271 REFERENCES Abdullah, S.K. and Taj-Aldeen, S.J. (1989

Total Page:16

File Type:pdf, Size:1020Kb

271 REFERENCES Abdullah, S.K. and Taj-Aldeen, S.J. (1989 271 REFERENCES Abdullah, S.K. and Taj-Aldeen, S.J. (1989). Extracellular enzymatic activity of aquatic and aero-aquatic conidial fungi. Hydrobiologia 174: 217–223. Abler, S.W. (2003). Ecology and taxonomy of Leptosphaerulina spp. associated with turfgrasses in the United States. M.S. Thesis. Faculty of the Virginia Polytechnic Institute and State University, Blacksburg, Virginia. Adams, D.J. (2004). Fungal cell wall chitinases and glucanases. Microbiology 150: 2029–2035. Agrios, G.N. (2005). Plant Pathology. 5th ed. Department of Plant Pathology, University of Florida. Elsevier Academic Press. Ahn, Y. (1996). Taxonomic revision of taxa originally described in Leptosphaeria from species in the Ranunculaceae, Papaveraceae and Magnoliaceae. Ph.D. Thesis. University of Illinois at Urbana-Campaign. Ainsworth, G.C. and Bisby, G.R. (1943). Dictionary of The Fungi. Wallingford, UK, CAB International. Alexopoulos, C.J., Mims, C.W. and Blackwell, M. (1996). Introductory Mycology. 4th ed. New York, John Wiley & Sons, Inc. Alias, S.A., Kuthubutheen, A.J.and Jones, E.B.G. (1995). Frequency of occurrence of fungi on wood in Malaysian mangroves. Hydrobiologia 295 : 97–106. Allen, R.B., Buchanan, P.K., Clinton, P.W. and Cone, A.J. (2000). Composition and diversity of fungi on decaying logs in a New Zealand temperate beech 272 (Nothofagus) forest. Canadian Journal of Forest Research 30: 1025–1033. Anderson, N.H. and Sedell, J.R. (1979). Detritus processing by macroinvertebrates in stream ecosystems. Annual Review of Entomology 24: 351–377. Ando, K. (1992). A Study of terrestrial aquatic Hyphomycetes. Transaction of Mycological Society of Japan 33: 415–425. Anonymous. (1995). JMP® Statistics and graphics guide. Version 3.1 of JMP, SAS Institute Inc., Cary, NC. Archer, A. W. (2001). The lichen genus Graphis (Graphidaceae). Australian Systematic Botany 14: 245–271. Arnold, A.E. and Herre, E.A. (2003). Canopy cover and leaf age affect colonization by tropical fungal endophytes: ecological pattern and process in Theobroma cacao (Malvaceae). Mycologia 95: 388–398. Arnold, A.E., Maynard, Z., Gilbert, G.S., Coley, P.D. and Kursar, T.A. (2000). Are tropical fungal endophytes hyperdiverse? Ecological Letters 3: 267–274. Auerswald, B. (1866). Delitschia nov.gen. e grege Sphaeriacearum simplicium. Hedwigia 5: 49–64. Azuma, H., García-Franco, J.G., Rico-Gray, V. and Thien, L.B. (2001). Molecular phylogeny of the Magnoliaceae: The biogeography of the tropical and temperate disjunctions. American Journal of Botany 88: 2275–2285. Azuma, H., Thien, L.B. and Kawano, S. (1999). Molecular phylogeny of Magnolia (Magnoliaceae) inferred from cpDNA sequences and evolutionary divergence of the floral scents. Journal of Plant Research 112: 291–306. 273 Baayen, R.P., Bonants, P.J.M., Verkley, G., Carroll, G.C., van der Aa, H.A., de Weerdt, M., van Brouwershaven, I.R., Schutte, G.C., Maccheroni, W.Jr., Glienke de Blanco, C. and Azevedo, J.L. (2002). Nonpathogenic isolates of the citrus black spot fungus, Guignardia citricarpa, identified as a cosmopolitan endophyte of woody plants, G. mangiferae (Phyllosticta capitalensis). Phytopathology 92: 464–477. Bahl, J., Jeewon, R. and Hyde, K.D. (2005). Phylogeny of Rosellinia capetribulensis sp. nov. and its allies (Xylariaceae). Mycologia 97: 1102–1110. Baker, W.A., Patridge, E.C. and Morgan-Jones, G. (2002). Notes on hyphomycetes. LXXXV. Junewangia, a genus in which to classify four Acrodictys species and a new taxon. Mycotaxon 81: 293–319. Bärlocher, F. and Kendrick, B. (1976). Hyphomycetes as intermediates of energy flow in streams. In E.B.G. Jones (Ed.), Recent Advances in Aquatic Mycology (pp. 435–447), London, Elek Science. Barr, M.E. (1979). A classification of loculoascomycetes. Mycologia 71: 935–957. Barr, M.E. (1980). On the family Tubeufiaceae (Pleosporales). Mycotaxon 12: 137– 167. Barr, M.E. (1982). On the Pleomassariaceae (Pleosporales) in north America. Mycotaxon 15: 345–348. Barr, M.E. (1987a). New taxa and combinations in the loculoascomycetes. Mycotaxon 29: 501–505. Barr, M.E. (1987b). Prodomus to Class Loculoascomycetes. Hamilton I. Newell, Inc.: Amherst, Massachussetts, U.S.A. 274 Barr, M.E. (1990). Prodomus to nonlichenzied, pyrenomycetous members of class hymenoascomycetes. Mycotaxon 39: 43–184. Barr, M.E. (1993a). Notes on the Pleomassariaceae. Mycotaxon 49: 129–142. Barr, M.E. (1993b). Redisposition of some taxa described by J.B. Ellis. Mycotaxon 46: 45–76. Barr, M.E. (1997). Notes on some ‘dimeriaceous’ fungi. Mycotaxon 65: 149–171. Barr, M.E., Rogerson, C.T., Smith, S.J. and Haines, J.H. (1986). An annotated catalog of the pyrenomycetes described by Charles H. Peck. Bulletin of the New York State Museum 459: 74 pp. Bennett, J.W. (1998). Mycotechnology: The role of fungi in biotechnology. Journal of Biotechnology 66: 101–107. Berbee, M.L. (1996). Loculoascomycete origins and evolution of filamentous ascomycete morphology based on 18S rRNA gene sequence data. Molecular Biology and Evolution 13: 462–470. Berbee, M.L., Pirseyedi, M. and Hubbard, S. (1999). Cochliobolus phylogenetics and the origin of known, highly virulent pathogens, inferred from ITS and glyceraldehyde-3-phosphate dehydrogenase gene sequences. Mycologia 91: 964–977. Bernier, B. (1958). The production of polysaccharides by fungi active in the decomposition of wood and forest litter. Canadian Journal of Microbiology 4: 195–204. 275 Berres, M.E., Szabo, L.J. and McLaughlin, D.J. (1995). Phylogenetic relationships in auriculariaceous basidiomycees based on 25S ribosomal DNA sequences. Mycologia 87: 821–840. Besitulo, A.D., Sarma, V.V. and Hyde, K.D. (2002). Mangrove fungi from Siargao Island, Philippines. In K.D. Hyde (Ed.), Fungi in Marine Environments (pp. 267–283). Fungal Diversity Research Series 7, Hong Kong, Fungal Diversity Press. Bettucci, L. and Saravay, M. (1993). Endophytic fungi of Eucalyptus globulus: A preliminary study. Mycological Research 97: 679–682. Bhat, D.J. and Sutton, B.C. (1985). New and interesting hyphomycetes from Ethiopia. Transactions of the British Mycological Society 85: 107–122. Bilby, R.E. and Likens, G.E. (1980). Importance of organic debris dams in the structure and function of stream ecosystems. Ecology 61: 1107–1113. Bills, G.F. (1996). Isolation and analysis of endophytic fungal communities from woody plants. In S.C. Redlin and L.M. Carris (Eds.), Endophytic Fungi in Grasses and Woody Plants. Systematics, Ecology and Evolution (pp. 31í65), St. Paul, Minnesota, USA, APS Press. Bills, G.F. and Polishook, J.D. (1994). Abundance and diversity of microfungi in leaf litter of a lowland rain forest in Costa Rica. Mycologia 86: 187–198. Bills, G.F., Dombrowski, A., Peláez, F., Polishook, J. and An, Z. (2002). Recent and future disconeries of pharmacologically active metabolites from tropical fungi. In R. Watling, J.C. Frankland, A.M. Ainsworth, S. Isaac and C.H. Robinson 276 (Eds.), Tropical Mycology, Vol. 2, Micromycetes (pp. 165–194), Wallingford, UK, CABI Publishing. Blodgett, J.T., Swart, W.J., Louw, S.M. and Weeks, W.J. (2000). Species composition of endophytic fungi in Amaranthus hybridus leaves, petioles stems, and roots. Mycologia 92: 853í859. Bock, C. and Hauck, M. (2005). Graphis tetralocularis, a new lichen with four-celled ascospores from tropical Africa. The Lichenologist 35: 105–107. Boddy, L. (1986). Wood as a venue for fungal activity: study of decomposition processes and community dynamics. In F. Megusar and M. Gantar (Eds.), Perspectives in Microbial Ecology (pp. 394–400). Ljubljana, Slovania Society for Microbiology. Boddy, L. (2001). Fungal community ecology and wood decomposition processes in angiosperms: from standing tree to complete decay of coarse woody debris. Ecological Bulletins 49: 43–56. Boddy, L. and Griffith, G.S. (1989). Role of endophytes and latent invasion in the development of decay communities in sapwood of angiospermous trees. Sydowia 41: 41–73. Boddy, L. and Watkinson, S.C. (1995). Wood decomposition, higher fungi, and their role in nutrient redistribution. Canadian Journal of Botany 73: S1377–S1383. Boise, J. (1985). New combinations in the Pleomassariaceae and the Massarinaceae. Mycotaxon 22: 477–482. Boomsma, J.J., Borm, S.V. and Billen, J. (2002). The diversity of microorganisms associated with Acromyrmex leafcutter ants. BMC Evolutionary Biology 2: 9– 19. 277 Brayford, D. (1996). Fusarium-molecules maketh the mould? Sydowia 48: 163–183. Brummitt, R.K. (1992). Vascular Plant Families and Genera. Royal Botanic Gardens, Kew. Bucheli, E., Gautschi, B. and Shykoff, J.A. (2000). Host-specific differentiation in the anther smut fungus Microbotryum violaceum as revealed by microsatellites. Journal of Evolutionary Biology 13: 188–198. Bucheli, E., Gautschi, B. and Shykoff, J.A. (2001). Differences in population structure of the anther smut fungus Microbotryum violaceum on two closely related host species, Silene latifolia and S. dioica. Molecular Ecology 10: 285–294. Bucher, V.V.C., Hyde, K.D., Pointing, S.B. and Reddy, C.A. (2004). Production of wood decay enzymes, mass loss and lignin solubilization in wood by marine ascomycetes and their anamorphs. Fungal Diversity 15: 1–14. Burnett, J.H. (2003). Fungal Populations and Species. Oxford, Oxford University Press. Bussaban, B. (2005). Biodiversity of endophytic and saprobic fungi in wild and cultivates Zingiberaceae. Ph.D. Thesis. Graduate School, Chiang Mai University, Chiang Mai, Thailand. Bussaban, B., Lumyong, P., McKenzie, E.H.C., Hyde, K.D and Lumyong, S. (2004). Fungi on Zingiberaceae (ginger). In E.B.G. Jones, M. Tantichareon and K.D. Hyde (Eds.), Thai Fungal Diversity (pp. 189–195), BIOTEC, Bangkok, Thailand. Bussaban, B., Lumyong, S., Lumyong, P., Hyde, K.D and McKenzie, E.H.C. (2003). Three new species of Pyricularia are isolated as Zingiberaceous endophytes from Thailand. Mycologia 95: 521–526. 278 Bussaban, B., Lumyong, S., Lumyong, P., Seelanan, T., Park, D.C., McKenzie, E.H.C. and Hyde, K.D. (2005). Molecular and morphological characterization of Pyricularia and allied genera. Mycologia 97: 1002–1011. Cai, L., Hyde, K.D. and Tsui, C.K.M. (2006a). Genera of Freshwater Fungi. Fungal Diversity Research Series 17, Hong Kong, Fungal Diversity Press.
Recommended publications
  • The Culture-Independent Analysis of Fungal Endophytes of Wheat Grown in Kwazulu-Natal, South Africa
    THE CULTURE-INDEPENDENT ANALYSIS OF FUNGAL ENDOPHYTES OF WHEAT GROWN IN KWAZULU-NATAL, SOUTH AFRICA By Richard Jörn Burgdorf Submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY In Microbiology School of Life Sciences College of Agriculture, Engineering and Science Pietermaritzburg South Africa December 2016 Thesis summary Fungal endophytes are of interest due to their diverse taxonomy and biological functions. A range of definitions exists based on their identity, morphology, location and relationship with their host. Fungal endophytes belong to a wide range of taxa and they are categorized by a variety of characteristics. The detection and identification of these fungal endophytes can be performed using culture-dependent and culture-independent methods. These organisms have a range of application in pharmaceutical discovery and agriculture. Agricultural applications include the exploitation of the growth promoting and protective properties of fungal endophytes in crops such as wheat. This important crop is grown in South Africa where biotic and environmental stresses pose a challenge to its cultivation. Fungal endophytes have demonstrated potential to ameliorate these challenges. Future research will reveal how they can be harnessed to fight food insecurity brought about by stress factors such as climate change. Extraneous DNA interferes with PCR studies of endophytic fungi. A procedure was developed with which to evaluate the removal of extraneous DNA. Wheat (Triticum aestivum) leaves were sprayed with Saccharomyces cerevisiae and then subjected to physical and chemical surface treatments. The fungal ITS1 products were amplified from whole tissue DNA extractions. ANOVA was performed on the DNA bands representing S. cerevisiae on the agarose gel.
    [Show full text]
  • Phylogeny and Morphology of Premilcurensis Gen
    Phytotaxa 236 (1): 040–052 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2015 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.236.1.3 Phylogeny and morphology of Premilcurensis gen. nov. (Pleosporales) from stems of Senecio in Italy SAOWALUCK TIBPROMMA1,2,3,4,5, ITTHAYAKORN PROMPUTTHA6, RUNGTIWA PHOOKAMSAK1,2,3,4, SARANYAPHAT BOONMEE2, ERIO CAMPORESI7, JUN-BO YANG1,2, ALI H. BHAKALI8, ERIC H. C. MCKENZIE9 & KEVIN D. HYDE1,2,4,5,8 1Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, People’s Republic of China 2Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand 3School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand 4World Agroforestry Centre, East and Central Asia, Kunming 650201, Yunnan, P. R. China 5Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand 6Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand 7A.M.B. Gruppo Micologico Forlivese “Antonio Cicognani”, Via Roma 18, Forlì, Italy; A.M.B. Circolo Micologico “Giovanni Carini”, C.P. 314, Brescia, Italy; Società per gli Studi Naturalistici della Romagna, C.P. 144, Bagnacavallo (RA), Italy 8Botany and Microbiology Department, College of Science, King Saud University, Riyadh, KSA 11442, Saudi Arabia 9Manaaki Whenua Landcare Research, Private Bag 92170, Auckland, New Zealand *Corresponding author: Dr. Itthayakorn Promputtha, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
    [Show full text]
  • Mycosphere Notes 225–274: Types and Other Specimens of Some Genera of Ascomycota
    Mycosphere 9(4): 647–754 (2018) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/9/4/3 Copyright © Guizhou Academy of Agricultural Sciences Mycosphere Notes 225–274: types and other specimens of some genera of Ascomycota Doilom M1,2,3, Hyde KD2,3,6, Phookamsak R1,2,3, Dai DQ4,, Tang LZ4,14, Hongsanan S5, Chomnunti P6, Boonmee S6, Dayarathne MC6, Li WJ6, Thambugala KM6, Perera RH 6, Daranagama DA6,13, Norphanphoun C6, Konta S6, Dong W6,7, Ertz D8,9, Phillips AJL10, McKenzie EHC11, Vinit K6,7, Ariyawansa HA12, Jones EBG7, Mortimer PE2, Xu JC2,3, Promputtha I1 1 Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand 2 Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China 3 World Agro Forestry Centre, East and Central Asia, 132 Lanhei Road, Kunming 650201, Yunnan Province, People’s Republic of China 4 Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China 5 Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China 6 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 7 Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand 8 Department Research (BT), Botanic Garden Meise, Nieuwelaan 38, BE-1860 Meise, Belgium 9 Direction Générale de l'Enseignement non obligatoire et de la Recherche scientifique, Fédération Wallonie-Bruxelles, Rue A.
    [Show full text]
  • Molecular Systematics of the Marine Dothideomycetes
    available online at www.studiesinmycology.org StudieS in Mycology 64: 155–173. 2009. doi:10.3114/sim.2009.64.09 Molecular systematics of the marine Dothideomycetes S. Suetrong1, 2, C.L. Schoch3, J.W. Spatafora4, J. Kohlmeyer5, B. Volkmann-Kohlmeyer5, J. Sakayaroj2, S. Phongpaichit1, K. Tanaka6, K. Hirayama6 and E.B.G. Jones2* 1Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand; 2Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Paholyothin Road, Khlong 1, Khlong Luang, Pathum Thani, 12120, Thailand; 3National Center for Biothechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, MSC 6510, Bethesda, Maryland 20892-6510, U.S.A.; 4Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, 97331, U.S.A.; 5Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, North Carolina 28557, U.S.A.; 6Faculty of Agriculture & Life Sciences, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan *Correspondence: E.B. Gareth Jones, [email protected] Abstract: Phylogenetic analyses of four nuclear genes, namely the large and small subunits of the nuclear ribosomal RNA, transcription elongation factor 1-alpha and the second largest RNA polymerase II subunit, established that the ecological group of marine bitunicate ascomycetes has representatives in the orders Capnodiales, Hysteriales, Jahnulales, Mytilinidiales, Patellariales and Pleosporales. Most of the fungi sequenced were intertidal mangrove taxa and belong to members of 12 families in the Pleosporales: Aigialaceae, Didymellaceae, Leptosphaeriaceae, Lenthitheciaceae, Lophiostomataceae, Massarinaceae, Montagnulaceae, Morosphaeriaceae, Phaeosphaeriaceae, Pleosporaceae, Testudinaceae and Trematosphaeriaceae. Two new families are described: Aigialaceae and Morosphaeriaceae, and three new genera proposed: Halomassarina, Morosphaeria and Rimora.
    [Show full text]
  • AR TICLE Recommended Names for Pleomorphic Genera In
    IMA FUNGUS · 6(2): 507–523 (2015) doi:10.5598/imafungus.2015.06.02.14 Recommended names for pleomorphic genera in Dothideomycetes ARTICLE Amy Y. Rossman1, Pedro W. Crous2,3, Kevin D. Hyde4,5, David L. Hawksworth6,7,8, André Aptroot9, Jose L. Bezerra10, Jayarama D. Bhat11, Eric Boehm12, Uwe Braun13, Saranyaphat Boonmee4,5, Erio Camporesi14, Putarak Chomnunti4,5, Dong-Qin Dai4,5, Melvina J. D’souza4,5, Asha Dissanayake4,5,15, E.B. Gareth Jones16, Johannes Z. Groenewald2, Margarita Hernández-Restrepo2,3, Sinang Hongsanan4,5, Walter M. Jaklitsch17, Ruvishika Jayawardena4,5,12, Li Wen Jing4,5, Paul M. Kirk18, James D. Lawrey19, Ausana Mapook4,5, Eric H.C. McKenzie20, Jutamart Monkai4,5, Alan J.L. Phillips21, Rungtiwa Phookamsak4,5, Huzefa A. Raja22, Keith A. Seifert23, Indunil Senanayake4,5, Bernard Slippers3, Satinee Suetrong24, Kazuaki Tanaka25, Joanne E. Taylor26, Kasun M. Thambugala4,5,27, Qing Tian4,5, Saowaluck Tibpromma4,5, Dhanushka N. Wanasinghe4,5,12, Nalin N. Wijayawardene4,5, Saowanee Wikee4,5, Joyce H.C. Woudenberg2, Hai-Xia Wu28,29, Jiye Yan12, Tao Yang2,30, Ying Zhang31 1Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA; corresponding author e-mail: amydianer@ yahoo.com 2CBS-KNAW Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands 3Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa 4Center of Excellence in Fungal Research, School of Science, Mae Fah
    [Show full text]
  • One Hundred New Species of Lichenized Fungi: a Signature of Undiscovered Global Diversity
    Phytotaxa 18: 1–127 (2011) ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Monograph PHYTOTAXA Copyright © 2011 Magnolia Press ISSN 1179-3163 (online edition) PHYTOTAXA 18 One hundred new species of lichenized fungi: a signature of undiscovered global diversity H. THORSTEN LUMBSCH1*, TEUVO AHTI2, SUSANNE ALTERMANN3, GUILLERMO AMO DE PAZ4, ANDRÉ APTROOT5, ULF ARUP6, ALEJANDRINA BÁRCENAS PEÑA7, PAULINA A. BAWINGAN8, MICHEL N. BENATTI9, LUISA BETANCOURT10, CURTIS R. BJÖRK11, KANSRI BOONPRAGOB12, MAARTEN BRAND13, FRANK BUNGARTZ14, MARCELA E. S. CÁCERES15, MEHTMET CANDAN16, JOSÉ LUIS CHAVES17, PHILIPPE CLERC18, RALPH COMMON19, BRIAN J. COPPINS20, ANA CRESPO4, MANUELA DAL-FORNO21, PRADEEP K. DIVAKAR4, MELIZAR V. DUYA22, JOHN A. ELIX23, ARVE ELVEBAKK24, JOHNATHON D. FANKHAUSER25, EDIT FARKAS26, LIDIA ITATÍ FERRARO27, EBERHARD FISCHER28, DAVID J. GALLOWAY29, ESTER GAYA30, MIREIA GIRALT31, TREVOR GOWARD32, MARTIN GRUBE33, JOSEF HAFELLNER33, JESÚS E. HERNÁNDEZ M.34, MARÍA DE LOS ANGELES HERRERA CAMPOS7, KLAUS KALB35, INGVAR KÄRNEFELT6, GINTARAS KANTVILAS36, DOROTHEE KILLMANN28, PAUL KIRIKA37, KERRY KNUDSEN38, HARALD KOMPOSCH39, SERGEY KONDRATYUK40, JAMES D. LAWREY21, ARMIN MANGOLD41, MARCELO P. MARCELLI9, BRUCE MCCUNE42, MARIA INES MESSUTI43, ANDREA MICHLIG27, RICARDO MIRANDA GONZÁLEZ7, BIBIANA MONCADA10, ALIFERETI NAIKATINI44, MATTHEW P. NELSEN1, 45, DAG O. ØVSTEDAL46, ZDENEK PALICE47, KHWANRUAN PAPONG48, SITTIPORN PARNMEN12, SERGIO PÉREZ-ORTEGA4, CHRISTIAN PRINTZEN49, VÍCTOR J. RICO4, EIMY RIVAS PLATA1, 50, JAVIER ROBAYO51, DANIA ROSABAL52, ULRIKE RUPRECHT53, NORIS SALAZAR ALLEN54, LEOPOLDO SANCHO4, LUCIANA SANTOS DE JESUS15, TAMIRES SANTOS VIEIRA15, MATTHIAS SCHULTZ55, MARK R. D. SEAWARD56, EMMANUËL SÉRUSIAUX57, IMKE SCHMITT58, HARRIE J. M. SIPMAN59, MOHAMMAD SOHRABI 2, 60, ULRIK SØCHTING61, MAJBRIT ZEUTHEN SØGAARD61, LAURENS B. SPARRIUS62, ADRIANO SPIELMANN63, TOBY SPRIBILLE33, JUTARAT SUTJARITTURAKAN64, ACHRA THAMMATHAWORN65, ARNE THELL6, GÖRAN THOR66, HOLGER THÜS67, EINAR TIMDAL68, CAMILLE TRUONG18, ROMAN TÜRK69, LOENGRIN UMAÑA TENORIO17, DALIP K.
    [Show full text]
  • The Fungi Constitute a Major Eukary- Members of the Monophyletic Kingdom Fungi ( Fig
    American Journal of Botany 98(3): 426–438. 2011. T HE FUNGI: 1, 2, 3 … 5.1 MILLION SPECIES? 1 Meredith Blackwell 2 Department of Biological Sciences; Louisiana State University; Baton Rouge, Louisiana 70803 USA • Premise of the study: Fungi are major decomposers in certain ecosystems and essential associates of many organisms. They provide enzymes and drugs and serve as experimental organisms. In 1991, a landmark paper estimated that there are 1.5 million fungi on the Earth. Because only 70 000 fungi had been described at that time, the estimate has been the impetus to search for previously unknown fungi. Fungal habitats include soil, water, and organisms that may harbor large numbers of understudied fungi, estimated to outnumber plants by at least 6 to 1. More recent estimates based on high-throughput sequencing methods suggest that as many as 5.1 million fungal species exist. • Methods: Technological advances make it possible to apply molecular methods to develop a stable classifi cation and to dis- cover and identify fungal taxa. • Key results: Molecular methods have dramatically increased our knowledge of Fungi in less than 20 years, revealing a mono- phyletic kingdom and increased diversity among early-diverging lineages. Mycologists are making signifi cant advances in species discovery, but many fungi remain to be discovered. • Conclusions: Fungi are essential to the survival of many groups of organisms with which they form associations. They also attract attention as predators of invertebrate animals, pathogens of potatoes and rice and humans and bats, killers of frogs and crayfi sh, producers of secondary metabolites to lower cholesterol, and subjects of prize-winning research.
    [Show full text]
  • Checklist of the Lichens and Allied Fungi of Kathy Stiles Freeland Bibb County Glades Preserve, Alabama, U.S.A
    Opuscula Philolichenum, 18: 420–434. 2019. *pdf effectively published online 2December2019 via (http://sweetgum.nybg.org/philolichenum/) Checklist of the lichens and allied fungi of Kathy Stiles Freeland Bibb County Glades Preserve, Alabama, U.S.A. J. KEVIN ENGLAND1, CURTIS J. HANSEN2, JESSICA L. ALLEN3, SEAN Q. BEECHING4, WILLIAM R. BUCK5, VITALY CHARNY6, JOHN G. GUCCION7, RICHARD C. HARRIS8, MALCOLM HODGES9, NATALIE M. HOWE10, JAMES C. LENDEMER11, R. TROY MCMULLIN12, ERIN A. TRIPP13, DENNIS P. WATERS14 ABSTRACT. – The first checklist of lichenized, lichenicolous and lichen-allied fungi from the Kathy Stiles Freeland Bibb County Glades Preserve in Bibb County, Alabama, is presented. Collections made during the 2017 Tuckerman Workshop and additional records from herbaria and online sources are included. Two hundred and thirty-eight taxa in 115 genera are enumerated. Thirty taxa of lichenized, lichenicolous and lichen-allied fungi are newly reported for Alabama: Acarospora fuscata, A. novomexicana, Circinaria contorta, Constrictolumina cinchonae, Dermatocarpon dolomiticum, Didymocyrtis cladoniicola, Graphis anfractuosa, G. rimulosa, Hertelidea pseudobotryosa, Heterodermia pseudospeciosa, Lecania cuprea, Marchandiomyces lignicola, Minutoexcipula miniatoexcipula, Monoblastia rappii, Multiclavula mucida, Ochrolechia trochophora, Parmotrema subsumptum, Phaeographis brasiliensis, Phaeographis inusta, Piccolia nannaria, Placynthiella icmalea, Porina scabrida, Psora decipiens, Pyrenographa irregularis, Ramboldia blochiana, Thyrea confusa, Trichothelium
    [Show full text]
  • Taxonomy and Multigene Phylogenetic Evaluation of Novel Species in Boeremia and Epicoccum with New Records of Ascochyta and Didymella (Didymellaceae)
    Mycosphere 8(8): 1080–1101 (2017) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/8/8/9 Copyright © Guizhou Academy of Agricultural Sciences Taxonomy and multigene phylogenetic evaluation of novel species in Boeremia and Epicoccum with new records of Ascochyta and Didymella (Didymellaceae) Jayasiri SC1,2, Hyde KD2,3, Jones EBG4, Jeewon R5, Ariyawansa HA6, Bhat JD7, Camporesi E8 and Kang JC1 1 Engineering and Research Center for Southwest Bio-Pharmaceutical Resources of National Education Ministry of China, Guizhou University, Guiyang, Guizhou Province 550025, P.R. China 2Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 3World Agro forestry Centre East and Central Asia Office, 132 Lanhei Road, Kunming 650201, P. R. China 4Botany and Microbiology Department, College of Science, King Saud University, Riyadh, 1145, Saudi Arabia 5Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius 6Department of Plant Pathology and Microbiology, College of BioResources and Agriculture, National Taiwan University, No.1, Sec.4, Roosevelt Road, Taipei 106, Taiwan, ROC. 7No. 128/1-J, Azad Housing Society, Curca, P.O. Goa Velha, 403108, India 89A.M.B. Gruppo Micologico Forlivese “Antonio Cicognani”, Via Roma 18, Forlì, Italy; A.M.B. CircoloMicologico “Giovanni Carini”, C.P. 314, Brescia, Italy; Società per gliStudiNaturalisticidella Romagna, C.P. 144, Bagnacavallo (RA), Italy *Correspondence: [email protected] Jayasiri SC, Hyde KD, Jones EBG, Jeewon R, Ariyawansa HA, Bhat JD, Camporesi E, Kang JC 2017 – Taxonomy and multigene phylogenetic evaluation of novel species in Boeremia and Epicoccum with new records of Ascochyta and Didymella (Didymellaceae).
    [Show full text]
  • Diversity of Entomopathogens Fungi: Which Groups Conquered
    bioRxiv preprint doi: https://doi.org/10.1101/003756; this version posted April 4, 2014. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Diversity of entomopathogens Fungi: Which groups conquered the insect body? João P. M. Araújoa & David P. Hughesb aDepartment of Biology, Penn State University, University Park, Pennsylvania, United States of America. bDepartment of Entomology and Department of Biology, Penn State University, University Park, Pennsylvania, United States of America. [email protected]; [email protected]; Abstract The entomopathogenic Fungi comprise a wide range of ecologically diverse species. This group of parasites can be found distributed among all fungal phyla and as well as among the ecologically similar but phylogenetically distinct Oomycetes or water molds, that belong to a different kingdom (Stramenopila). As a group, the entomopathogenic fungi and water molds parasitize a wide range of insect hosts from aquatic larvae in streams to adult insects of high canopy tropical forests. Their hosts are spread among 18 orders of insects, in all developmental stages such as: eggs, larvae, pupae, nymphs and adults exhibiting completely different ecologies. Such assortment of niches has resulted in these parasites evolving a considerable morphological diversity, resulting in enormous biodiversity, much of which remains unknown. Here we gather together a huge amount of records of these entomopathogens to comparing and describe both their morphologies and ecological traits. These findings highlight a wide range of adaptations that evolved following the evolutionary transition to infecting the most diverse and widespread animals on Earth, the insects.
    [Show full text]
  • Pseudodidymellaceae Fam. Nov.: Phylogenetic Affiliations Of
    available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 87: 187–206 (2017). Pseudodidymellaceae fam. nov.: Phylogenetic affiliations of mycopappus-like genera in Dothideomycetes A. Hashimoto1,2, M. Matsumura1,3, K. Hirayama4, R. Fujimoto1, and K. Tanaka1,3* 1Faculty of Agriculture and Life Sciences, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan; 2Research Fellow of the Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan; 3The United Graduate School of Agricultural Sciences, Iwate University, 18–8 Ueda 3 chome, Morioka, 020-8550, Japan; 4Apple Experiment Station, Aomori Prefectural Agriculture and Forestry Research Centre, 24 Fukutami, Botandaira, Kuroishi, Aomori, 036-0332, Japan *Correspondence: K. Tanaka, [email protected] Abstract: The familial placement of four genera, Mycodidymella, Petrakia, Pseudodidymella, and Xenostigmina, was taxonomically revised based on morphological observations and phylogenetic analyses of nuclear rDNA SSU, LSU, tef1, and rpb2 sequences. ITS sequences were also provided as barcode markers. A total of 130 sequences were newly obtained from 28 isolates which are phylogenetically related to Melanommataceae (Pleosporales, Dothideomycetes) and its relatives. Phylo- genetic analyses and morphological observation of sexual and asexual morphs led to the conclusion that Melanommataceae should be restricted to its type genus Melanomma, which is characterised by ascomata composed of a well-developed, carbonaceous peridium, and an aposphaeria-like coelomycetous asexual morph. Although Mycodidymella, Petrakia, Pseudodidymella, and Xenostigmina are phylogenetically related to Melanommataceae, these genera are characterised by epi- phyllous, lenticular ascomata with well-developed basal stroma in their sexual morphs, and mycopappus-like propagules in their asexual morphs, which are clearly different from those of Melanomma.
    [Show full text]
  • Taxonomic Utility of Old Names in Current Fungal Classification and Nomenclature: Conflicts, Confusion & Clarifications
    Mycosphere 7 (11): 1622–1648 (2016) www.mycosphere.org ISSN 2077 7019 Article – special issue Doi 10.5943/mycosphere/7/11/2 Copyright © Guizhou Academy of Agricultural Sciences Taxonomic utility of old names in current fungal classification and nomenclature: Conflicts, confusion & clarifications Dayarathne MC1,2, Boonmee S1,2, Braun U7, Crous PW8, Daranagama DA1, Dissanayake AJ1,6, Ekanayaka H1,2, Jayawardena R1,6, Jones EBG10, Maharachchikumbura SSN5, Perera RH1, Phillips AJL9, Stadler M11, Thambugala KM1,3, Wanasinghe DN1,2, Zhao Q1,2, Hyde KD1,2, Jeewon R12* 1Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 2Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan China3Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, China 4Engineering Research Center of Southwest Bio-Pharmaceutical Resources, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou Province, China5Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, P.O. Box 34, Al-Khod 123,Oman 6Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, No 9 of ShuGuangHuaYuanZhangLu, Haidian District Beijing 100097, China 7Martin Luther University, Institute of Biology, Department of Geobotany, Herbarium, Neuwerk 21, 06099 Halle, Germany 8Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584CT Utrecht, The Netherlands. 9University of Lisbon, Faculty of Sciences, Biosystems and Integrative Sciences Institute (BioISI), Campo Grande, 1749-016 Lisbon, Portugal. 10Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, 50200, Thailand 11Helmholtz-Zentrum für Infektionsforschung GmbH, Dept.
    [Show full text]