Pediatric Radiology

Total Page:16

File Type:pdf, Size:1020Kb

Pediatric Radiology 2013 RSNA (Filtered Schedule) Sunday, December 01, 2013 10:30-12:00 PM • VSPD11 • Room: S100AB • Pediatric Radiology Series: Pediatric Neuroimaging I 10:45-12:15 PM • SPOI11 • Room: E353C • Oncodiagnosis Panel: Pediatric Sarcoma (An Interactive Session) 12:30-01:00 PM • CL-PDS-SUA • Room: S101AB • Pediatric Radiology - Sunday Posters and Exhibits (12:30pm - 1:00pm) 01:00-01:30 PM • CL-PDS-SUB • Room: S101AB • Pediatric Radiology - Sunday Posters and Exhibits (1:00pm - 1:30pm) 02:00-03:30 PM • VSPD12 • Room: S102AB • Pediatric Radiology Series: Pediatric Musculoskeletal Monday, December 02, 2013 08:30-10:00 AM • RC224 • Room: E353B • Mentored Case Approach to Pediatric Cardiovascular Disease 1: Vascular Disease (An Interactive Session) 08:30-12:00 PM • VSPD21 • Room: S102AB • Pediatric Radiology Series: Fetal - Neonatal Imaging 12:15-12:45 PM • CL-PDS-MOA • Room: S101AB • Pediatric Radiology - Monday Posters and Exhibits (12:15pm - 12:45pm) 12:45-01:15 PM • CL-PDS-MOB • Room: S101AB • Pediatric Radiology - Monday Posters and Exhibits (12:45pm - 1:15pm) 03:00-04:00 PM • SSE21 • Room: S102AB • Pediatric (Neuroimaging) Tuesday, December 03, 2013 08:30-10:00 AM • RC324 • Room: S402AB • Mentored Case Approach to Pediatric Cardiovascular Disease 2: Cardiac Disease (An Interactive Session) 08:30-12:00 PM • VSPD31 • Room: S102AB • Pediatric Radiology Series: Chest/Cardiovascular Imaging I 12:15-12:45 PM • CL-PDS-TUA • Room: S101AB • Pediatric Radiology - Tuesday Scientific Posters and Exhibits (12:15pm - 12:45pm) 12:45-01:15 PM • CL-PDS-TUB • Room: S101AB • Pediatric Radiology - Tuesday Posters and Exhibits (12:45 - 1:15PM) 01:30-03:00 PM • MSES33 • Room: S100AB • Essentials of Pediatric Imaging 03:00-06:00 PM • VSPD32 • Room: S102AB • Pediatric Radiology Series: Advanced Pediatric Abdominal Imaging 04:30-06:00 PM • RC405 • Room: E451B • Interactive Game: Pediatric CNS Disorders Wednesday, December 04, 2013 08:30-10:00 AM • MSSR41 • Room: S402AB • RSNA/ESR Emergency Symposium: General Principles, Pediatric and ENT Emergencies (An Interactive Session) 08:30-10:00 AM • RC513 • Room: S103AB • Child Abuse (An Interactive Session) 10:30-12:00 PM • SSK18 • Room: S102AB • Pediatrics (Imaging) 12:15-12:45 PM • CL-PDS-WEA • Room: S101AB • Pediatric Radiology - Wednesday Posters and Exhibits (12:15pm - 12:45pm) 12:45-01:15 PM • CL-PDS-WEB • Room: S101AB • Pediatric Radiology - Wednesday Posters and Exhibits (12:45pm - 1:15pm) 02:20-03:20 PM • MSRT42 • Room: N230 • ASRT@RSNA 2013: Pediatric CT/CTA: Techniques and Applications 03:00-04:00 PM • SSM18 • Room: S102AB • Pediatrics (Chest) Thursday, December 05, 2013 08:30-10:00 AM • MSCN51 • Room: S100AB • Case-based Review of Neuroradiology: Brain (An Interactive Session) 08:30-10:00 AM • MSCP51 • Room: S406A • Case-based Review of Pediatric Radiology: Pediatric Thoracic Imaging (An Interactive Session) 08:30-10:00 AM • RC613 • Room: S102AB • Vascular Lesions in Children: Diagnostic Dilemmas and Treatment Options 10:30-12:00 PM • MSCN52 • Room: S100AB • Case-based Review of Neuroradiology: Spine (An Interactive Session) 10:30-12:00 PM • MSCP52 • Room: S406A • Case-based Review of Pediatric Radiology: Pediatric MSK Imaging (An Interactive Session) 10:30-12:00 PM • SSQ17 • Room: S102AB • Pediatrics (Neuroradiology) 10:30-12:00 PM • SSQ18 • Room: S102C • Pediatrics (Radiation Dose Reduction) 12:15-12:45 PM • CL-PDS-THA • Room: S101AB • Pediatric Radiology -Thursday Posters and Exhibits (12:15pm - 12:45pm) 12:45-01:15 PM • CL-PDS-THB • Room: S101AB • Pediatric Radiology - Thursday Posters and Exhibits (12:45pm - 1:15pm) 01:30-03:00 PM • MSCN53 • Room: S100AB • Case-based Review of Neuroradiology: Head and Neck (An Interactive Session) 01:30-03:00 PM • MSCP53 • Room: S406A • Case-based Review of Pediatric Radiology: Pediatric Abdominal Imaging (An Interactive Session) 03:30-05:00 PM • MSCP54 • Room: S406A • Case-based Review of Pediatric Radiology: Pediatric Pelvis Imaging (An Interactive Session) 03:40-04:40 PM • MSRT56 • Room: N230 • ASRT@RSNA 2013: Improving Practice in Pediatric Skeletal Radiography 04:30-06:00 PM • RC713 • Room: S102AB • Pediatric Neuroimaging II Friday, December 06, 2013 08:30-10:00 AM • RC813 • Room: N229 • Chest/Cardiovascular Imaging II 08:30-10:00 AM • RC851 • Room: E261 • Pediatric Neurosonography Update: Head, Spine, and Transcranial Doppler Ultrasound (How-to Workshop) 10:30-12:00 PM • SST13 • Room: N229 • Pediatrics (Interventional) Pediatric Small Bowel Crohn Disease: Ultrasound-MR Enterography Correlation Back to Top CL-PDE3021 Jonathan R Dillman , MD * Ethan A Smith , MD Ramon Sanchez , MD Michael A Dipietro , MD Peter J Strouse , MD Kassa Darge , MD, PhD Vera Dematos-Maillard , MD PURPOSE/AIM To illustrate bowel and mesentery ultrasound (US) findings in children with small bowel Crohn disease. US findings will be presented alongside temporally-related MR enterography (MRE) images. CONTENT ORGANIZATION 1. We will identify pediatric small bowel Crohn disease patients that have undergone temporally-related bowel US and MRE examinations (within 0-14 days). 2. Bowel US technique will be presented. 3. Advantages/disadvantages of bowel US compared to MRE and CT will be reviewed. 4. Representative bowel US and correlative MRE images will be presented in a systematic, cased-based manner. The following will be illustrated: a. Bowel wall thickening, altered echogenicity, Doppler hyperemia, luminal narrowing/stricture, and dilatation (due to obstruction). b. Mesenteric abnormalities, such as fistulas/sinus tracts, fibrofatty proliferation, inflammation, and lymph node enlargement. c. Intra-abdominal fluid, including free fluid, phlegmon, and abscess. SUMMARY US excellently depicts bowel and mesenteric changes related to pediatric small bowel Crohn disease. This technique has numerous advantages, including low cost, lack of ionizing radiation, and no sedation requirement. Our exhibit demonstrates that bowel US is a viable imaging modality when assessing Crohn disease in children. Page 1 of 100 Neonatal Intensive Care: Necrotizing Enterocolitis-What Is the Best Way to Diagnose It? Back to Top CL-PDE3022 John R Mernagh , MD Yong Dong Wang , MD, PhD Nina P Singh , MD PURPOSE/AIM Necrotizing enterocolitis (NEC) is a serious condition in the neonate, believed to result from a combination of bowel infection and ischemia. The diagnosis however remains problematic with most diagnoses relying on plain film examinations and the identification of bowel wall thickening and pneumatosis intestinalis. The use of ultrasound and Doppler ultrasound in the diagnosis of necrotizing enterocolitis is a newer technique which has the potential of providing a more reliable diagnosis and method of following treatment. This presentation will review the use of ultrasound in the diagnosis of necrotizing enterocolitis. CONTENT ORGANIZATION In this pictorial review we will present the spectrum of ultrasound appearances of neonatal NEC. Included in the presentation will be: 1. A review of the diagnosis and assessment of severity of NEC with ultrasound with comparrison to plain film diagnosis. 2. A review of the use of Doppler ultrasound to assess bowel viability 3. A review of the best modalities for the assessment of NEC and specific protocols for the assessment of NEC SUMMARY Major teaching points: 1. Diagnosis and assessment of severity of NEC with ultrasound. 2. The use of Doppler ultrasound to assess bowel viability. 3. The best modalities for the assessment of NEC and specific protocols for the assessment of NEC. Fibroepithelial Polyps of the Urinary Tract in Children Back to Top CL-PDE3024 Mikhail Higgins , MD Kassa Darge , MD, PhD Tiffany Hwang * PURPOSE/AIM We present an educational pictorial essay outlining diagnostic considerations essential to increase the awareness of this understated entity in children and also aid the radiologist in timely and accurate preoperative characterization of this elusive diagnosis, allowing for appropriate directed management. CONTENT ORGANIZATION This exhibit will be structured to accomplish the following: Summarize the pediatric epidemiologic data regarding fibroepithelial polyps of the urinary tract in children. Present an overview of the radiographic features of fibroepithelial polyps in the core diagnostic modalities, namely ultrasound, excretory urography, retrograde pyeloureterography and MR urography. Discuss the critical problem of pelviureteric junction obstruction due to fibroepithelial polyps. SUMMARY Fibroepithelial polyps are rare benign primary ureteral neoplasms. Their presence in children presenting with flank pain, hematura, urinary tract infection and obstruction is often overlooked, resulting in missed diagnoses and improper clinical management, including ureteronephrectomy. Given the role of ureteroscopic laser ablation as a curative technique, we present the critical diagnostic considerations necessary to achieve early radiologic diagnosis, determine the need for histological sampling and ultimately guide definitive less invasive management. Imaging Inflammatory Bowel Disease in Young Patients: Which Modality to Choose and How Do Imaging Findings Impact Patient Management? Back to Top CL-PDE3025 Arash Anvari , MD Sudha A Anupindi , MD Michael S Gee , MD, PhD PURPOSE/AIM Review the role of imaging in the management of inflammatory bowel disease (IBD), discuss pros and cons of different modalities, and define an algorithm for imaging these young patients. CONTENT ORGANIZATION 1. Epidemiology and pathophysiology 2. Role of imaging in management
Recommended publications
  • Congenital Heart Disease
    GUEST EDITORIAL Congenital heart disease Pediatric Anesthesia is the only anesthesia journal ded- who developed hypoglycemia were infants. (9). Steven icated exclusively to perioperative issues in children and Nicolson take the opposite approach of ‘first do undergoing procedures under anesthesia and sedation. no harm’ (10). If we do not want ‘tight glycemic con- It is a privilege to be the guest editor of this special trol’ because of concern about hypoglycemic brain issue dedicated to the care of children with heart dis- injury, when should we start treating blood sugars? ease. The target audience is anesthetists who care for There are no clear answers based on neurological out- children with heart disease both during cardiac and comes in children. non-cardiac procedures. The latter takes on increasing Williams and Cohen (11) discuss the care of low importance as children with heart disease undergoing birth weight (LBW) infants and their outcomes. Pre- non-cardiac procedures appear to be at a higher risk maturity and LBW are independent risk factors for for cardiac arrest under anesthesia than those without adverse outcomes after cardiac surgery. Do the anes- heart disease (1). We hope the articles in this special thetics we use add to this insult? If prolonged exposure issue will provide guidelines for management and to volatile anesthetics is bad for the developing neona- spark discussions leading to the production of new tal brain, would avoiding them make for improved guidelines. outcomes? Wise-Faberowski and Loepke (12) review Over a decade ago Austin et al. (2) demonstrated the current research in search of a clear answer and the benefits of neurological monitoring during heart conclude that there isn’t one.
    [Show full text]
  • An Overview of Mechanical Circulatory Support in Single-Ventricle Patients
    161 Review Article An overview of mechanical circulatory support in single-ventricle patients Jacob R. Miller1, Timothy S. Lancaster1, Connor Callahan2, Aaron M. Abarbanell3, Pirooz Eghtesady3 1Division of Cardiothoracic Surgery, 2Department of Surgery, Barnes-Jewish Hospital/Washington University School of Medicine, St. Louis, MO, USA; 3Section of Pediatric Cardiothoracic Surgery, St. Louis Children’s Hospital/Washington University School of Medicine, St. Louis, MO, USA Contributions: (I) Conception and design: JR Miller, AM Abarbanell, P Eghtesady; (II) Administrative support: AM Abarbanell, P Eghtesady; (III) Provision of study materials or patients: None; (IV) Collection and assembly of data: JR Miller, TS Lancaster, C Callahan; (V) Data analysis and interpretation: JR Miller, AM Abarbanell, P Eghtesady; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Pirooz Eghtesady, MD, PhD. Chief of Pediatric Cardiothoracic Surgery, St. Louis Children’s Hospital, One Children’s Place, Suite 5 South, St. Louis, MO 63110, USA. Email: [email protected]. Abstract: The population of people with a single-ventricle is continually increasing due to improvements across the spectrum of medical care. Unfortunately, a proportion of these patients will develop heart failure. Often, for these patients, mechanical circulatory support (MCS) represents the only available treatment option. While single-ventricle patients currently represent a small proportion of the total number of patients who receive MCS, as the single-ventricle patient population increases, this number will increase as well. Outcomes for these complex single-ventricle patients who require MCS has begun to be evaluated. When considering the entire population, survival to hospital discharge is 30–50%, though this must be considered with the significant heterogeneity of the single-ventricle patient population.
    [Show full text]
  • Outcome of the Norwood Operation in Patients with Hypoplastic Left Heart Syndrome: a 12-Year Single-Center Survey
    Furck et al Congenital Heart Disease Outcome of the Norwood operation in patients with hypoplastic left heart syndrome: A 12-year single-center survey Anke Katharina Furck, MD,a Anselm Uebing, MD,a Jan Hinnerk Hansen,a Jens Scheewe, MD,b Olaf Jung, MD,a Gunther Fischer, MD,a Carsten Rickers, MD,a Tim Holland-Letz, MSc,c and Hans-Heiner Kramer, MDa Objective: Recent advances in perioperative care have led to a decrease in mortality of children with hypoplastic left heart syndrome undergoing the Norwood operation. This study aimed to evaluate the outcome of the Nor- wood operation in a single center over 12 years and to identify clinical and anatomic risk factors for adverse early CHD and longer term outcome. Methods: Full data on all 157 patients treated between 1996 and 2007 were analyzed. Results: Thirty-day mortality of the Norwood operation decreased from 21% in the first 3 years to 2.5% in the last 3 years. The estimated exponentially weighted moving average of early mortality after 157 Norwood oper- ations was 2.3%. Risk factors were an aberrant right subclavian artery, the use and duration of circulatory arrest, and the duration of total support time. The anatomic subgroup mitral stenosis/aortic atresia and female gender tended to show an increased early mortality. In the group of patients who required postoperative cardiopulmonary resuscitation, the ascending aorta was significantly smaller than in the remainder (3.03 Æ 1.05 vs 3.63 Æ 1.41 mm). Interstage mortality was 15% until the initiation of a home surveillance program in 2005, which has zeroed it so far.
    [Show full text]
  • Coders' Desk Reference for ICD-10-PCS Procedures
    2 0 2 DESK REFERENCE 1 ICD-10-PCS Procedures ICD-10-PCS for DeskCoders’ Reference Coders’ Desk Reference for ICD-10-PCS Procedures Clinical descriptions with answers to your toughest ICD-10-PCS coding questions Sample 2021 optum360coding.com Contents Illustrations ..................................................................................................................................... xi Introduction .....................................................................................................................................1 ICD-10-PCS Overview ...........................................................................................................................................................1 How to Use Coders’ Desk Reference for ICD-10-PCS Procedures ...................................................................................2 Format ......................................................................................................................................................................................3 ICD-10-PCS Official Guidelines for Coding and Reporting 2020 .........................................................7 Conventions ...........................................................................................................................................................................7 Medical and Surgical Section Guidelines (section 0) ....................................................................................................8 Obstetric Section Guidelines (section
    [Show full text]
  • Copyrighted Material
    Index Note: Page numbers in italics refer to Figures; those in bold to Tables. activated clotting time (ACT), 35–9 interrupted aortic arch, 121 Blalock–Taussig shunt (BTS), 95, 114, Alfieri stitch, 172 luminal variation, 24, 25 115, 117, 129, 142, 149, 152, 155, alpha-stat blood gas management see placement, 79–80 159, 173, 177, 180 blood gas management regional perfusion strategies, 52–4, 115 blood coagulation see anticoagulation anomalous aortic origin of a coronary arterial decannulation, inadvertent, 73, management artery (AAOCA), 88 170 blood gas management anomalous left coronary artery from the arterial head occlusion, 29–30 alpha-stat management, 40–44 pulmonary artery (ALCAPA), 86 arterial line filters (ALF) on bypass, 80–81 anticoagulation management blood flow path, 13, 13 oxygenation strategy, 42–4 activated clotting time (ACT), 35–9 external, 12, 12, 13, 14, 61–2 pH-stat management, 40–44 blood coagulation pathways, 35, 35, 36 integral, 5–8, 9 blood pressure management coagulation factors, 35, 35 arterial pump failure (roller head), 164 cardiopulmonary bypass, 47–8 heparin concentration management, 37 arterial switch operation (ASO), 85, 112, cerebral blood flow (CBF), 47 prime volume 140, 141, 174–7 see also Jatene higher than expected, 148 circuit exposure, 36 procedure lower than expected, 149 examples, 14, 187, 188 arterio venous MUF (AVMUF), 56–9, 57 ranges, 48, 48 oxygenator primes, 5–8 atrial line, 77 blood prime see also priming procoagulant factors, 35, 36 placement, 82 blood volume, 31, 31 protamine dosing, 38–9
    [Show full text]
  • Systemic-To-Pulmonary Artery Shunting Using Heparin- Bonded Grafts
    SYSTEMIC-TO-PULMONARY ARTERY SHUNTING USING HEPARIN- BONDED GRAFTS (“Systemiko-pulmonale Shunts unter Verwendung von Grafts mit kovalent an der Oberfläche gebundenem Heparin“) Der Medizinischen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg zur Erlangung des Doktorgrades Dr. med. vorgelegt von Ambarsari, Yuletta Adny aus Bangil (Indonesia) Als Dissertation genehmigt von der Medizinischen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg Vorsitzender des Promotionsorgans: Prof. Dr. Dr. h.c. J. Schüttler Gutachter: PD Dr. Andre Rüffer Gutachter: Prof. Dr. Robert Cesnjevar Tag der mündlichen Prüfung: 05. Dezember 2017 TABLE OF CONTENTS ABSTRACT (English Version)……………………………………………..……... 1 ABSTRACT (German Version)……………………………………………..…..... 3 1. INTRODUCTION………………………………………………………….. 5 1.1. Palliative Shunting: A Brief Surgical History……………………................ 5 1.2. Shunt Associated Problems and Possible Drawbacks……………................ 8 1.3. Experience with "Heparin-Bonded" Shunts………………………………... 9 1.4. Aim of the Study…………………………………………………………… 10 2. MATERIAL AND METHODS……………………………………………. 11 2.1. Patients……………………………………………………………............... 11 2.2. Surgical Technique………………………………….……………………… 11 2.3. Follow-up…………………………………………………………………... 12 2.4. Statistical Analysis……………………………………………………….… 13 3. RESULTS…………………………………………………………………... 14 3.1. Patient Characteristics and Operative Data………………………................ 14 3.2. Survival…………………………………….……………………………….. 16 3.3. Shunt Patency………………………………………………………….…… 19 4. DISCUSSION…………………………………………………………….…
    [Show full text]
  • Cardiology in the Young
    Volume 25 Supplement 1 Pages S1–S180 doi:10.1017/S1047951115000529 Cardiology in the Young © 2015 Cambridge University Press 49th Annual Meeting of the Association for European Paediatric and Congenital Cardiology, AEPC with joint sessions with the Japanese Society of Pediatric Cardiology and Cardiac Surgery, Asia-Pacific Pediatric Cardiology Society, European Association for Cardio-Thoracic Surgery and Canadian Pediatric Cardiology Association, Prague, Czech Republic, 20–23 May 2015 YIA-1 lesions and significantly decreased an anti-apoptotic molecule Macitentan Reverses Early Obstructive Pulmonary survivin protein and mRNA expression in lungs and the propor- Vasculopathy in Rats: Early Intervention in Overcoming tion of survivin positive αSMA cells in occlusive lesions in the early the Survivin-mediated Resistance to Apoptosis study but not in the late study. Shinohara T. (1,4), Sawada H. (1), Otsuki S. (1), Yodoya N. (1), Conclusions: Macitentan reversed early but not late obstructive pul- Kato T. (1), Ohashi H. (1), Zhang E. (2), Saitoh S. (4), monary vascular disease in rats. This reversal was associated with the Shimpo H. (3), Maruyama K. (2), Komada Y. (1), Mitani Y. (1) suppression of survivin-related resistance to apoptosis and prolifera- Department of Pediatrics (1); Anesthesiology and Critical Care Medicine tion of αSMA cells in occlusive lesions. These findings could be (2); Thoracic and Cardiovascular Surgery (3); Mie University Graduate mechanistic basis for the efficacy of early treatment and give an insight School of Medicine, Tsu, Japan, Department of Pediatrics and into later appearance of resistance to treatment for this disorder. Neonatology, Nagoya City University Graduate School of Medical Sciences, Nogoya, Japan (4) YIA-2 Objectives: We tested the hypothesis that a novel endothelin Does reversal of flow in the fetal aortic arch in second trimester receptor antagonist macitentan reverses the early and/or late stages aortic stenosis predict hypoplastic left heart syndrome? of occlusive pulmonary vascular disease in rats.
    [Show full text]
  • Palliative Surgery for Congenital Heart Disease
    1 Palliative Surgery for Congenital Heart Disease นพ.พงศ์เสน่ห์ ดวงภักดี อาจารย์ที่ปรึกษา รศ.นพ.เจริญเกียรติ ฤกษ์เกลี้ยง บทนํา ! อุบัติการณ์โรคหัวใจในเด็กของประเทศไทยใกล้เคียงกับหลายประเทศทั่วโลก โรคหัวใจพิการแต่กําเนิดพบได้บ่อย ที่สุดเกินร้อยละ 80-90 ของโรคหัวใจทั้งหมด ส่วนโรคไข้รูมาติกและโรคหัวใจรูมาติกพบได้น้อยลง ขณะเดียวกันโรคคาวา ซากิพบบ่อยขึ้น รวมทั้งโรคของกล้ามเนื้อหัวใจ เช่น กล้ามเนื้อหัวใจอักเสบจากเชื้อไวรัส และโรคของกล้ามเนื้อหัวใจชนิดไม่ ทราบสาเหตุ ! ประเทศไทยมีทารกเกิดใหม่ประมาณ 8 แสนคน อุบัติการณ์ของโรคหัวใจพิการแต่กําเนิดอยู่ที่ประมาณร้อยละ 1 หรือประมาณ 8,000 คน ร้อยละ 50 ตรวจพบขณะไม่มีอาการ อีกร้อยละ 50 มีอาการ คือ หัวใจวาย (24.7%) เขียว (21%) ! เป้าหมายในการผ่าตัดรักษาสูงสุด คือ การผ่าตัดแก้ไขให้เหมือนกับคนปกติทั้ง anatomy และ physiology รองลง มาคือ hemodynamic และ physiology ที่ใกล้เคียงกับปกติมากที่สุด แต่ถ้าหากไม่สามารถทําได้ ก็ต้องผ่าตัดแก้ไขให้ผู้ ป่วยสามารถมีชีวิตอยู่ได้ด้วย hemodynamic อื่น ! การเลือกวิธีการผ่าตัดแบบใดนั้น ขึ้นกับชนิดและความซับซ้อนของความผิดปกติที่ตรวจพบ รวมทั้งความสามารถ และความถนัดของศัลยแพทย์ ซึ่งได้แก่ - การผ่าตัดแบบประคับประคอง (palliative) จะใช้เมื่อไม่สามารถผ่าตัดแก้ไขความผิดปกติทั้งหมดได้แต่แรก และบางรายอาจต้องผ่าตัดแบบประคับประคองอีกหลายครั้ง ซึ่งสุดท้ายก็ยังคงได้แค่ประคับประคอง ไม่ สามารถผ่าตัดแก้ไขความผิดปกติได้ทั้งหมด - การผ่าตัดประคับประคองไปก่อนสักระยะหนึ่ง แล้วค่อยทําการผ่าตัดแก้ไขความผิดปกติทั้งหมดให้เหมือน ปกติในภายหลัง - การผ่าตัดแก้ไขความผิดปกติทั้งหมดให้เหมือนปกติในคราวเดียวเลย (definitive) ซึ่งผู้ป่วยส่วนใหญ่ สามารถทําได้ตั้งแต่แรกเกิดหรือในขวบปีแรก ประเภทของโรคหัวใจพิการแต่กําเนิดชนิดเขียว2,8
    [Show full text]
  • Femoral Vein Homograft As Right Ventricle to Pulmonary Artery Conduit in Stage 1 Norwood Operation
    Femoral Vein Homograft as Right Ventricle to Pulmonary Artery Conduit in Stage 1 Norwood Operation T. K. Susheel Kumar, MD, Mario Briceno-Medina, MD, Shyam Sathanandam, MD, Vijaya M. Joshi, MD, and Christopher J. Knott-Craig, MD Departments of Pediatric Cardiothoracic Surgery and Pediatric Cardiology, Le Bonheur Children’s Hospital and University of Tennessee Health Science Center, Memphis, Tennessee CONGENITAL HEART Background. The polytetrafluoroethylene tube used as have undergone Fontan operation to date. The median right ventricle to pulmonary artery conduit in the stage 1 Nakata index at pre-Glenn catheterization was 262 mm2/ Norwood operation is associated with risks of suboptimal m2 (interquartile range: 121 to 422 mm2/m2). No patient branch pulmonary artery growth, thrombosis, free had thrombosis of conduit. Most femoral vein conduits insufficiency, and long-term right ventricular dysfunc- remained competent in the first month after stage 1 tion. Our experience with use of valved femoral vein Norwood operation, although most became incompetent homograft as right ventricle to pulmonary artery conduit by 3 months. Catheter intervention on the conduit was is described. necessary in 7 patients. Right ventricular function was Methods. Between June 2012 and December 2015, 15 preserved in most patients at follow-up. neonates with hypoplastic left heart syndrome or com- Conclusions. The use of femoral vein homograft as plex single ventricle underwent stage 1 Norwood opera- right ventricle to pulmonary artery conduit in the Nor- tion with valved segment of femoral vein homograft as wood operation is safe and associated with good pul- right ventricle to pulmonary artery conduit. The median monary artery growth and preserved ventricular function.
    [Show full text]
  • Hypoplastic Left Heart Syndrome Guideline What the Nurse Caring for the Patient with CHD Needs to Know
    Hypoplastic Left Heart Syndrome Guideline What the Nurse Caring for the Patient with CHD Needs to Know Louise Callow, MSN, RN, CPNP Pediatric Cardiac Surgery Nurse Practitioner University of Michigan, CS Mott Children’s Hospital Embryology Formation of Atrioventricular (AV) cardiac valves o Days 34 to 36 o Formed from endocardial cushions Formation of the ventricles: Days 22-35 Spectrum of underdevelopment of left sided heart structures Anatomy Hypoplasia or agenesis of the tricuspid valve (TV) or mitral valve (MV) (As indicated by #1 in Illustration) Hypoplasia or agenesis of the aortic valve (AV) or pulmonary valve (PV) (As indicated by #2 in Illustration) Hypoplasia of the left ventricle (LV) (As indicated by #3 in Illustration) Hypoplasia of the ascending aorta with/without coarctation or interrupted aortic arch (As indicated by numbers 4 & 5 in Illustration) Possible thick or sclerotic endocardium Atrial septal defect (As indicated by #6 in Illustration) Patent ductus arteriosus (PDA) Hypoplastic Left Heart Syndrome Illustrations reprinted from PedHeart Resource. www.HeartPassport.com. 1 © Scientific Software Solutions, 2016. All rights reserved Physiology Hypoplastic left heart syndrome (HLHS) o Blood enters the left atrium (LA) . Cannot exit due to hypoplasia/agenesis of the MV . Crosses the atrial defect into the right atrium (RA) o Blood then crosses the tricuspid valve (TV) and enters the right ventricle (RV) o Blood enters the pulmonary artery (PA) through the pulmonary valve (PV) o Blood then enters the lungs through the PA and shunts right to left through the PDA to the systemic circulation o Balance of pulmonary blood flow . Dependent on the respective pulmonary and systemic resistance .
    [Show full text]
  • MSCT Imaging of Various Shunts and Grafts in Post Operative Cases of Congenital Heart Diseases
    International Journal of Research in Medical Sciences Patel DL et al. Int J Res Med Sci. 2019 Mar;7(3):860-865 www.msjonline.org pISSN 2320-6071 | eISSN 2320-6012 DOI: http://dx.doi.org/10.18203/2320-6012.ijrms20190937 Original Research Article MSCT imaging of various shunts and grafts in post operative cases of congenital heart diseases Dinesh L. Patel1, Yashpal R. Rana1*, Megha M. Sheth1, Samir G. Patel1, Milin N. Garachh1, Kamal K. Parikh2 1Department of Radiology, 2Department of Anaesthesia, U. N. Mehta Institute of Cardiology and Research Centre, Ahmedabad, Gujarat Received: 01 January 2019 Accepted: 30 January 2019 *Correspondence: Dr. Yashpal R. Rana, E-mail: [email protected] Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT Background: Multi-slice computed tomography (MSCT) plays an important role in clinical practice in assessing post-operative patients with complex CHD when echocardiography is not contributory. Despite the great capabilities of MR imaging for anatomic and functional assessment of the heart, it is time-consuming and may require a lengthy period of patient sedation; hence its use in seriously ill or uncooperative patients is often limited. CT has the advantages of widespread availability and short acquisition times. It is imperative for a radiologist to be aware of various palliative as well as corrective procedures and their various imaging findings. Aim of this article is to demonstrate and make one aware of various checklists and imaging findings in paediatric patients who have undergone various shunts and grafts at our tertiary cardiac care centre, their immediate as well as long term complications.
    [Show full text]
  • Introduction Louisville, KY Learning Objectives
    Little Kids, Big (Complicated) Hearts Leah Savage, MSN, RN, CCDS Clinical Documentation Specialist Norton Children’s Hospital Louisville, KY1 Introduction Louisville, KY 2 Learning Objectives • At the completion of this educational activity, the learner will be able to: – Describe the complex anatomy of three congenital heart diseases – Describe procedures for three congenital heart diseases – Verbalize three to five ICD‐10 codes for common congenital heart disease procedures 3 2017 Copyright, HCPro, an H3.Group division of Simplify Compliance LLC. All rights reserved. 1 These materials may not be copied without written permission. It’s All About a Strawberry … The average newborn heart is approximately the size of a strawberry By FoeNyx, France ‐ Self‐published work by FoeNyx, CC BY‐SA 3.0, https://commons.wikimedia.org/w/index.php?curid=21279 4 Normal Heart and Blood Flow By Own work, CC BY‐SA 3.0, https://commons.wikimedia.org/w/index.php?curid=830253 5 Hypoplastic Left Heart Syndrome Q234 What is it? • HLHS • Rare, complex congenital heart defect • Left side of the heart is severely underdeveloped and unable to pump blood throughout the body, forcing the right side to do all of the pumping • Fatal cardiac abnormality if not surgically addressed (< 2 weeks) 6 2017 Copyright, HCPro, an H3.Group division of Simplify Compliance LLC. All rights reserved. 2 These materials may not be copied without written permission. Hypoplastic Left Heart Syndrome Q234 Anatomy • Underdevelopment of the left side of the heart due to: – Mitral stenosis/atresia
    [Show full text]