Asterodiscus and Stigmatodiscus, Two New Apothecial Dothideomycete Genera and the New Order Stigmatodiscales

Total Page:16

File Type:pdf, Size:1020Kb

Asterodiscus and Stigmatodiscus, Two New Apothecial Dothideomycete Genera and the New Order Stigmatodiscales Fungal Diversity (2016) 80:271–284 DOI 10.1007/s13225-016-0356-y Asterodiscus and Stigmatodiscus, two new apothecial dothideomycete genera and the new order Stigmatodiscales Hermann Voglmayr1 & Alain Gardiennet 2 & Walter M. Jaklitsch1,3 Received: 25 August 2015 /Accepted: 11 January 2016 /Published online: 2 February 2016 # The Author(s) 2016. This article is published with open access at Springerlink.com Abstract During a survey on corticolous Dothideomycetes, Keywords Ascomycota . Dothideomycetes . New species . several collections with ascospores matching the genera New genus . New family . New order . Phylogenetic analysis . Asteromassaria and Stigmatomassaria (Pleomassariaceae, Taxonomy Pleosporales) were revealed from dead corticated twigs of Acer, Carpinus and Tamarix. Closer morphological examina- tion showed that their ascomata were apothecial, with a Introduction hamathecium consisting of septate, branched paraphyses, which are apically swollen at maturity. Several collections During a survey on corticolous ascomycetes in Istria, Croatia were cultured and sequenced, and a Blast search of their nuc in September 2010, we collected a dothideomycetous species 28S rDNA sequences revealed dothideomycetous affiliation, from dead corticated twigs of Carpinus orientalis which but without a close match to a specific family or order. showed ascospores with a striking resemblance to Phylogenetic analyses of a multigene matrix containing a rep- Stigmatomassaria pupula (Pleomassariaceae, Pleosporales; resentative selection of Dothideomycetes from four genes (nuc see Barr 1982,underSplanchnonema pupula). They were first 18S rDNA, nuc 28S rDNA, rpb2andtef1) revealed placement considered to represent poorly developed, aberrant ascomata within Dothideomycetes but without a supported familial or of Stigmatomassaria, but detailed morphological examination ordinal affiliation. Based on the phylogenetic analyses and showed that the ascomata were clearly apothecial, with morphological investigations, the new genera Asterodiscus ascomata opening at maturity and having septate paraphyses and Stigmatodiscus, with the two new species A. tamaricis with apical swellings at their free ends. Sequence data obtain- and S. enigmaticus, are described and illustrated, and placed ed from cultures of ascospores left no doubt that they do not in the new family Stigmatodiscaceae and new order belong to Stigmatomassaria or even Pleosporales. NCBI Stigmatodiscales. Blast searches confirmed dothideomycetous affinities, but without indication of a closer relative. Subsequently, we col- lected and cultured the fungus several times from Acer monspessulanum, A. campestre and A. sempervirens from var- * Hermann Voglmayr ious European countries. [email protected] In summer 2013, we found another dothideomycetous spe- cies on corticated dead twigs of Tamarix spp. with ascospores matching the genus Asteromassaria (Pleomassariaceae, 1 Division of Systematic and Evolutionary Botany, Department of Botany and Biodiversity Research, University of Vienna, Rennweg Pleosporales;seeBarr1982), but again with apothecial 14, A-1030 Vienna, Austria ascomata having apically swollen paraphyses. Sequence data 2 14 rue Roulette, F-21260 Véronnes, France obtained from pure cultures revealed a close phylogenetic relationship to the Stigmatomassaria-like apothecial 3 Institute of Forest Entomology, Forest Pathology and Forest Protection, Department of Forest and Soil Sciences, dothideomycete. BOKU-University of Natural Resources and Life Sciences, These fungi could not be identified upon consultation of Hasenauerstraße 38, A-1190 Vienna, Austria the taxonomic literature, and no genera or families offered 272 Fungal Diversity (2016) 80:271–284 themselves for an appropriate taxonomic placement. gene was amplified using the primer pair fRPB2-5f and Therefore, they are described in the new genera Asterodiscus fRPB2-7cr (Liu et al. 1999). A ca 1.3 kb fragment of transla- and Stigmatodiscus, which are placed in a new family and tion elongation factor 1-α (tef1) gene was amplified with the order within Dothideomycetes, according to the results of primers EF1728F (Carbone and Kohn 1999)and multigene phylogenetic analyses and detailed morphological TEF1LLErev (Jaklitsch et al. 2005). The latter fragment in- investigations. cludes the fourth and the fifth intron and a significant portion of the last large exon. A ca. 0.8 kb fragment of the β-tubulin (tub2) gene was amplified with primers T1HV (5′ Materials and methods CANMATGCGYGAGATYGTAYGT 3′)andBtHV2r(5′ CATCATRCGRTCNGGGAACTC 3′), which were newly de- Morphological observations veloped for Dothideomycetes. T1HV is a modified version of primer T1 (O’Donnell and Cigelnik 1997), whereas BtHV2r is Hand sections of ascomata were made using a razor blade and upstream from T222 (O’Donnell and Cigelnik 1997); the mounted in water on a microscope slide, gently torn apart with primers were developed from genome sequences of represen- a preparation needle when necessary and covered with a cover tative Dothideomycetes downloaded from the Joint Genome slip. Slides were examined and photographed using a Zeiss Institute (JGI, http://jgi.doe.gov/). PCR products were purified Axio Imager.A1 (Zeiss, Jena, Germany) microscope equipped using an enzymatic PCR cleanup (Werle et al. 1994)asde- with a Zeiss AxioCam ICc3 or Axiocam 506 colour digital scribed in Voglmayr and Jaklitsch (2008). DNA was cycle- camera. Measurements are reported as maxima and minima in sequenced using the ABI PRISM Big Dye Terminator Cycle parentheses and the mean plus and minus the standard devia- Sequencing Ready Reaction Kit v. 3.1 (Applied Biosystems, tion given in parentheses. For falcate conidia, the shortest Warrington) and the PCR primers; in addition, the following distance between both ends (i.e. diameter) was measured. primers were used: ITS-28S region: ITS4 (White et al. 1990), The specimens were deposited in the fungarium of the LR3 (Vilgalys and Hester 1990); SSU: NS1088 (Kauff and University of Vienna (WU). Lutzoni 2002). Sequencing was performed on an automated DNA sequencer (ABI 3730xl Genetic Analyzer, Applied Pure culture isolation Biosystems). Mature ascomata on corticated twigs were horizontally cut Phylogenetic analyses using a sterile razor blade, the apothecia separated from the surrounding host tissue, transferred in a sterile drop of water To reveal the phylogenetic position of the two new genera, a on a microscope slide, torn apart with a forceps to release the matrix of aligned nucleotide sequences from four different ascospores from asci and pipetted on a 2 % malt extract agar phylogenetic markers (18S, 28S, rpb2andtef1), and 219 rep- (MEA) plate supplemented with 200 mg/L penicillin G and resentatives of Dothideomycetes and Eurotiomycetes,includ- streptomycin sulphate (Sigma-Aldrich, St. Louis, MO). ing two species from Lecanoromycetes as outgroup, was pro- Germinated ascospores were then transferred to 2 % MEA duced. The matrix of Boehm et al. (2015) was downloaded plates, which were sealed with laboratory film and incubated from TreeBASE (www.treebase.org; submission No. S at room temperature. Cultures were deposited at CBS-KNAW 16,151) and served as the matrix basis after removal of a Fungal Biodiversity Centre, Utrecht, The Netherlands (CBS). few sequences. Sequences of six additional taxa were downloaded from the GenBank nucleotide database. These, DNA extraction, PCR and sequencing together with the newly generated sequences, were manually aligned to the matrix of Boehm et al. (2015), or realigned with Growth of liquid cultures and extraction of genomic DNAwas the server version of MAFFT (www.ebi.ac.uk/Tools/mafft). done according to Voglmayr and Jaklitsch (2011), either using The resulting alignments were subsequently checked and the modified CTAB extraction protocol of Riethmüller et al. refined using BioEdit version v. 7.0.4.1 (Hall 1999). For align- (2002) or the DNeasy Plant Mini Kit (QIAgen GmbH, Hilden, ment of rpb2, first the alignment of Boehm et al. (2015)was Germany). The following loci were used for identification and translated into a protein matrix which was then re-aligned with phylogenetic analyses: The complete ITS region and D1 and the new protein sequences using MAFFT, and the respective D2 domains of 28S nuc rDNA region (ITS-28S) were ampli- new DNA sequences were then manually aligned to the fied using the primers V9G (de Hoog and de and Gerrits van original rpb2 nucleotide matrix using the protein alignment den Ende 1998) and LR5 (Vilgalys and Hester 1990). The 18S as reference. Prior to phylogenetic analyses, the approach of nuc rDNA region was amplified with primers SL1 (Landvik et Wiens (1998) was applied to test for significant levels of lo- al. 1997) and NS24mod (Voglmayr and Jaklitsch 2011). A ca calized incongruence among the four genes, using the level of 1.1 kb fragment of the RNA polymerase II subunit 2 (rpb2) bootstrap support (Sung et al. 2007). For this, the 80 % Fungal Diversity (2016) 80:271–284 273 maximum likelihood (ML) bootstrap consensus trees for each individual partition were compared using the same parameters 2 as for the combined analysis given below, but using 100 fast tub bootstrap replicates. No significant topological conflicts were observed between the bootstrap trees of 18S, 28S, rpb2and tef1, indicating the absence of significant incongruence and 2 rpb combinability of the matrices (Wiens 1998). The resulting combined sequence matrix contained 5721 nucleotide posi- tions from four genes
Recommended publications
  • <I>Stilbosporaceae</I>
    Persoonia 33, 2014: 61–82 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158514X684212 Stilbosporaceae resurrected: generic reclassification and speciation H. Voglmayr1, W.M. Jaklitsch1 Key words Abstract Following the abolishment of dual nomenclature, Stilbospora is recognised as having priority over Prosthecium. The type species of Stilbospora, S. macrosperma, is the correct name for P. ellipsosporum, the type Alnecium species of Prosthecium. The closely related genus Stegonsporium is maintained as distinct from Stilbospora based Calospora on molecular phylogeny, morphology and host range. Stilbospora longicornuta and S. orientalis are described as Calosporella new species from Carpinus betulus and C. orientalis, respectively. They differ from the closely related Stilbospora ITS macrosperma, which also occurs on Carpinus, by longer, tapering gelatinous ascospore appendages and by dis- LSU tinct LSU, ITS rDNA, rpb2 and tef1 sequences. The asexual morphs of Stilbospora macrosperma, S. longicornuta molecular phylogeny and S. orientalis are morphologically indistinguishable; the connection to their sexual morphs is demonstrated by Phaeodiaporthe morphology and DNA sequences of single spore cultures derived from both ascospores and conidia. Both morphs rpb2 of the three Stilbospora species on Carpinus are described and illustrated. Other species previously recognised in systematics Prosthecium, specifically P. acerophilum, P. galeatum and P. opalus, are determined to belong to and are formally tef1 transferred to Stegonsporium. Isolates previously recognised as Stegonsporium pyriforme (syn. Prosthecium pyri­ forme) are determined to consist of three phylogenetically distinct lineages by rpb2 and tef1 sequence data, two of which are described as new species (S. protopyriforme, S. pseudopyriforme). Stegonsporium pyriforme is lectotypified and this species and Stilbospora macrosperma are epitypified.
    [Show full text]
  • Ascomycota, Trypetheliaceae)
    A peer-reviewed open-access journal MycoKeys 34: 25–34 (2018)Architrypethelium murisporum (Ascomycota, Trypetheliaceae)... 25 doi: 10.3897/mycokeys.34.23836 RESEARCH ARTICLE MycoKeys http://mycokeys.pensoft.net Launched to accelerate biodiversity research Architrypethelium murisporum (Ascomycota, Trypetheliaceae), a remarkable new lichen species from Thailand challenging ascospore septation as an indicator of phylogenetic relationships Theerapat Luangsuphabool1, H. Thorsten Lumbsch2, Jittra Piapukiew3, Ek Sangvichien1 1 Department of Biology, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand2 Science & Edu- cation, The Field Museum, Chicago, Illinois, USA 3 Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand Corresponding author: H. Thorsten Lumbsch ([email protected]) Academic editor: P. Divakar | Received 23 January 2018 | Accepted 21 April 2018 | Published 10 May 2018 Citation: Luangsuphabool T, Lumbsch HT, Piapukiew J, Sangvichien E (2018) Architrypethelium murisporum (Ascomycota, Trypetheliaceae), a remarkable new lichen species from Thailand challenging ascospore septation as an indicator of phylogenetic relationships. MycoKeys 34: 25–34. https://doi.org/10.3897/mycokeys.34.23836 Abstract Architrypethelium murisporum Luangsuphabool, Lumbsch & Sangvichien is described for a crustose lichen occurring in dry evergreen forest in Thailand. It is characterised by a green to yellow-green corticated thal- lus, perithecia fused in black pseudostromata with white rim surrounding the ostiole and small, hyaline and muriform ascospores. Currently, all species in the genus Architrypethelium have transversely septate ascospores, hence the discovery of this new species indicates that ascospore septation is variable within the genus, similar to numerous other groups of lichen-forming ascomycetes. Phylogenetic analyses of two loci (mtSSU and nuLSU) supported the position of the new species within Architrypethelium.
    [Show full text]
  • Patellariaceae Revisited
    Mycosphere 6 (3): 290–326(2015) ISSN 2077 7019 www.mycosphere.org Article Mycosphere Copyright © 2015 Online Edition Doi 10.5943/mycosphere/6/3/7 Patellariaceae revisited Yacharoen S1,2, Tian Q1,2, Chomnunti P1,2, Boonmee S1, Chukeatirote E2, Bhat JD3 and Hyde KD1,2,4,5* 1Institute of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand 2School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand 3Formerly at Department of Botany, Goa University, Goa 403 206, India 4Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China 5World Agroforestry Centre, East and Central Asia, Kunming 650201, Yunnan, China Yacharoen S, Tian Q, Chomnunti P, Boonmee S, Chukeatirote E, Bhat JD, Hyde KD 2015 – Patellariaceae revisited. Mycosphere 6(3), 290–326, Doi 10.5943/mycosphere/6/3/7 Abstract The Dothideomycetes include several genera whose ascomata can be considered as apothecia and thus would be grouped as discomycetes. Most genera are grouped in the family Patellariaceae, but also Agrynnaceae and other families. The Hysteriales include genera having hysterioid ascomata and can be confused with species in Patellariaceae with discoid apothecia if the opening is wide enough. In this study, genera of the family Patellariaceae were re-examined and characterized based on morphological examination. As a result of this study the genera Baggea, Endotryblidium, Holmiella, Hysteropatella, Lecanidiella, Lirellodisca, Murangium, Patellaria, Poetschia, Rhizodiscina, Schrakia, Stratisporella and Tryblidaria are retained in the family Patellariaceae. The genera Banhegyia, Pseudoparodia and Rhytidhysteron are excluded because of differing morphology and/or molecular data.
    [Show full text]
  • Arboretum News Armstrong News & Featured Publications
    Georgia Southern University Digital Commons@Georgia Southern Arboretum News Armstrong News & Featured Publications Spring 2019 Arboretum News Georgia Southern University- Armstrong Campus Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/armstrong-arbor-news Part of the Education Commons This article is brought to you for free and open access by the Armstrong News & Featured Publications at Digital Commons@Georgia Southern. It has been accepted for inclusion in Arboretum News by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact [email protected]. Arboretum News Issue 9 | Spring 2019 A Newsletter of the Georgia Southern University Armstrong Campus Arboretum From the Editor: Arboretum News, published by the Grounds Operations Department ’d like to introduce you to the Armstrong Arboretum of the new of Georgia Southern University- IGeorgia Southern University-Armstrong Campus. Designated Armstrong Campus, is distributed as an on-campus arboretum in 2001 by former Armstrong to faculty, staff, students and Atlantic State University president Dr. Thomas Jones, the friends of the Armstrong Arboretum. The Arboretum university recognized the rich diversity of plant life on campus. encompasses Armstrong’s 268- The Arboretum continues to add to that diversity and strives to acre campus and displays a wide function as a repository for the preservation and the conservation variety of shrubs and other woody of plants from all over the world. We also hope to inspire students, plants. Developed areas of campus faculty, staff and visitors to appreciate the incredible diversity contain native and introduced species of trees and shrubs. Most that plants have to offer.
    [Show full text]
  • Molecular Systematics of the Marine Dothideomycetes
    available online at www.studiesinmycology.org StudieS in Mycology 64: 155–173. 2009. doi:10.3114/sim.2009.64.09 Molecular systematics of the marine Dothideomycetes S. Suetrong1, 2, C.L. Schoch3, J.W. Spatafora4, J. Kohlmeyer5, B. Volkmann-Kohlmeyer5, J. Sakayaroj2, S. Phongpaichit1, K. Tanaka6, K. Hirayama6 and E.B.G. Jones2* 1Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand; 2Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Paholyothin Road, Khlong 1, Khlong Luang, Pathum Thani, 12120, Thailand; 3National Center for Biothechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, MSC 6510, Bethesda, Maryland 20892-6510, U.S.A.; 4Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, 97331, U.S.A.; 5Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, North Carolina 28557, U.S.A.; 6Faculty of Agriculture & Life Sciences, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan *Correspondence: E.B. Gareth Jones, [email protected] Abstract: Phylogenetic analyses of four nuclear genes, namely the large and small subunits of the nuclear ribosomal RNA, transcription elongation factor 1-alpha and the second largest RNA polymerase II subunit, established that the ecological group of marine bitunicate ascomycetes has representatives in the orders Capnodiales, Hysteriales, Jahnulales, Mytilinidiales, Patellariales and Pleosporales. Most of the fungi sequenced were intertidal mangrove taxa and belong to members of 12 families in the Pleosporales: Aigialaceae, Didymellaceae, Leptosphaeriaceae, Lenthitheciaceae, Lophiostomataceae, Massarinaceae, Montagnulaceae, Morosphaeriaceae, Phaeosphaeriaceae, Pleosporaceae, Testudinaceae and Trematosphaeriaceae. Two new families are described: Aigialaceae and Morosphaeriaceae, and three new genera proposed: Halomassarina, Morosphaeria and Rimora.
    [Show full text]
  • H. Thorsten Lumbsch VP, Science & Education the Field Museum 1400
    H. Thorsten Lumbsch VP, Science & Education The Field Museum 1400 S. Lake Shore Drive Chicago, Illinois 60605 USA Tel: 1-312-665-7881 E-mail: [email protected] Research interests Evolution and Systematics of Fungi Biogeography and Diversification Rates of Fungi Species delimitation Diversity of lichen-forming fungi Professional Experience Since 2017 Vice President, Science & Education, The Field Museum, Chicago. USA 2014-2017 Director, Integrative Research Center, Science & Education, The Field Museum, Chicago, USA. Since 2014 Curator, Integrative Research Center, Science & Education, The Field Museum, Chicago, USA. 2013-2014 Associate Director, Integrative Research Center, Science & Education, The Field Museum, Chicago, USA. 2009-2013 Chair, Dept. of Botany, The Field Museum, Chicago, USA. Since 2011 MacArthur Associate Curator, Dept. of Botany, The Field Museum, Chicago, USA. 2006-2014 Associate Curator, Dept. of Botany, The Field Museum, Chicago, USA. 2005-2009 Head of Cryptogams, Dept. of Botany, The Field Museum, Chicago, USA. Since 2004 Member, Committee on Evolutionary Biology, University of Chicago. Courses: BIOS 430 Evolution (UIC), BIOS 23410 Complex Interactions: Coevolution, Parasites, Mutualists, and Cheaters (U of C) Reading group: Phylogenetic methods. 2003-2006 Assistant Curator, Dept. of Botany, The Field Museum, Chicago, USA. 1998-2003 Privatdozent (Assistant Professor), Botanical Institute, University – GHS - Essen. Lectures: General Botany, Evolution of lower plants, Photosynthesis, Courses: Cryptogams, Biology
    [Show full text]
  • Bulletin 14 of the European Dry Grassland Group
    Bulletin 14 of the European Dry Grassland Group Introduction The spring has come at last. Soon, all European naturalists will be very busy with their fieldwork. Before this happens, however, we invite you to read this Bulletin issue, which presents several interesting contributions and news on the numerous EDGG activities. The number of EDGG members exceeded 800 last month. Soon, the key EDGG events will take place - the EDGG research expedition to Sicily (Italy) and the European Dry Grassland Meeting in Prespa (Greece). You can find the most topical information about their preparation on the following pages. You can learn about the development of four prepared special issues focussing on grasslands. You can also learn which grasslands belong to the biodiversity hotspots at small scales. Besides that, you can find here information on the upcoming meetings and events, three book reviews and numerous smaller announcements from our members. Maybe you will notice that in this issue we have used some new graphical elements. We hope you like the changes! To make this and the future Bulletins more user-friendly, we have also adopted some structural changes and developed a fixed sequence of sections. The longer contributions (reports and research articles) in the central part of the Bulletin will have the structure of normal scientific papers so that they could easily be printed, posted and shared as separate items. Most of the beautiful photographs of animal and plant species included in the issue were provided by Rocco Labadessa from Bari (Italy). We wish you a!pleasant read! Editors Content Activities and announcements of EDGG 2 Skyros: a very “dry grassland” Greek island 9 STIPA: Saving Transylvania’s Important Pastoral Agro-Ecosystems 11 Forum 13 Book reviews 15 Recent publications of our members 17 Forthcoming events 18 Coscinia striata (male), Alta Murgia, Apulia, Italy.
    [Show full text]
  • One Hundred New Species of Lichenized Fungi: a Signature of Undiscovered Global Diversity
    Phytotaxa 18: 1–127 (2011) ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Monograph PHYTOTAXA Copyright © 2011 Magnolia Press ISSN 1179-3163 (online edition) PHYTOTAXA 18 One hundred new species of lichenized fungi: a signature of undiscovered global diversity H. THORSTEN LUMBSCH1*, TEUVO AHTI2, SUSANNE ALTERMANN3, GUILLERMO AMO DE PAZ4, ANDRÉ APTROOT5, ULF ARUP6, ALEJANDRINA BÁRCENAS PEÑA7, PAULINA A. BAWINGAN8, MICHEL N. BENATTI9, LUISA BETANCOURT10, CURTIS R. BJÖRK11, KANSRI BOONPRAGOB12, MAARTEN BRAND13, FRANK BUNGARTZ14, MARCELA E. S. CÁCERES15, MEHTMET CANDAN16, JOSÉ LUIS CHAVES17, PHILIPPE CLERC18, RALPH COMMON19, BRIAN J. COPPINS20, ANA CRESPO4, MANUELA DAL-FORNO21, PRADEEP K. DIVAKAR4, MELIZAR V. DUYA22, JOHN A. ELIX23, ARVE ELVEBAKK24, JOHNATHON D. FANKHAUSER25, EDIT FARKAS26, LIDIA ITATÍ FERRARO27, EBERHARD FISCHER28, DAVID J. GALLOWAY29, ESTER GAYA30, MIREIA GIRALT31, TREVOR GOWARD32, MARTIN GRUBE33, JOSEF HAFELLNER33, JESÚS E. HERNÁNDEZ M.34, MARÍA DE LOS ANGELES HERRERA CAMPOS7, KLAUS KALB35, INGVAR KÄRNEFELT6, GINTARAS KANTVILAS36, DOROTHEE KILLMANN28, PAUL KIRIKA37, KERRY KNUDSEN38, HARALD KOMPOSCH39, SERGEY KONDRATYUK40, JAMES D. LAWREY21, ARMIN MANGOLD41, MARCELO P. MARCELLI9, BRUCE MCCUNE42, MARIA INES MESSUTI43, ANDREA MICHLIG27, RICARDO MIRANDA GONZÁLEZ7, BIBIANA MONCADA10, ALIFERETI NAIKATINI44, MATTHEW P. NELSEN1, 45, DAG O. ØVSTEDAL46, ZDENEK PALICE47, KHWANRUAN PAPONG48, SITTIPORN PARNMEN12, SERGIO PÉREZ-ORTEGA4, CHRISTIAN PRINTZEN49, VÍCTOR J. RICO4, EIMY RIVAS PLATA1, 50, JAVIER ROBAYO51, DANIA ROSABAL52, ULRIKE RUPRECHT53, NORIS SALAZAR ALLEN54, LEOPOLDO SANCHO4, LUCIANA SANTOS DE JESUS15, TAMIRES SANTOS VIEIRA15, MATTHIAS SCHULTZ55, MARK R. D. SEAWARD56, EMMANUËL SÉRUSIAUX57, IMKE SCHMITT58, HARRIE J. M. SIPMAN59, MOHAMMAD SOHRABI 2, 60, ULRIK SØCHTING61, MAJBRIT ZEUTHEN SØGAARD61, LAURENS B. SPARRIUS62, ADRIANO SPIELMANN63, TOBY SPRIBILLE33, JUTARAT SUTJARITTURAKAN64, ACHRA THAMMATHAWORN65, ARNE THELL6, GÖRAN THOR66, HOLGER THÜS67, EINAR TIMDAL68, CAMILLE TRUONG18, ROMAN TÜRK69, LOENGRIN UMAÑA TENORIO17, DALIP K.
    [Show full text]
  • Checklist of the Lichens and Allied Fungi of Kathy Stiles Freeland Bibb County Glades Preserve, Alabama, U.S.A
    Opuscula Philolichenum, 18: 420–434. 2019. *pdf effectively published online 2December2019 via (http://sweetgum.nybg.org/philolichenum/) Checklist of the lichens and allied fungi of Kathy Stiles Freeland Bibb County Glades Preserve, Alabama, U.S.A. J. KEVIN ENGLAND1, CURTIS J. HANSEN2, JESSICA L. ALLEN3, SEAN Q. BEECHING4, WILLIAM R. BUCK5, VITALY CHARNY6, JOHN G. GUCCION7, RICHARD C. HARRIS8, MALCOLM HODGES9, NATALIE M. HOWE10, JAMES C. LENDEMER11, R. TROY MCMULLIN12, ERIN A. TRIPP13, DENNIS P. WATERS14 ABSTRACT. – The first checklist of lichenized, lichenicolous and lichen-allied fungi from the Kathy Stiles Freeland Bibb County Glades Preserve in Bibb County, Alabama, is presented. Collections made during the 2017 Tuckerman Workshop and additional records from herbaria and online sources are included. Two hundred and thirty-eight taxa in 115 genera are enumerated. Thirty taxa of lichenized, lichenicolous and lichen-allied fungi are newly reported for Alabama: Acarospora fuscata, A. novomexicana, Circinaria contorta, Constrictolumina cinchonae, Dermatocarpon dolomiticum, Didymocyrtis cladoniicola, Graphis anfractuosa, G. rimulosa, Hertelidea pseudobotryosa, Heterodermia pseudospeciosa, Lecania cuprea, Marchandiomyces lignicola, Minutoexcipula miniatoexcipula, Monoblastia rappii, Multiclavula mucida, Ochrolechia trochophora, Parmotrema subsumptum, Phaeographis brasiliensis, Phaeographis inusta, Piccolia nannaria, Placynthiella icmalea, Porina scabrida, Psora decipiens, Pyrenographa irregularis, Ramboldia blochiana, Thyrea confusa, Trichothelium
    [Show full text]
  • Leaf-Inhabiting Genera of the Gnomoniaceae, Diaporthales
    Studies in Mycology 62 (2008) Leaf-inhabiting genera of the Gnomoniaceae, Diaporthales M.V. Sogonov, L.A. Castlebury, A.Y. Rossman, L.C. Mejía and J.F. White CBS Fungal Biodiversity Centre, Utrecht, The Netherlands An institute of the Royal Netherlands Academy of Arts and Sciences Leaf-inhabiting genera of the Gnomoniaceae, Diaporthales STUDIE S IN MYCOLOGY 62, 2008 Studies in Mycology The Studies in Mycology is an international journal which publishes systematic monographs of filamentous fungi and yeasts, and in rare occasions the proceedings of special meetings related to all fields of mycology, biotechnology, ecology, molecular biology, pathology and systematics. For instructions for authors see www.cbs.knaw.nl. EXECUTIVE EDITOR Prof. dr Robert A. Samson, CBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. E-mail: [email protected] LAYOUT EDITOR Marianne de Boeij, CBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. E-mail: [email protected] SCIENTIFIC EDITOR S Prof. dr Uwe Braun, Martin-Luther-Universität, Institut für Geobotanik und Botanischer Garten, Herbarium, Neuwerk 21, D-06099 Halle, Germany. E-mail: [email protected] Prof. dr Pedro W. Crous, CBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. E-mail: [email protected] Prof. dr David M. Geiser, Department of Plant Pathology, 121 Buckhout Laboratory, Pennsylvania State University, University Park, PA, U.S.A. 16802. E-mail: [email protected] Dr Lorelei L. Norvell, Pacific Northwest Mycology Service, 6720 NW Skyline Blvd, Portland, OR, U.S.A.
    [Show full text]
  • A Late Miocene Leaf Assemblage from Vrysses, Western Crete, Greece, and Its Paleoenvironmental and Paleoclimatic Interpretation
    A late Miocene leaf assemblage from Vrysses, western Crete, Greece, and its paleoenvironmental and paleoclimatic interpretation Giannis ZIDIANAKIS Department of Biology, University of Crete, Voutes, GR-71305 Irakleio, Crete (Greece) [email protected] Barbara A. R. MOHR Institute of Palaeontology, Museum of Natural History, Invalidenstr. 43, D-10115 Berlin (Germany) [email protected] Charalampos FASSOULAS Natural History Museum, University of Crete, GR-71409 Irakleio, Crete (Greece) [email protected] Zidianakis G., Mohr B. A. R. & Fassoulas C. 2007. — A late Miocene leaf assemblage from Vrysses, western Crete, Greece, and its paleoenvironmental and paleoclimatic interpretation. Geodiversitas 29 (3) : 351-377. ABSTRACT A new leaf impression fl ora is described from late Miocene marly sediments (6-7.5 Ma) near the village of Vrysses in northwestern Crete, Greece. Th e stud- ied plant remains represent more than 30 taxa of conifers and angiosperms. Deciduous broad-leaved woody plants such as Acer pseudomonspessulanum, 5-lobed Acer, Ziziphus ziziphoides, “Parrotia” pristina, Populus tremula, Salix sp. and Juglandaceae, prevail in this leaf assemblage. Th ese plants are associated with sclerophyllous, evergreen taxa (Quercus mediterranea, Quercus sp., Buxus pliocenica and Pinus sp.) and a few subtropical Miocene elements (Daphnogene KEY WORDS Late Miocene, polymorpha, Tetraclinis sp.). A regional vegetation reconstruction is developed Crete, based on the ecological affi nities of the nearest living relatives. Th e climate Greece, conditions are deduced from the physiognomy and composition of the Vrysses leaves, paleovegetation, plant assemblage. Th ey indicate a warm-humid climate possibly with a weakly paleoclimate. developed dry period during the summer months.
    [Show full text]
  • BLS Bulletin 106 Summer 2010.Pdf
    1 BRITISH LICHEN SOCIETY OFFICERS AND CONTACTS 2010 PRESIDENT S.D. Ward, 14 Green Road, Ballyvaghan, Co. Clare, Ireland, email [email protected]. VICE-PRESIDENT B.P. Hilton, Beauregard, 5 Alscott Gardens, Alverdiscott, Barnstaple, Devon EX31 3QJ; e-mail [email protected] SECRETARY C. Ellis, Royal Botanic Garden, 20A Inverleith Row, Edinburgh EH3 5LR; email [email protected] TREASURER J.F. Skinner, 28 Parkanaur Avenue, Southend-on-Sea, Essex SS1 3HY, email [email protected] ASSISTANT TREASURER AND MEMBERSHIP SECRETARY H. Döring, Mycology Section, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, email [email protected] REGIONAL TREASURER (Americas) J.W. Hinds, 254 Forest Avenue, Orono, Maine 04473-3202, USA; email [email protected]. CHAIR OF THE DATA COMMITTEE D.J. Hill, Yew Tree Cottage, Yew Tree Lane, Compton Martin, Bristol BS40 6JS, email [email protected] MAPPING RECORDER AND ARCHIVIST M.R.D. Seaward, Department of Archaeological, Geographical & Environmental Sciences, University of Bradford, West Yorkshire BD7 1DP, email [email protected] DATA MANAGER J. Simkin, 41 North Road, Ponteland, Newcastle upon Tyne NE20 9UN, email [email protected] SENIOR EDITOR (LICHENOLOGIST) P.D. Crittenden, School of Life Science, The University, Nottingham NG7 2RD, email [email protected] BULLETIN EDITOR P.F. Cannon, CABI and Royal Botanic Gardens Kew; postal address Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, email [email protected] CHAIR OF CONSERVATION COMMITTEE & CONSERVATION OFFICER B.W. Edwards, DERC, Library Headquarters, Colliton Park, Dorchester, Dorset DT1 1XJ, email [email protected] CHAIR OF THE EDUCATION AND PROMOTION COMMITTEE: position currently vacant.
    [Show full text]