Systemic-To-Pulmonary Artery Shunting Using Heparin- Bonded Grafts

Total Page:16

File Type:pdf, Size:1020Kb

Systemic-To-Pulmonary Artery Shunting Using Heparin- Bonded Grafts SYSTEMIC-TO-PULMONARY ARTERY SHUNTING USING HEPARIN- BONDED GRAFTS (“Systemiko-pulmonale Shunts unter Verwendung von Grafts mit kovalent an der Oberfläche gebundenem Heparin“) Der Medizinischen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg zur Erlangung des Doktorgrades Dr. med. vorgelegt von Ambarsari, Yuletta Adny aus Bangil (Indonesia) Als Dissertation genehmigt von der Medizinischen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg Vorsitzender des Promotionsorgans: Prof. Dr. Dr. h.c. J. Schüttler Gutachter: PD Dr. Andre Rüffer Gutachter: Prof. Dr. Robert Cesnjevar Tag der mündlichen Prüfung: 05. Dezember 2017 TABLE OF CONTENTS ABSTRACT (English Version)……………………………………………..……... 1 ABSTRACT (German Version)……………………………………………..…..... 3 1. INTRODUCTION………………………………………………………….. 5 1.1. Palliative Shunting: A Brief Surgical History……………………................ 5 1.2. Shunt Associated Problems and Possible Drawbacks……………................ 8 1.3. Experience with "Heparin-Bonded" Shunts………………………………... 9 1.4. Aim of the Study…………………………………………………………… 10 2. MATERIAL AND METHODS……………………………………………. 11 2.1. Patients……………………………………………………………............... 11 2.2. Surgical Technique………………………………….……………………… 11 2.3. Follow-up…………………………………………………………………... 12 2.4. Statistical Analysis……………………………………………………….… 13 3. RESULTS…………………………………………………………………... 14 3.1. Patient Characteristics and Operative Data………………………................ 14 3.2. Survival…………………………………….……………………………….. 16 3.3. Shunt Patency………………………………………………………….…… 19 4. DISCUSSION…………………………………………………………….… 23 4.1. Survival……………………………………………………………………... 23 4.2. Shunt Patency…………………………………………………………….… 24 4.3. HBPS……………………………………………………………………….. 24 4.4. Limitations……………………………………………………….……...….. 25 4.5. Conclusion…………………………………….……………………………. 25 5. REFERENCES………….………………………………………………….. 26 6. ABBREVIATIONS………………………………………………................ 31 7. LIST OF FIGURES…………………………………………………….…... 32 8. LIST OF TABLES……………….…………………………………………. 33 9. ACKNOWLEDGEMENTS…………..…………………………………….. 34 10. DISCLAIMER…………………………………………………………….... 35 ABSTRACT (English Version) Objectives: Systemic to pulmonary artery shunting remains an important palliative procedure in the staged management of complex congenital heart defects. The use of Heparin- bonded polytetrafluorethylen shunts (HBPS) should enhance graft patency. This study aimed to review the single-center experience with HBPS in the context of congenital cardiac surgery. Methods: The records of 52 patients treated with HBPS between 2010 and 2016 were retrospectively reviewed. Median age and weight were 8 days (range 3 – 83 days) and 3.2 kg (range 1.8 – 5.7 kg), respectively. Selected shunt size was 3.5 mm in all except 1 patient (4.0 mm). Fourteen patients (26.9%) were planned for future biventricular repair and 38 patients (73.1%) went the univentricular pathway. Shunt modifications included central aorto-pulmonary shunts (n=35; 67.3%) and modified Blalock-Taussig shunts (n=17; 32.7%). Shunt patency and survival until estimated second procedure were calculated using the Kaplan-Meier method. Results: Shunt patency was 90 ± 4% after a median duration of 133 days (range: 0 - 315). Early mortality (30 days) was 5.7% (n=3). Another 3 patients died during their hospital stay. The cause of death was not shunt-related in all patients. Five patients developed subtotal HBPS thrombosis, either intraoperatively (n=3), early postoperatively after 3 days (n=1; 1.9%) or late after 41 days (n=1; 1.9%). Treatment of those patients comprised RVOT-opening (n=2; 3.8%) or new shunting (n=3; 5.8%). Elective shunt take-down was performed during corrective surgery (n=10; 19.2%), bidirectional Glenn (n=25; 48.1%) or shunt replacement (n=5; 9.6%). At the end of follow-up, 1 patient (1.9%) had still a HBPS in situ. The survival rate until planned second procedure was 84 ± 6% in univentricular patients, and 100% in biventricular patients (p=0.14), respectively. 1 Conclusions: The use of HBPS in the context of palliative heart surgery is safe and seems to warrants long-term patency of systemic-to-pulmonary shunts. However, by influencing thrombosis on only one site of Virchow’s triad, shunt thrombosis, occurring predominantly early, cannot be totally excluded. 2 ABSTRACT (German Version) Hintergrund: Komplexe kardiale Fehlbildungen mit vermindertem pulmonalen Blutstrom benötigen bereits im Neugeborenenalter eine palliative Shunt-Anlage zur adäquaten Perfusion des Lungenkreislaufs. Die Verwendung von kovalent an den Shunt gebundenem Heparin („heparin-bonded“) Polytetrafluorethylen-Shunts (HBPS) sollte dabei das Risiko von Graft-Verschlüssen vermindern. In dieser Studie werden die Erfahrungen und das Outcome nach HBPS-Implantation in Patienten mit angeborenen Herzfehlern eines Zentrums zusammengefasst. Methoden: Die Krankenakten von 52 Patienten, welche zwischen 2010 und 2016 einen HBPS als aortopulmonalen Shunt erhalten haben, wurden retrospektiv analysiert. Das Alter lag im Median bei 8 Tagen (Range: 3 – 83 Tage) und das Gewicht bei 3.2 kg (Range: 1.8 – 5.7 kg). Bis auf einen Patienten (4.0 mm) erhielten alle Patienten einen 3.5 mm HBPS. Vierzehn Patienten (26.9%) hatten einen biventrikulär zu korrigierenden Herzfehler und 38 Patienten (73.1%) wurden für eine univentrikuläre Palliation vorgesehen. Als Shunt-Modifikationen wurden zentrale aorto-pulmonale Shunts (n=35; 67.3%) und modifizierte Blalock-Taussig-Shunts (n=17; 32.7%) verwendet. Ergebnisse: Nach einer mittleren Nachbeobachtung von 133 Tagen (Range: 0 – 315 Tage) betrug die Offenheitsrate der HBPS bis zur nächsten chirurgischen Intervention 90 ± 4%. Die Frühmortalität (30 Tage) betrug 5.8% (n=3). Drei weitere Patienten verstarben während des Krankenhausaufenthaltes. Die Todesursachen waren nicht Shunt- assoziiert. Bei fünf Patienten trat eine HBPS-Thrombose auf, welche durch eine Eröffnung des rechtsventrikulären Ausflusstrakts (n=2; 3.8%) oder einen Shunt- Wechsel (n=3; 5.8%) behandelt wurde. Die HBPS-Thrombose trat entweder intraoperativ (n=3; 5.8%), früh postoperativ nach drei Tagen (n=1; 1.9%) oder spät postoperativ nach 41 Tagen (n=1; 1.9%) auf. Bei Patienten mit offenem HBPS entsprach der nächste geplante chirurgische Schritt entweder einer 3 Korrekturoperation (n=10; 19.2%), einer bidirektionalen Glenn-Anastomose (n=25; 48.1%) oder einer erneuten Shunt-Anlage (n=5; 9.6%). Am Ende des Follow-up war bei einem Patient der HBPS noch in situ. Das Überleben bis zur nächsten geplanten Operation mit HBPS-take-down lag bei 84 ± 6% für Patienten mit univentrikulärer Morphologie und 100% für biventrikulär korrigierbare Patienten (p=0,14). Schlussfolgerung: Die Verwendung von HBPS als systemisch-pulmonale Shunts erscheint sicher. Da beim HBPS durch die kovalente Heparin-Bindung im Shunt nur ein Bestandteil der Virchowschen Trias beeinflusst wird, können Shunt-Thrombosen, die vorwiegend perioperativ auftreten, nicht vollständig verhindert werden. 4 1. INTRODUCTION 1.1. Palliative Shunting: A Brief Surgical History A systemic to pulmonary artery shunt establishes pulmonary blood flow in the context of palliative cardiac surgery. Indications for surgery exist in children with ductal dependent or decreased pulmonary blood flow, who are not suitable for complete repair or Glenn palliation at this stage. Moreover, children with single ventricle physiology and obstructed systemic blood flow need systemic to pulmonary artery shunting in the context of “classical” or Norwood-type operations. An ideal shunt is expected to fulfil attributes like technical simple implantation, functionality, long-term patency and easy take-down before repair. [1] The “classic” Blalock-Taussig shunt was reported by Helen B. Taussig and Alfred Blalock on 29 November 1944, who observed improved survival of „blue babies“ with cyanosis when the ductus Botalli was still open. In the absence of a reliable pharmacological long-term-option to keep the duct open, division of the subclavian artery and anastomosis to the pulmonary artery on the same side was adopted. [2, 3] Originally a superior right antero-lateral thoracotomy was chosen as access and the distal right subclavian artery was anastomosed to the right pulmonary artery in an end-to-side fashion. Figure 1 Figure 1. Classic Blalock-Taussig shunt (Source:Yuan S. H, Jing H, Palliative procedures for congenital heart defects [1]) 5 After performing a classic Blalock-Taussig shunt, blood flow to the ipsilateral arm is preserved by collateral arterial vessels. This often leads to a significant reduction in length and muscle mass of the ipsilateral arm compared to the contralateral arm. [4] As an alternative to the “classic” Blalock-Taussig shunt, various techniques were introduced by performing a direct anastomosis between the aorta and one pulmonary artery. In 1946 Potts used a direct anastomosis between the descending aorta and the left pulmonary artery. [5] Figure 2 Figure 2. Potts Anastomosis. (Source: Blanc et al, Potts shunt in patients with pulmonary hypertension [6]) Waterston used a variation of this technique in 1962 by creating a direct shunt between the ascending aorta and right pulmonary artery through the 4th intercostal space via right postero-lateral thoracotomy. [7] This approach was modified by Cooley in 1966 by an antero-lateral thoracotomy. [8] A central aorto-pulmonary shunt performing a direct anastomosis between the ascending aorta and the main 6 pulmonary artery was first published by Davidson in 1955. [9] Most of those direct shunt variations were abandoned due to pulmonary hypertension
Recommended publications
  • Myocardiial Protection Strategy Utilizing Retrograde Cardioplegia
    Myocardial Protection Strategy Utilizing Retrograde Cardioplegia Item Type text; Electronic Thesis Authors Karbasi, Michael Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the College of Medicine - Phoenix, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 25/09/2021 11:23:01 Link to Item http://hdl.handle.net/10150/281195 Myocardial Protection Strategy Utilizing Retrograde Cardioplegia for Neonatal Arterial Switch Operations Michael Karbasi1, John Nigro, M.D.2,3, Bradford Sanders, CCP,, MS2,3, Cyrus Kosar, MS4, Brigham C. Willis, M.D.1,2,3 1 University of Arizona, College of Medicine-Phoenix; 2Children’s Heart Center, Phoenix Children’s Hospital, Phoenix, AZ; 3Eller Congenital Heart Center at St. Joseph’s Hospital and Medical Center, Phoenix, AZ; and 4Institute for Aging Research in Affiliation with Harvard Medical School ABSTRACT RESULTS 30.0 Introduction: Myocardial protection strategies are a central component of neonatal arterial switch operations. Traditionally antegrade cardioplegia 25.0 through the aortic root has been the method of delivery, but use of retrograde cardioplegia via the coronary sinus has become the standard 20.0 of practice by many in the field. Methods: After obtaining IRB approval 15.0 Retrograde and informed consent, a retrospective chart review was done to assess Days Antegrade outcomes between 48 patients receiving antegrade (n= 5) and retrograde 10.0 (n= 43) cardioplegia during neonatal switch operations. Preoperative demographics and postoperative outcomes were compared between the 5.0 two groups and compared with historical studies.
    [Show full text]
  • Congenital Heart Disease
    GUEST EDITORIAL Congenital heart disease Pediatric Anesthesia is the only anesthesia journal ded- who developed hypoglycemia were infants. (9). Steven icated exclusively to perioperative issues in children and Nicolson take the opposite approach of ‘first do undergoing procedures under anesthesia and sedation. no harm’ (10). If we do not want ‘tight glycemic con- It is a privilege to be the guest editor of this special trol’ because of concern about hypoglycemic brain issue dedicated to the care of children with heart dis- injury, when should we start treating blood sugars? ease. The target audience is anesthetists who care for There are no clear answers based on neurological out- children with heart disease both during cardiac and comes in children. non-cardiac procedures. The latter takes on increasing Williams and Cohen (11) discuss the care of low importance as children with heart disease undergoing birth weight (LBW) infants and their outcomes. Pre- non-cardiac procedures appear to be at a higher risk maturity and LBW are independent risk factors for for cardiac arrest under anesthesia than those without adverse outcomes after cardiac surgery. Do the anes- heart disease (1). We hope the articles in this special thetics we use add to this insult? If prolonged exposure issue will provide guidelines for management and to volatile anesthetics is bad for the developing neona- spark discussions leading to the production of new tal brain, would avoiding them make for improved guidelines. outcomes? Wise-Faberowski and Loepke (12) review Over a decade ago Austin et al. (2) demonstrated the current research in search of a clear answer and the benefits of neurological monitoring during heart conclude that there isn’t one.
    [Show full text]
  • Pediatric Radiology
    2013 RSNA (Filtered Schedule) Sunday, December 01, 2013 10:30-12:00 PM • VSPD11 • Room: S100AB • Pediatric Radiology Series: Pediatric Neuroimaging I 10:45-12:15 PM • SPOI11 • Room: E353C • Oncodiagnosis Panel: Pediatric Sarcoma (An Interactive Session) 12:30-01:00 PM • CL-PDS-SUA • Room: S101AB • Pediatric Radiology - Sunday Posters and Exhibits (12:30pm - 1:00pm) 01:00-01:30 PM • CL-PDS-SUB • Room: S101AB • Pediatric Radiology - Sunday Posters and Exhibits (1:00pm - 1:30pm) 02:00-03:30 PM • VSPD12 • Room: S102AB • Pediatric Radiology Series: Pediatric Musculoskeletal Monday, December 02, 2013 08:30-10:00 AM • RC224 • Room: E353B • Mentored Case Approach to Pediatric Cardiovascular Disease 1: Vascular Disease (An Interactive Session) 08:30-12:00 PM • VSPD21 • Room: S102AB • Pediatric Radiology Series: Fetal - Neonatal Imaging 12:15-12:45 PM • CL-PDS-MOA • Room: S101AB • Pediatric Radiology - Monday Posters and Exhibits (12:15pm - 12:45pm) 12:45-01:15 PM • CL-PDS-MOB • Room: S101AB • Pediatric Radiology - Monday Posters and Exhibits (12:45pm - 1:15pm) 03:00-04:00 PM • SSE21 • Room: S102AB • Pediatric (Neuroimaging) Tuesday, December 03, 2013 08:30-10:00 AM • RC324 • Room: S402AB • Mentored Case Approach to Pediatric Cardiovascular Disease 2: Cardiac Disease (An Interactive Session) 08:30-12:00 PM • VSPD31 • Room: S102AB • Pediatric Radiology Series: Chest/Cardiovascular Imaging I 12:15-12:45 PM • CL-PDS-TUA • Room: S101AB • Pediatric Radiology - Tuesday Scientific Posters and Exhibits (12:15pm - 12:45pm) 12:45-01:15 PM • CL-PDS-TUB •
    [Show full text]
  • Comparison of Del Nido Cardioplegia
    ORIGINAL ARTICLE Braz J Cardiovasc Surg 2021;36(2):158-64 Comparison of Del Nido Cardioplegia and Blood Cardioplegia in Terms of Development of Postoperative Atrial Fibrillation in Patients Undergoing Isolated Coronary Artery Bypass Grafting Umut Serhat Sanrı1, MD; Kadir Kaan Özsin1, MD; Faruk Toktaş1, MD; Şenol Yavuz1, MD DOI: 10.21470/1678-9741-2020-0047 Abstract length of hospital stay remain significantly higher in the BC group Objective: Del Nido cardioplegia (DNC) has been used in (P=0.044, P<0.001, respectively). In addition, the aortic cross-clamp pediatric cardiac surgery for many years with a single dose time and the cardioplegia volume delivered were significantly application and its usage in adult cardiac surgery has been lower in the DNC group (P=0.042, P<0.001, respectively). In increasing in recent years, with results being published. In multivariate logistic regression analysis, only higher cardioplegia this study, we aimed to investigate the effect of DNC on the volume was determined as an independent predictor for PoAF development of postoperative atrial fibrillation (PoAF). development (OR 1.001; 95% CI 1.000-1.001; P=0.033). We did not Methods: In this retrospective observational comparative found difference between groups in terms of troponin T, inotropic study, 255 patients who underwent isolated on-pump coronary drug support, need for intraaortic balloon pump and mortality. artery bypass grafting, between January 2019 and November Conclusion: This study showed that DNC can be used safely 2019, were enrolled. The patients were divided into two groups: in adult coronary bypass surgery and PoAF development effect DNC (n=132) and blood cardioplegia (BC) (n=123).
    [Show full text]
  • A Common Occurrence After Coronary Bypass Surgery
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector lACC Vol. 15, No.6 1261 May 1990:1261-9 Acute Myocardial Dysfunction and Recovery: A Common Occurrence After Coronary Bypass Surgery WARREN M. BREISBLATT, MD, FACC, KEITH L. STEIN, MD, CYNTHIA J. WOLFE, RN, WILLIAM P. FOLLANSBEE, MD, FACC, JOHN CAPOZZI, CNMT, JOHN M. ARMITAGE, MD, ROBERT L. HARDESTY, MD, FACC Pittsburgh, Pennsylvania To evaluate whether acute myocardial dysfunction was min after coronary bypass and showed complete recovery common in the early postoperative period, serial hemody• within 48 h. Left ventricular end-systolic and end-diastolic namic measurements and radionuclide evaluation of ven• volume index increased significantly postoperatively, but tricular function were performed before and after opera• recovery in left ventricular ejection fraction was mostly due tion in 24 patients undergoing elective coronary bypass to decreases in end-systolic volume index (50 ± 22 ml at surgery. All patients had uncomplicated surgery, and no trough and 32 ± 16 ml at recovery). Depressed myocardial patient sustained an intraoperative infarction. In 96% of function was independent of bypass time, number of grafts patients, significant depression in right and left ventricular placed, preoperative medications or core temperatures ejection fraction was seen postoperatively, reaching a nadir postoperatively. Postoperative therapy with pressors or at 262 ± 116 min after coronary bypass. Left ventricular inotropic agents delayed but did
    [Show full text]
  • An Overview of Mechanical Circulatory Support in Single-Ventricle Patients
    161 Review Article An overview of mechanical circulatory support in single-ventricle patients Jacob R. Miller1, Timothy S. Lancaster1, Connor Callahan2, Aaron M. Abarbanell3, Pirooz Eghtesady3 1Division of Cardiothoracic Surgery, 2Department of Surgery, Barnes-Jewish Hospital/Washington University School of Medicine, St. Louis, MO, USA; 3Section of Pediatric Cardiothoracic Surgery, St. Louis Children’s Hospital/Washington University School of Medicine, St. Louis, MO, USA Contributions: (I) Conception and design: JR Miller, AM Abarbanell, P Eghtesady; (II) Administrative support: AM Abarbanell, P Eghtesady; (III) Provision of study materials or patients: None; (IV) Collection and assembly of data: JR Miller, TS Lancaster, C Callahan; (V) Data analysis and interpretation: JR Miller, AM Abarbanell, P Eghtesady; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Pirooz Eghtesady, MD, PhD. Chief of Pediatric Cardiothoracic Surgery, St. Louis Children’s Hospital, One Children’s Place, Suite 5 South, St. Louis, MO 63110, USA. Email: [email protected]. Abstract: The population of people with a single-ventricle is continually increasing due to improvements across the spectrum of medical care. Unfortunately, a proportion of these patients will develop heart failure. Often, for these patients, mechanical circulatory support (MCS) represents the only available treatment option. While single-ventricle patients currently represent a small proportion of the total number of patients who receive MCS, as the single-ventricle patient population increases, this number will increase as well. Outcomes for these complex single-ventricle patients who require MCS has begun to be evaluated. When considering the entire population, survival to hospital discharge is 30–50%, though this must be considered with the significant heterogeneity of the single-ventricle patient population.
    [Show full text]
  • Surgical Treatment
    Arch Dis Child: first published as 10.1136/adc.58.2.137 on 1 February 1983. Downloaded from Archives of Disease in Childhood, 1983, 58, 137-141 Congenital heart disease in the neonate: results of surgical treatment E L BOVE, C BULL, J STARK, M DE LEVAL, F J MACARTNEY, AND J F N TAYLOR Thoracic Unit, The Hospitalfor Sick Children, London SUMMARY All 212 neonates undergoing cardiac surgery at this hospital during the 5-year period from 1976 to 1980 inclusive were reviewed. Forty required open heart surgery with 23 (57%) deaths. One hundred and seventy-four neonates underwent non-bypass procedures and could be divided into three groups: group 1 (82 patients) had inadequate pulmonary blood flow, group 2 (33 patients) had increased pulmonary blood flow or inadequate mixing, and group 3 (59 patients) had coarctation of the aorta, alone or with associated lesions. Forty-four (25 %) of the neonates undergoing non- bypass procedures died. Two required bypass surgery later in the first month of life. Metabolic acidosis and the need for preoperative respiratory support were appreciably greater in non-surviving patients. The spectrum of diagnoses encountered and types of operative procedures performed are analysed. Refinements in the surgical treatment of congenital Bypass procedures. Forty patients underwent pro- heart disease in the neonate continue to evolve. cedures involving cardiopulmonary bypass. Neonates copyright. Previous reports of cardiac surgery in the newborn constitute only 3-5 % of our patients undergoing have shown small numbers of patients and a high such operations as the procedures were undertaken operative mortality.1-35-8 The form of treatment only when both the cardiologist and surgeon caring chosen depends on the complexity of the cardiac for the patient felt that survival was unlikely without anomaly as well as the overall condition of the open heart surgery.
    [Show full text]
  • CARDIOPLEGIA SOLUTION a (Solution)
    NEW ZEALAND DATA SHEET 1 CARDIOPLEGIA SOLUTION A (solution) 2 QUALITATIVE AND QUANTITATIVE COMPOSITION Each 1000mL contains the following active substances: Sodium chloride B.P. 6.43g Potassium chloride B.P. 1.19g Magnesium chloride hexahydrate B.P. 3.25g Calcium chloride dihydrate B.P. 176mg The mixture contains the following ions in 1000mL: Sodium 110mmol Magnesium 16mmol Chloride 160mmol Potassium 16mmol Calcium 1.2mmol For the full list of excipients, see Section 6.1. 3 PHARMACEUTICAL FORM Solution. Cardioplegia Solution A is a sterile, non‐pyrogenic solution for cardiac perfusion in a Viaflex bag. It is used to induce cardiac stasis and to protect the myocardium during open‐heart surgery. Cardioplegia Solution A is an isotonic crystalloid solution based on extracellular fluid ionic concentrations. Approximate osmolality is 275mOsm/kg and approximate pH is 3.7. Cardioplegia Solution A requires the aseptic addition of 10mL Sodium Bicarbonate 8.4% w/v Injection B.P. prior to use to adjust the pH to 7.4 ‐ 7.8. Following pH adjustment the total sodium ionic concentration is 120mmol/L. 4 CLINICAL PARTICULARS 4.1 Therapeutic indications Following pH adjustment with 10mL of Sodium Bicarbonate 8.4% w/v Injection B.P., Cardioplegia Solution A is used in combination with ischaemia and hypothermia to induce cardiac arrest during open heart surgery and to preserve the myocardium during asystole. 4.2 Dose and method of administration It is important that an appropriate dose of Cardioplegia Solution A is used to ensure that all areas of the myocardium are cooled evenly, especially those areas distal to arterial obstruction in patients with coronary‐artery disease.
    [Show full text]
  • Outcome of the Norwood Operation in Patients with Hypoplastic Left Heart Syndrome: a 12-Year Single-Center Survey
    Furck et al Congenital Heart Disease Outcome of the Norwood operation in patients with hypoplastic left heart syndrome: A 12-year single-center survey Anke Katharina Furck, MD,a Anselm Uebing, MD,a Jan Hinnerk Hansen,a Jens Scheewe, MD,b Olaf Jung, MD,a Gunther Fischer, MD,a Carsten Rickers, MD,a Tim Holland-Letz, MSc,c and Hans-Heiner Kramer, MDa Objective: Recent advances in perioperative care have led to a decrease in mortality of children with hypoplastic left heart syndrome undergoing the Norwood operation. This study aimed to evaluate the outcome of the Nor- wood operation in a single center over 12 years and to identify clinical and anatomic risk factors for adverse early CHD and longer term outcome. Methods: Full data on all 157 patients treated between 1996 and 2007 were analyzed. Results: Thirty-day mortality of the Norwood operation decreased from 21% in the first 3 years to 2.5% in the last 3 years. The estimated exponentially weighted moving average of early mortality after 157 Norwood oper- ations was 2.3%. Risk factors were an aberrant right subclavian artery, the use and duration of circulatory arrest, and the duration of total support time. The anatomic subgroup mitral stenosis/aortic atresia and female gender tended to show an increased early mortality. In the group of patients who required postoperative cardiopulmonary resuscitation, the ascending aorta was significantly smaller than in the remainder (3.03 Æ 1.05 vs 3.63 Æ 1.41 mm). Interstage mortality was 15% until the initiation of a home surveillance program in 2005, which has zeroed it so far.
    [Show full text]
  • Coders' Desk Reference for ICD-10-PCS Procedures
    2 0 2 DESK REFERENCE 1 ICD-10-PCS Procedures ICD-10-PCS for DeskCoders’ Reference Coders’ Desk Reference for ICD-10-PCS Procedures Clinical descriptions with answers to your toughest ICD-10-PCS coding questions Sample 2021 optum360coding.com Contents Illustrations ..................................................................................................................................... xi Introduction .....................................................................................................................................1 ICD-10-PCS Overview ...........................................................................................................................................................1 How to Use Coders’ Desk Reference for ICD-10-PCS Procedures ...................................................................................2 Format ......................................................................................................................................................................................3 ICD-10-PCS Official Guidelines for Coding and Reporting 2020 .........................................................7 Conventions ...........................................................................................................................................................................7 Medical and Surgical Section Guidelines (section 0) ....................................................................................................8 Obstetric Section Guidelines (section
    [Show full text]
  • Macdonald N Phd Final 130919
    Barriers to the Use of Goal Directed Therapy in a High Risk Surgical Patient Group A thesis submitted in fulfilment of the requirements of the degree of Doctor of Philosophy Neil MacDonald William Harvey Research Institute Barts and the London School of Medicine and Dentistry Queen Mary University of London 1 DECLARATION I, Neil MacDonald, confirm that the research included within this thesis is my own work or that where it has been carried out in collaboration with, or supported by, others that this is duly acknowledged below, and my contribution indicated. The work in chapter three is a result of large collaborative project and my contribution is outlined in chapter two. Previously published material is also acknowledged below. I attest that I have exercised reasonable care to ensure that the work is original, and does not to the best of my knowledge break any UK law, infringe any third party’s copyright or other Intellectual Property Right, or contain any confidential material. I accept that the College has the right to use plagiarism detection software to check the electronic version of the thesis. I confirm that this thesis has not been previously submitted for the award of a degree by this or any other university. The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author. Neil MacDonald 2 LIST OF COLLABORATION AND PUBLICATIONS Rupert M. Pearse, David A. Harrison, Neil MacDonald, Michael A. Gillies, Mark Blunt et al for the OPTIMISE study group.
    [Show full text]
  • Complete Draft Code Set Table of Contents
    Draft 2012 Procedural Coding System ICD~10~PCS Complete Draft Code Set Table of Contents Introduction . 1 Eye 080–08Y . 75 The ICD-10 Procedure Coding System (ICD-10-PCS) . 1 Ear Nose and Sinus 090–09W . 86 Introduction . 1 Respiratory System 0B1–0BY . 99 General Development Principles . 1 Mouth and Throat 0C0–0CX . 112 ICD-10-PCS Structure . .. 1 Gastrointestinal System 0D1–0DY . 123 ICD-10-PCS Format . 1 Hepatobiliary System and Pancreas 0F1–0FY . 141 Medical and Surgical Section (0) . 2 Endocrine System 0G2–0GW . 150 Obstetrics Section . 5 Skin and Breast 0H0–0HY . 155 Placement Section . 5 Subcutaneous Tissue and Fascia 0J0–0JX . .166 Administration Section . 6 Muscles 0K2–0KX . 181 Measurement and Monitoring Section . 6 Tendons 0L2–0LX . 189 Extracorporeal Assistance and Performance Section . 7 Bursae and Ligaments 0M2–0MX . .197 Extracorporeal Therapies Section . 7 Head and Facial Bones 0N2–0NW . 207 Osteopathic Section . 7 Upper Bones 0P2–0PW . 217 Other Procedures Section . 8 Lower Bones 0Q2–0QW . 227 Chiropractic Section . 8 Upper Joints 0R2–0RW . 237 Imaging Section . 8 Lower Joints 0S2–0SW . 249 Nuclear Medicine Section . 9 Urinary System 0T1–0TY . 262 Radiation Oncology Section . 9 Female Reproductive System 0U1–0UY . 272 Physical Rehabilitation and Diagnostic Audiology Male Reproductive System 0V1–0VW . 284 Section . 10 Anatomical Regions, General 0W0–0WW . 295 Mental Health Section . 10 Anatomical Regions, Upper Extremities 0X0–0XX . 303 Substance Abuse Treatment Section . 10 Anatomical Regions, Lower Extremities 0Y0–0YR . 309 Modifications to ICD-10-PCS . 10 Obstetrics 102–10Y . 315 Number of Codes in ICD-10-PCS . 11 Placement, Anatomical Regions 2W0–2W6 .
    [Show full text]