3.1 Depth Measurements 9 3.2 Magnetic Measurements 9 3.3 Gr~vity Measurements 12 3.4 Seismic Reflection Profiline 12 4. STi\TION OPEPJtTIONS 13 4.1 HeD.t Flow 15 4.2 Coring 16 4.3 Camera Stations 17 4.4 Navigation 17 5. INTERPRETATION 17 5.1 Profile Presentation 18 iii Page 5.2 Bathymetry 19 5.3 Gravity 25 5.4 Magnetics 27 6. ACKNOWLEDGEMENTS 29 7. APPENDIX A: Abstract of Successful Heat Flow Observations 31 s. APPENDIX B: Abstract of Successful Core Stations 36 9. APpgNDIX C: Abstract of Successful Camera Stations 37 10. REFEREf\CES 3$ iv JUAN DE FUCA RIDGE AND SOVANCO FRACTURE ZONE RP-5-0C-71 William H. Lucas Profiles and contour maps of bathy­ metry, gravity and magnetics along 20 lines, 105 KM long, comprising a 10 x 10 point grid over the intersection of the northern end of the Juan de Fuca Ridge and Savanco Fracture ,Zone are presented and discussed.
    [Show full text]
  • 20. Geochemistry of Hydrothermal Vent Fluids from Middle Valley, Juan De Fuca Ridge1
    Mottl, M.J., Davis, E.E., Fisher, A.T., and Slack, J.F. (Eds.), 1994 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 139 20. GEOCHEMISTRY OF HYDROTHERMAL VENT FLUIDS FROM MIDDLE VALLEY, JUAN DE FUCA RIDGE1 David A. Butterfield,2 Russell E. McDuff,3 James Franklin,4 and Charles G. Wheat5 ABSTRACT Hydrothermal fluids were sampled with Alvin as part of the Ocean Drilling Program (ODP) site survey at Middle Valley in August, 1990. Hydrothermal fluids were recovered from ODP Sites 858 and 856. Endmember fluids from Site 858 (maximum measured temperature 276°C) have chlorinities near 580 millimoles/kilogram (mmol/kg), slightly higher than that of bottom seawater (540 mmol/kg). Endmember fluids from Site 856 (maximum measured temperature 264°C) have chlorinities of 412 mmol/kg. Except for the significant chlorinity depletion in the fluids from Site 856, the fluid chemistry is consistent with a seawater-derived source fluid reacting first with basalt at high temperature and subsequently with hemipelagic sediment. Both ammonia (~3 mmol/kg) and the chalcophillic metals Fe (10-20 µmol/kg), Mn (60-80 µmol/kg), Cu (0.3-1.3 µmol/kg), Zn (0.7-1.7 µmol/kg), and Pb (50-100 nmol/kg) are present at levels intermediate between Guaymas Basin and Escanaba Trough vent fluids, reflecting the influence of temperature on solubility. Trace metal concentrations in Middle Valley vent fluids are close to saturation with respect to magnetite and a suite of metal sulfides. Some reaction with organic matter is indicated by the elevated ammonia and bromide concentrations in the fluids.
    [Show full text]