Gobbi Thesis

Total Page:16

File Type:pdf, Size:1020Kb

Gobbi Thesis Exploring the Molecular Basis of Microbial Wine-Terroir From Deep Soil Horizons to Grapevines and Wines Alex Gobbi Phd Thesis by Alex Gobbi Department of Environmental Science (ENVS), Aarhus University Environmental Microbiology and Biotechnology (EMBI) Environmental Microbial Genomics (EMG) Supervisor: Prof. Lars Hestbjerg Hansen Co-Supervisor: Dr. Lea Ellegaard-Jensen “Getting a PhD is like performing a guitar solo in front of an audience, learning how to play the instrument while playing it” Samuel Butler & Alex Gobbi “A man cannot discover new oceans unless he has the courage to lose sight of the shore.” Andre Gide Cover Designed by: Alex Gobbi February 2019 Copyrights statement: - PCoA Plot from Manuscript 1 produced by Alex Gobbi - Phylogenetic Tree from Manuscript 4 by Marie Rønne Aggerback - Topsoil image and grapevine tree pictures are freely available on internet and “no copyright violation is intended” according to the Google copyrights policy. Acknowledgements I’d like to acknowledge my supervisor Prof. Lars Hestbjerg Hansen, for three main reasons; first of all because he believed in me, at the time of my application, giving the chance of joining his group for this amazing adventure that has been MICROWINE. Second, because he supported me during my work, when necessary. Third, and most important to me; because he let me free to learn and make mistakes (only small ones ) on my own. This, needlessy to say, allowed me to understand what I like and what I don’t, as well as what I am good at and which are my lacks in this kind of job. As I mentioned, I have been part of this fantastic group called the MICROWINE Network, a project funded by Marie-Curie Foundation within the Horizon 2020 Programme. This experience, all those journeys, projected me into an astonishing Network of crazy people and experienced PIs which became, during these three years, colleagues, mentors and dear friends. I want to thank Elisa, my girlfriend, for accepting my choice regardless the sacrifices I have exposed our relationship to. My gratitude for you extends also to the working environment, since you have been, for more than a year, a tireless help in the lab and your skills have been appreciated and acknowledged by several members of MICROWINE. Voglio ringraziare i miei genitori per aver accettato la mia scelta di partire e per essermi stati vicino ogni giorno, in ogni momento, da ben prima dell’inizio di questa esperienza. Grazie. Back in Denmark, I want to thank my office-mates Alexander, Amaru, Ifigeneia and Olivia with whom I shared the coffee-free room and where every-day chats suddenly could turn into meaningful scientific or philosophical discussion. Thanks to my colleagues which always welcomed and help me if I needed; in particular a big thank goes to Lea for the co-supervision, to the IT-Crew of Tue (s), Patrick, Zohaib, Toke and Marie for the collaborations and to all the other PhD students; I wish you good luck for your work . Thanks to all the technicians, Tina, Tanja and Pia for keeping the lab clean and efficient, thanks also for the kindness of the everyday chats along the corridor. Thanks to the other PIs Witold, Niels, Anne, Carsten and Anders with whom I felt comfortable whenever I needed to ask for an advice. Last but not least, thanks to Klaus, our best secretary ever. You are the real Santa Klaus for all the newcomers and it has been a pleasure to be your office-neighbour. Finally I want to thank Alberto, Adrian, Merche, Ana, Veronica, Javier, Eneas, Nuria, Francisco, Ava, Berta, Hector, Charles, Luis and Ignacio, from Biome Makers, for welcoming and hosting me in Valladolid and California and all the wine-makers who allowed me to get samples from their precious vineyards. I want to thank the guys that run the Friday Bar in Risø every week, for the consistent supply of smiles, beers, pizzas and pool challenges. Thanks in particular to Simon, Megha and Ilaria for doing such a big part of the job. I want to thank my friends in Italy. Thanks to Stefano, Valentina, Jennyfer, Giada, Alessandro, Irene, Francesca, Giuditta, Zambo, Tale and Davide which I feel close even though they are always far. I wish I could make a pocket-size version of you all and stuff it in my luggage. More than this, I wish I could be there for you if you need it. However, although my everyday thoughts goes also to the friends I left home, I am grateful to all the new people I have met here and, despite they come from far, are closer than many. A big hug goes to Susana, Valentina, Jay, Jin, Marta, Kristian, Jibran, Monica, Ulla, Mar all the others that I must admit I have sinfully forgotten. tina, Dario, Giulia, Michał and to In the end, thanks to the Sønderlundsvej Crew, all the people that have been living with me, sharing their life into our old house for a long or short period of time. This living experience made me understand that we don’t need much more than a roof above our head to feel like home. The fact that we will never feel the same as in our country does not mean we cannot feel equally good in other ways. So thanks to Ifigeneia, Christina, Daina, Robertino and the fresh (almost) newcomers Michele and Ginesta. I wish you good luck for your studies. Meanwhile, thanks for the guitar lessons, the Netflix nights on Lars’s couch, the dinners together, to the many Gin-Tonics and to the legendary hammock in the living room. Abstract Microbes are crucial in each stage of the wine production process. The correlation between microbes and geography, incorporated in the notion of terroir in wine, can be associated to the unique impact the microbial community can have on wine taste and flavour. Applying Next Generation Sequencing technology and in particular meta- barcoding, we revealed the dynamics and the composition of different microbiomes related with the wine-milieu. During this 3-years long microbiological journey, we extended the concept of the microbial terroir on a global scale, sequencing soil-DNA from a hundred of vineyards worldwide in four continents. This biogeographical correlation exists at different scales; between different wine-regions in the same country and between fields within the same region. We revealed unique biomarkers in remote volcanic vineyards in Azores and temperature-driven microbial gradients from North Ebro Valley to Ribera Del Duero, passing from La Rioja, in Spain. We discriminated the microbial communities between closely related vineyards in Pfalz, Germany, an area famous for the production of Riesling. Further, we characterized the microbiota of Danish vineyards, young-winemaker country, within the regions of Zealand and Funen. Throughout several fruitful industrial and academic collaborations, we improved the existing DNA extraction methods for analysing the microbes in deep-soil cores taken within vineyards, by testing DNA-enhancer such as G2. Hence, with this new protocol, we characterize the vertical stratification of the microbial community associated with different types of soil in three countries (Spain, Australia and Denmark). In another collaborative work, we characterize the inner-mycobiome of grapevine trunks, looking at the impacts of plant-fungal-disease such as Esca and different fungicide treatments. At the same time, we also characterize the microbial community resident on the phyllosphere and its dependence on the grape cultivar. Furthermore, by combining NGS and qPCR in a commercial vineyard of Western Cape, South Africa, we measured the dynamics of the leaves’ microbiota during the complete growing season. Therefore, we investigated the impact of two different fungicide treatments: a traditional copper spray compared with the application of Lactobacillus plantarum MW-1 as a biocontrol agent. All of these contributions to the existing scientific literature will be valuable for microbial ecologist interested in the agricultural part of the winemaking industry. This information will also help the winemakers, raising awareness on biodiversity and the importance it can have within the modern wine industry. Resumé Mikroorganismer er af afgørende betydning i enhver fase af vinproduktionen. Sammenhængen mellem mikroorganismer og geografi, elementer som blandt andre indgår i vin-miljøets begreb terroir, kan skyldes den unikke påvirkning, som det mikrobielle samfund har på vinens overordnede smag og dens smagsnuancer. Ved anvendelse af Next Generation Sequencing (NGS) teknologi og især metabarcoding afslørede vi dynamikken og sammensætningen af forskellige mikrobiomer relateret til vin-miljøet. I løbet af denne 3-årige lange mikrobiologiske rejse udvidede vi begrebet mikrobielle terroir på globalt plan på baggrund af vores verdensomspændende sekventering af DNA fra hundredevis af vingårde jorde - fordelt på fire kontinenter. Vi fandt at disse biogeografiske korrelationer eksisterer på forskellige skalaer; mellem forskellige vinregioner i samme land og mellem marker inden for samme region. Vi afslørede unikke biomarkører i fjerntliggende vinmarker på Azorerne med vulkaniske jorde og temperaturdrevne mikrobielle gradienter fra nordlige Ebro dalen til Ribera Del Duero, der passerer fra La Rioja i Spanien. Vi sammenlignede de mikrobielle samfund mellem nært beslægtede vinmarker i Pfalz, Tyskland, et område berømt for produktion af Riesling. Endvidere har vi karakteriseret mikrobiota fra danske vinmarker inden for regionerne Sjælland og Fyn - i et relativt nystartet vin-producerende land. Gennem flere frugtbare industrielle og akademiske samarbejder forbedrede vi de eksisterende DNA-ekstraktionsmetoder til analyse af mikrober i jordkerner taget inden for vinmarker f.eks. ved at teste effekten af G2 DNA-enhancer. Med den nyudviklede protokol karakteriserede vi de mikrobielle samfund i forskellige jordlag for forskellige jordtyper i tre lande (Spanien, Australien og Danmark). I et andet samarbejdsarbejde karakteriserede vi det indre mycobiome af vinstammer, og undersøgte virkningerne af plantesygdommen Esca og effekterne af fungicidbehandlinger på denne.
Recommended publications
  • Download Full Article in PDF Format
    cryptogamie Mycologie 2019 ● 40 ● 7 Vittaliana mangrovei Devadatha, Nikita, A.Baghela & V.V.Sarma, gen. nov, sp. nov. (Phaeosphaeriaceae), from mangroves near Pondicherry (India), based on morphology and multigene phylogeny Bandarupalli DEVADATHA, Nikita MEHTA, Dhanushka N. WANASINGHE, Abhishek BAGHELA & V. Venkateswara SARMA art. 40 (7) — Published on 8 November 2019 www.cryptogamie.com/mycologie DIRECTEUR DE LA PUBLICATION : Bruno David, Président du Muséum national d’Histoire naturelle RÉDACTEUR EN CHEF / EDITOR-IN-CHIEF : Bart BuyCk ASSISTANT DE RÉDACTION / ASSISTANT EDITOR : Étienne CAyEuX ([email protected]) MISE EN PAGE / PAGE LAYOUT : Étienne CAyEuX RÉDACTEURS ASSOCIÉS / ASSOCIATE EDITORS Slavomír AdAmčík Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, Sk-84523, Bratislava, Slovakia André APTROOT ABL Herbarium, G.v.d. Veenstraat 107, NL-3762 Xk Soest, The Netherlands Cony decock Mycothèque de l’université catholique de Louvain, Earth and Life Institute, Microbiology, université catholique de Louvain, Croix du Sud 3, B-1348 Louvain-la- Neuve, Belgium André FRAITURE Botanic Garden Meise, Domein van Bouchout, B-1860 Meise, Belgium kevin HYDE School of Science, Mae Fah Luang university, 333 M.1 T.Tasud Muang District - Chiang Rai 57100, Thailand Valérie HOFSTETTER Station de recherche Agroscope Changins-Wädenswil, Dépt. Protection des plantes, Mycologie, CH-1260 Nyon 1, Switzerland Sinang HONGSANAN College of life science and oceanography, ShenZhen university, 1068, Nanhai Avenue, Nanshan, ShenZhen 518055, China egon HorAk Schlossfeld 17, A-6020 Innsbruck, Austria Jing LUO Department of Plant Biology & Pathology, Rutgers university New Brunswick, NJ 08901, uSA ruvishika S. JAYAWARDENA Center of Excellence in Fungal Research, Mae Fah Luang university, 333 M.
    [Show full text]
  • University of California Santa Cruz Responding to An
    UNIVERSITY OF CALIFORNIA SANTA CRUZ RESPONDING TO AN EMERGENT PLANT PEST-PATHOGEN COMPLEX ACROSS SOCIAL-ECOLOGICAL SCALES A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in ENVIRONMENTAL STUDIES with an emphasis in ECOLOGY AND EVOLUTIONARY BIOLOGY by Shannon Colleen Lynch December 2020 The Dissertation of Shannon Colleen Lynch is approved: Professor Gregory S. Gilbert, chair Professor Stacy M. Philpott Professor Andrew Szasz Professor Ingrid M. Parker Quentin Williams Acting Vice Provost and Dean of Graduate Studies Copyright © by Shannon Colleen Lynch 2020 TABLE OF CONTENTS List of Tables iv List of Figures vii Abstract x Dedication xiii Acknowledgements xiv Chapter 1 – Introduction 1 References 10 Chapter 2 – Host Evolutionary Relationships Explain 12 Tree Mortality Caused by a Generalist Pest– Pathogen Complex References 38 Chapter 3 – Microbiome Variation Across a 66 Phylogeographic Range of Tree Hosts Affected by an Emergent Pest–Pathogen Complex References 110 Chapter 4 – On Collaborative Governance: Building Consensus on 180 Priorities to Manage Invasive Species Through Collective Action References 243 iii LIST OF TABLES Chapter 2 Table I Insect vectors and corresponding fungal pathogens causing 47 Fusarium dieback on tree hosts in California, Israel, and South Africa. Table II Phylogenetic signal for each host type measured by D statistic. 48 Table SI Native range and infested distribution of tree and shrub FD- 49 ISHB host species. Chapter 3 Table I Study site attributes. 124 Table II Mean and median richness of microbiota in wood samples 128 collected from FD-ISHB host trees. Table III Fungal endophyte-Fusarium in vitro interaction outcomes.
    [Show full text]
  • Phylogeny and Morphology of Premilcurensis Gen
    Phytotaxa 236 (1): 040–052 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2015 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.236.1.3 Phylogeny and morphology of Premilcurensis gen. nov. (Pleosporales) from stems of Senecio in Italy SAOWALUCK TIBPROMMA1,2,3,4,5, ITTHAYAKORN PROMPUTTHA6, RUNGTIWA PHOOKAMSAK1,2,3,4, SARANYAPHAT BOONMEE2, ERIO CAMPORESI7, JUN-BO YANG1,2, ALI H. BHAKALI8, ERIC H. C. MCKENZIE9 & KEVIN D. HYDE1,2,4,5,8 1Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, People’s Republic of China 2Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand 3School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand 4World Agroforestry Centre, East and Central Asia, Kunming 650201, Yunnan, P. R. China 5Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand 6Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand 7A.M.B. Gruppo Micologico Forlivese “Antonio Cicognani”, Via Roma 18, Forlì, Italy; A.M.B. Circolo Micologico “Giovanni Carini”, C.P. 314, Brescia, Italy; Società per gli Studi Naturalistici della Romagna, C.P. 144, Bagnacavallo (RA), Italy 8Botany and Microbiology Department, College of Science, King Saud University, Riyadh, KSA 11442, Saudi Arabia 9Manaaki Whenua Landcare Research, Private Bag 92170, Auckland, New Zealand *Corresponding author: Dr. Itthayakorn Promputtha, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
    [Show full text]
  • Molecular Systematics of the Marine Dothideomycetes
    available online at www.studiesinmycology.org StudieS in Mycology 64: 155–173. 2009. doi:10.3114/sim.2009.64.09 Molecular systematics of the marine Dothideomycetes S. Suetrong1, 2, C.L. Schoch3, J.W. Spatafora4, J. Kohlmeyer5, B. Volkmann-Kohlmeyer5, J. Sakayaroj2, S. Phongpaichit1, K. Tanaka6, K. Hirayama6 and E.B.G. Jones2* 1Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand; 2Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Paholyothin Road, Khlong 1, Khlong Luang, Pathum Thani, 12120, Thailand; 3National Center for Biothechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, MSC 6510, Bethesda, Maryland 20892-6510, U.S.A.; 4Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, 97331, U.S.A.; 5Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, North Carolina 28557, U.S.A.; 6Faculty of Agriculture & Life Sciences, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan *Correspondence: E.B. Gareth Jones, [email protected] Abstract: Phylogenetic analyses of four nuclear genes, namely the large and small subunits of the nuclear ribosomal RNA, transcription elongation factor 1-alpha and the second largest RNA polymerase II subunit, established that the ecological group of marine bitunicate ascomycetes has representatives in the orders Capnodiales, Hysteriales, Jahnulales, Mytilinidiales, Patellariales and Pleosporales. Most of the fungi sequenced were intertidal mangrove taxa and belong to members of 12 families in the Pleosporales: Aigialaceae, Didymellaceae, Leptosphaeriaceae, Lenthitheciaceae, Lophiostomataceae, Massarinaceae, Montagnulaceae, Morosphaeriaceae, Phaeosphaeriaceae, Pleosporaceae, Testudinaceae and Trematosphaeriaceae. Two new families are described: Aigialaceae and Morosphaeriaceae, and three new genera proposed: Halomassarina, Morosphaeria and Rimora.
    [Show full text]
  • One Hundred New Species of Lichenized Fungi: a Signature of Undiscovered Global Diversity
    Phytotaxa 18: 1–127 (2011) ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Monograph PHYTOTAXA Copyright © 2011 Magnolia Press ISSN 1179-3163 (online edition) PHYTOTAXA 18 One hundred new species of lichenized fungi: a signature of undiscovered global diversity H. THORSTEN LUMBSCH1*, TEUVO AHTI2, SUSANNE ALTERMANN3, GUILLERMO AMO DE PAZ4, ANDRÉ APTROOT5, ULF ARUP6, ALEJANDRINA BÁRCENAS PEÑA7, PAULINA A. BAWINGAN8, MICHEL N. BENATTI9, LUISA BETANCOURT10, CURTIS R. BJÖRK11, KANSRI BOONPRAGOB12, MAARTEN BRAND13, FRANK BUNGARTZ14, MARCELA E. S. CÁCERES15, MEHTMET CANDAN16, JOSÉ LUIS CHAVES17, PHILIPPE CLERC18, RALPH COMMON19, BRIAN J. COPPINS20, ANA CRESPO4, MANUELA DAL-FORNO21, PRADEEP K. DIVAKAR4, MELIZAR V. DUYA22, JOHN A. ELIX23, ARVE ELVEBAKK24, JOHNATHON D. FANKHAUSER25, EDIT FARKAS26, LIDIA ITATÍ FERRARO27, EBERHARD FISCHER28, DAVID J. GALLOWAY29, ESTER GAYA30, MIREIA GIRALT31, TREVOR GOWARD32, MARTIN GRUBE33, JOSEF HAFELLNER33, JESÚS E. HERNÁNDEZ M.34, MARÍA DE LOS ANGELES HERRERA CAMPOS7, KLAUS KALB35, INGVAR KÄRNEFELT6, GINTARAS KANTVILAS36, DOROTHEE KILLMANN28, PAUL KIRIKA37, KERRY KNUDSEN38, HARALD KOMPOSCH39, SERGEY KONDRATYUK40, JAMES D. LAWREY21, ARMIN MANGOLD41, MARCELO P. MARCELLI9, BRUCE MCCUNE42, MARIA INES MESSUTI43, ANDREA MICHLIG27, RICARDO MIRANDA GONZÁLEZ7, BIBIANA MONCADA10, ALIFERETI NAIKATINI44, MATTHEW P. NELSEN1, 45, DAG O. ØVSTEDAL46, ZDENEK PALICE47, KHWANRUAN PAPONG48, SITTIPORN PARNMEN12, SERGIO PÉREZ-ORTEGA4, CHRISTIAN PRINTZEN49, VÍCTOR J. RICO4, EIMY RIVAS PLATA1, 50, JAVIER ROBAYO51, DANIA ROSABAL52, ULRIKE RUPRECHT53, NORIS SALAZAR ALLEN54, LEOPOLDO SANCHO4, LUCIANA SANTOS DE JESUS15, TAMIRES SANTOS VIEIRA15, MATTHIAS SCHULTZ55, MARK R. D. SEAWARD56, EMMANUËL SÉRUSIAUX57, IMKE SCHMITT58, HARRIE J. M. SIPMAN59, MOHAMMAD SOHRABI 2, 60, ULRIK SØCHTING61, MAJBRIT ZEUTHEN SØGAARD61, LAURENS B. SPARRIUS62, ADRIANO SPIELMANN63, TOBY SPRIBILLE33, JUTARAT SUTJARITTURAKAN64, ACHRA THAMMATHAWORN65, ARNE THELL6, GÖRAN THOR66, HOLGER THÜS67, EINAR TIMDAL68, CAMILLE TRUONG18, ROMAN TÜRK69, LOENGRIN UMAÑA TENORIO17, DALIP K.
    [Show full text]
  • Checklist of the Lichens and Allied Fungi of Kathy Stiles Freeland Bibb County Glades Preserve, Alabama, U.S.A
    Opuscula Philolichenum, 18: 420–434. 2019. *pdf effectively published online 2December2019 via (http://sweetgum.nybg.org/philolichenum/) Checklist of the lichens and allied fungi of Kathy Stiles Freeland Bibb County Glades Preserve, Alabama, U.S.A. J. KEVIN ENGLAND1, CURTIS J. HANSEN2, JESSICA L. ALLEN3, SEAN Q. BEECHING4, WILLIAM R. BUCK5, VITALY CHARNY6, JOHN G. GUCCION7, RICHARD C. HARRIS8, MALCOLM HODGES9, NATALIE M. HOWE10, JAMES C. LENDEMER11, R. TROY MCMULLIN12, ERIN A. TRIPP13, DENNIS P. WATERS14 ABSTRACT. – The first checklist of lichenized, lichenicolous and lichen-allied fungi from the Kathy Stiles Freeland Bibb County Glades Preserve in Bibb County, Alabama, is presented. Collections made during the 2017 Tuckerman Workshop and additional records from herbaria and online sources are included. Two hundred and thirty-eight taxa in 115 genera are enumerated. Thirty taxa of lichenized, lichenicolous and lichen-allied fungi are newly reported for Alabama: Acarospora fuscata, A. novomexicana, Circinaria contorta, Constrictolumina cinchonae, Dermatocarpon dolomiticum, Didymocyrtis cladoniicola, Graphis anfractuosa, G. rimulosa, Hertelidea pseudobotryosa, Heterodermia pseudospeciosa, Lecania cuprea, Marchandiomyces lignicola, Minutoexcipula miniatoexcipula, Monoblastia rappii, Multiclavula mucida, Ochrolechia trochophora, Parmotrema subsumptum, Phaeographis brasiliensis, Phaeographis inusta, Piccolia nannaria, Placynthiella icmalea, Porina scabrida, Psora decipiens, Pyrenographa irregularis, Ramboldia blochiana, Thyrea confusa, Trichothelium
    [Show full text]
  • Pseudodidymellaceae Fam. Nov.: Phylogenetic Affiliations Of
    available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 87: 187–206 (2017). Pseudodidymellaceae fam. nov.: Phylogenetic affiliations of mycopappus-like genera in Dothideomycetes A. Hashimoto1,2, M. Matsumura1,3, K. Hirayama4, R. Fujimoto1, and K. Tanaka1,3* 1Faculty of Agriculture and Life Sciences, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan; 2Research Fellow of the Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan; 3The United Graduate School of Agricultural Sciences, Iwate University, 18–8 Ueda 3 chome, Morioka, 020-8550, Japan; 4Apple Experiment Station, Aomori Prefectural Agriculture and Forestry Research Centre, 24 Fukutami, Botandaira, Kuroishi, Aomori, 036-0332, Japan *Correspondence: K. Tanaka, [email protected] Abstract: The familial placement of four genera, Mycodidymella, Petrakia, Pseudodidymella, and Xenostigmina, was taxonomically revised based on morphological observations and phylogenetic analyses of nuclear rDNA SSU, LSU, tef1, and rpb2 sequences. ITS sequences were also provided as barcode markers. A total of 130 sequences were newly obtained from 28 isolates which are phylogenetically related to Melanommataceae (Pleosporales, Dothideomycetes) and its relatives. Phylo- genetic analyses and morphological observation of sexual and asexual morphs led to the conclusion that Melanommataceae should be restricted to its type genus Melanomma, which is characterised by ascomata composed of a well-developed, carbonaceous peridium, and an aposphaeria-like coelomycetous asexual morph. Although Mycodidymella, Petrakia, Pseudodidymella, and Xenostigmina are phylogenetically related to Melanommataceae, these genera are characterised by epi- phyllous, lenticular ascomata with well-developed basal stroma in their sexual morphs, and mycopappus-like propagules in their asexual morphs, which are clearly different from those of Melanomma.
    [Show full text]
  • Taxonomic Utility of Old Names in Current Fungal Classification and Nomenclature: Conflicts, Confusion & Clarifications
    Mycosphere 7 (11): 1622–1648 (2016) www.mycosphere.org ISSN 2077 7019 Article – special issue Doi 10.5943/mycosphere/7/11/2 Copyright © Guizhou Academy of Agricultural Sciences Taxonomic utility of old names in current fungal classification and nomenclature: Conflicts, confusion & clarifications Dayarathne MC1,2, Boonmee S1,2, Braun U7, Crous PW8, Daranagama DA1, Dissanayake AJ1,6, Ekanayaka H1,2, Jayawardena R1,6, Jones EBG10, Maharachchikumbura SSN5, Perera RH1, Phillips AJL9, Stadler M11, Thambugala KM1,3, Wanasinghe DN1,2, Zhao Q1,2, Hyde KD1,2, Jeewon R12* 1Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 2Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan China3Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, China 4Engineering Research Center of Southwest Bio-Pharmaceutical Resources, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou Province, China5Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, P.O. Box 34, Al-Khod 123,Oman 6Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, No 9 of ShuGuangHuaYuanZhangLu, Haidian District Beijing 100097, China 7Martin Luther University, Institute of Biology, Department of Geobotany, Herbarium, Neuwerk 21, 06099 Halle, Germany 8Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584CT Utrecht, The Netherlands. 9University of Lisbon, Faculty of Sciences, Biosystems and Integrative Sciences Institute (BioISI), Campo Grande, 1749-016 Lisbon, Portugal. 10Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, 50200, Thailand 11Helmholtz-Zentrum für Infektionsforschung GmbH, Dept.
    [Show full text]
  • Towards a Phylogenetic Clarification of Lophiostoma / Massarina and Morphologically Similar Genera in the Pleosporales
    Fungal Diversity Towards a phylogenetic clarification of Lophiostoma / Massarina and morphologically similar genera in the Pleosporales Zhang, Y.1, Wang, H.K.2, Fournier, J.3, Crous, P.W.4, Jeewon, R.1, Pointing, S.B.1 and Hyde, K.D.5,6* 1Division of Microbiology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P.R. China 2Biotechnology Institute, Zhejiang University, 310029, P.R. China 3Las Muros, Rimont, Ariège, F 09420, France 4Centraalbureau voor Schimmelcultures, Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD, Utrecht, The Netherlands 5School of Science, Mae Fah Luang University, Tasud, Muang, Chiang Rai 57100, Thailand 6International Fungal Research & Development Centre, The Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming, Yunnan, P.R. China 650034 Zhang, Y., Wang, H.K., Fournier, J., Crous, P.W., Jeewon, R., Pointing, S.B. and Hyde, K.D. (2009). Towards a phylogenetic clarification of Lophiostoma / Massarina and morphologically similar genera in the Pleosporales. Fungal Diversity 38: 225-251. Lophiostoma, Lophiotrema and Massarina are similar genera that are difficult to distinguish morphologically. In order to obtain a better understanding of these genera, lectotype material of the generic types, Lophiostoma macrostomum, Lophiotrema nucula and Massarina eburnea were examined and are re-described. The phylogeny of these genera is investigated based on the analysis of 26 Lophiostoma- and Massarina-like taxa and three genes – 18S, 28S rDNA and RPB2. These taxa formed five well-supported sub-clades in Pleosporales. This study confirms that both Lophiostoma and Massarina are polyphyletic. Massarina-like taxa can presently be differentiated into two groups – the Lentithecium group and the Massarina group.
    [Show full text]
  • Transition from Unclassified Ktedonobacterales to Actinobacteria During Amorphous Silica Precipitation in a Quartzite Cave Envir
    www.nature.com/scientificreports OPEN Transition from unclassifed Ktedonobacterales to Actinobacteria during amorphous silica precipitation in a quartzite cave environment D. Ghezzi1,2, F. Sauro3,4,5, A. Columbu3, C. Carbone6, P.‑Y. Hong7, F. Vergara4,5, J. De Waele3 & M. Cappelletti1* The orthoquartzite Imawarì Yeuta cave hosts exceptional silica speleothems and represents a unique model system to study the geomicrobiology associated to silica amorphization processes under aphotic and stable physical–chemical conditions. In this study, three consecutive evolution steps in the formation of a peculiar blackish coralloid silica speleothem were studied using a combination of morphological, mineralogical/elemental and microbiological analyses. Microbial communities were characterized using Illumina sequencing of 16S rRNA gene and clone library analysis of carbon monoxide dehydrogenase (coxL) and hydrogenase (hypD) genes involved in atmospheric trace gases utilization. The frst stage of the silica amorphization process was dominated by members of a still undescribed microbial lineage belonging to the Ktedonobacterales order, probably involved in the pioneering colonization of quartzitic environments. Actinobacteria of the Pseudonocardiaceae and Acidothermaceae families dominated the intermediate amorphous silica speleothem and the fnal coralloid silica speleothem, respectively. The atmospheric trace gases oxidizers mostly corresponded to the main bacterial taxa present in each speleothem stage. These results provide novel understanding of the microbial community structure accompanying amorphization processes and of coxL and hypD gene expression possibly driving atmospheric trace gases metabolism in dark oligotrophic caves. Silicon is one of the most abundant elements in the Earth’s crust and can be broadly found in the form of silicates, aluminosilicates and silicon dioxide (e.g., quartz, amorphous silica).
    [Show full text]
  • Helminthosporium Velutinum and H. Aquaticum Sp. Nov. from Aquatic Habitats in Yunnan Province, China
    Phytotaxa 253 (3): 179–190 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2016 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.253.3.1 Helminthosporium velutinum and H. aquaticum sp. nov. from aquatic habitats in Yunnan Province, China DAN ZHU1, ZONG-LONG LUO1,2, DARBHE JAYARAMA BAHT3, ERICH.C. MCKENZIE4, ALI H. BAHKALI5, DE-QUN ZHOU6, HONG-YAN SU1,6 & KEVIN D. HYDE2,3,5 1College of Agriculture and Biology, Dali University, Dali, Yunnan 671003, China. 2Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand. 3Formerly at Department of Botany, Goa University, Goa, 403206, India. 4Landcare Research, Private Bag 92170, Auckland, New Zealand. 5Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, KSA. 6Faculty of Environmental Sciences & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan, China. Corresponding author: Hong-yan Su, email: [email protected] Abstract Helminthosporium species from submerged wood in streams in Yunnan Province, China were studied based on morphology and DNA sequence data. Descriptions and illustrations of Helminthosporium velutinum and a new species H. aquaticum are provided. A combined phylogenetic tree, based on SSU, ITS and LSU sequence data, place the species in Massarinaceae, Pleosporales. The polyphyletic nature of Helminthosporium species within Massarinaceae is shown based on ITS sequence data available in GenBank. Key words: aquatic fungi, Dothideomycetes, Massarinaceae, phylogeny, morphology Introduction The genus Helminthosporium Link was previously considered to be a widely distributed genus of dematiaceous hyphomycetes occurring on a wide range of hosts (Dreschler 1934, Ellis 1960, 1971, Manamgoda et al.
    [Show full text]
  • Fungal Planet Description Sheets: 400–468
    Persoonia 36, 2016: 316– 458 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158516X692185 Fungal Planet description sheets: 400–468 P.W. Crous1,2, M.J. Wingfield3, D.M. Richardson4, J.J. Le Roux4, D. Strasberg5, J. Edwards6, F. Roets7, V. Hubka8, P.W.J. Taylor9, M. Heykoop10, M.P. Martín11, G. Moreno10, D.A. Sutton12, N.P. Wiederhold12, C.W. Barnes13, J.R. Carlavilla10, J. Gené14, A. Giraldo1,2, V. Guarnaccia1, J. Guarro14, M. Hernández-Restrepo1,2, M. Kolařík15, J.L. Manjón10, I.G. Pascoe6, E.S. Popov16, M. Sandoval-Denis14, J.H.C. Woudenberg1, K. Acharya17, A.V. Alexandrova18, P. Alvarado19, R.N. Barbosa20, I.G. Baseia21, R.A. Blanchette22, T. Boekhout3, T.I. Burgess23, J.F. Cano-Lira14, A. Čmoková8, R.A. Dimitrov24, M.Yu. Dyakov18, M. Dueñas11, A.K. Dutta17, F. Esteve- Raventós10, A.G. Fedosova16, J. Fournier25, P. Gamboa26, D.E. Gouliamova27, T. Grebenc28, M. Groenewald1, B. Hanse29, G.E.St.J. Hardy23, B.W. Held22, Ž. Jurjević30, T. Kaewgrajang31, K.P.D. Latha32, L. Lombard1, J.J. Luangsa-ard33, P. Lysková34, N. Mallátová35, P. Manimohan32, A.N. Miller36, M. Mirabolfathy37, O.V. Morozova16, M. Obodai38, N.T. Oliveira20, M.E. Ordóñez39, E.C. Otto22, S. Paloi17, S.W. Peterson40, C. Phosri41, J. Roux3, W.A. Salazar 39, A. Sánchez10, G.A. Sarria42, H.-D. Shin43, B.D.B. Silva21, G.A. Silva20, M.Th. Smith1, C.M. Souza-Motta44, A.M. Stchigel14, M.M. Stoilova-Disheva27, M.A. Sulzbacher 45, M.T. Telleria11, C. Toapanta46, J.M. Traba47, N.
    [Show full text]