SILICON ISOTOPES of DEEP-SEA SPONGES: NEW INSIGHTS INTO BIOMINERALISATION and SKELETAL STRUCTURE Lucie Cassarino1, Christopher D
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Integrative Systematic Framework Helps to Reconstruct Skeletal
Dohrmann et al. Frontiers in Zoology (2017) 14:18 DOI 10.1186/s12983-017-0191-3 RESEARCH Open Access An integrative systematic framework helps to reconstruct skeletal evolution of glass sponges (Porifera, Hexactinellida) Martin Dohrmann1*, Christopher Kelley2, Michelle Kelly3, Andrzej Pisera4, John N. A. Hooper5,6 and Henry M. Reiswig7,8 Abstract Background: Glass sponges (Class Hexactinellida) are important components of deep-sea ecosystems and are of interest from geological and materials science perspectives. The reconstruction of their phylogeny with molecular data has only recently begun and shows a better agreement with morphology-based systematics than is typical for other sponge groups, likely because of a greater number of informative morphological characters. However, inconsistencies remain that have far-reaching implications for hypotheses about the evolution of their major skeletal construction types (body plans). Furthermore, less than half of all described extant genera have been sampled for molecular systematics, and several taxa important for understanding skeletal evolution are still missing. Increased taxon sampling for molecular phylogenetics of this group is therefore urgently needed. However, due to their remote habitat and often poorly preserved museum material, sequencing all 126 currently recognized extant genera will be difficult to achieve. Utilizing morphological data to incorporate unsequenced taxa into an integrative systematics framework therefore holds great promise, but it is unclear which methodological approach best suits this task. Results: Here, we increase the taxon sampling of four previously established molecular markers (18S, 28S, and 16S ribosomal DNA, as well as cytochrome oxidase subunit I) by 12 genera, for the first time including representatives of the order Aulocalycoida and the type genus of Dactylocalycidae, taxa that are key to understanding hexactinellid body plan evolution. -
Neue Spicula Aus Dem Karbon Und Perm: Konsequenzen
Geol. Paläont. Mitt. Innsbruck, ISSN 0378-6870, Bd. 19, S. 1-28, 1993 NEUE SPICULA AUS DEM KARBON UND PERM: KONSEQUENZEN FÜR DIE EVOLUTIONSÖKOLOGIE DER HEXACTINELLIDA (PORIFERA), STRATEGIEN IHRER GERÜSTBILDUNG IM SPÄTPALÄOZOIKUM UND FRÜHEN MESOZOIKUM Dorte Mehl & Helfried Mostler Mit 11 Abbildungen und 6 Fototafeln Zusammenfassung: Neue hexactinellide Spicula aus Sedimenten des Karbons und des Perms, sowie devonische und triassische Proben, aus Polen und den Nördlichen Kalkalpen stammend, werden untersucht. Sie werden mit Nadelgerü- sten mesozoischer und rezenter Hexactinellida verglichen. Im frühen Mesozoikum hat eine ökologische und damit einhergehende phylogenetische Reorganisation innerhalb der Hexactinellida stattgefunden. Sie offen- bart sich in der fossilen Überlieferung vor allem durch die Radiation der Hexasterophora mit rigiden, diktyo- nalen Sklerengerüsten (Hexactinosa und später auch Lychniscosa). Entgegen einer verbreiteten Auffassung sind die diktyonalen Hexactinelliden nicht auf die Zeit ab der Obertrias beschränkt. Bereits in der frühen Mit- teltrias können sie in großer Formenvielfalt nachgewiesen werden. Paläozoische Hexactinosa sind bisher aus dem Oberdevon bekannt. Wie Untersuchungen an Spicula karbonischer und permischer Schlämmproben er- geben, finden sich im Jungpaläozoikum einige Strategien der Gerüstbildung, die später nicht mehr realisiert wurden: Bei den Stromatidiidae bestanden sie Skelette aus lagenweise angeordneten Pentastern mit netzartig verzweigten, miteinander verschmolzenen Paratangentialstrahlen. Irpaspongia permica n.gen. n.sp. ver- wirklichte als einzige Hexactinellide die ansonsten nur von den „Lithistida" bekannte Gerüstbildung durch Zygose. Unter Einbeziehung der durch Auflösen von Sedimenten gewonnenen isolierten Skleren kommt den Poriferen, außer ihrer Bedeutung als ökologische Anzeiger, auch als Leitfossilien ein gewisser Wert zu. Abstract: New hexactinellid spicules from Carboniferous and Permian sediments are studied together with Devonian and Triassic material from Poland and from the Northern Calcareous Alps. -
Deep Phylogeny and Evolution of Sponges (Phylum Porifera)
CHAPTER ONE Deep Phylogeny and Evolution of Sponges (Phylum Porifera) G. Wo¨rheide*,†,‡,1, M. Dohrmann§, D. Erpenbeck*,†, C. Larroux*, M. Maldonado}, O. Voigt*, C. Borchiellinijj and D. V. Lavrov# Contents 1. Introduction 3 2. Higher-Level Non-bilaterian Relationships 4 2.1. The status of phylum Porifera: Monophyletic or paraphyletic? 7 2.2. Why is the phylogenetic status of sponges important for understanding early animal evolution? 13 3. Mitochondrial DNA in Sponge Phylogenetics 16 3.1. The mitochondrial genomes of sponges 16 3.2. Inferring sponge phylogeny from mtDNA 18 4. The Current Status of the Molecular Phylogeny of Demospongiae 18 4.1. Introduction to Demospongiae 18 4.2. Taxonomic overview 19 4.3. Molecular phylogenetics 22 4.4. Future work 32 5. The Current Status of the Molecular Phylogeny of Hexactinellida 33 5.1. Introduction to Hexactinellida 33 5.2. Taxonomic overview 33 5.3. Molecular phylogenetics 34 5.4. Future work 37 6. The Current Status of the Molecular Phylogeny of Homoscleromorpha 38 6.1. Introduction to Homoscleromorpha 38 * Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians- Universita¨tMu¨nchen, Mu¨nchen, Germany { GeoBio-Center, Ludwig-Maximilians-Universita¨tMu¨nchen, Mu¨nchen, Germany { Bayerische Staatssammlung fu¨r Pala¨ontologie und Geologie, Mu¨nchen, Germany } Department of Invertebrate Zoology, Smithsonian National Museum of Natural History, Washington, DC, USA } Department of Marine Ecology, Centro de Estudios Avanzados de Blanes (CEAB-CSIC), Blanes, Girona, Spain jj Institut Me´diterrane´en de Biodiversite´ et d’Ecologie marine et continentale, UMR 7263 IMBE, Station Marine d’Endoume, Chemin de la Batterie des Lions, Marseille, France # Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA 1Corresponding author: Email: [email protected] Advances in Marine Biology, Volume 61 # 2012 Elsevier Ltd ISSN 0065-2881, DOI: 10.1016/B978-0-12-387787-1.00007-6 All rights reserved. -
Cross-Shelf Habitat Suitability Modeling: Characterizing Potential Distributions of Deep-Sea Corals, Sponges, and Macrofauna Offshore of the US West Coast
SCCWRP #1171 OCS Study BOEM 2020-021 Cross-Shelf Habitat Suitability Modeling: Characterizing Potential Distributions of Deep-Sea Corals, Sponges, and Macrofauna Offshore of the US West Coast US Department of the Interior Bureau of Ocean Energy Management Pacific OCS Region OCS Study BOEM 2020-021 Cross-Shelf Habitat Suitability Modeling: Characterizing Potential Distributions of Deep-Sea Corals, Sponges, and Macrofauna Offshore of the US West Coast October 2020 Authors: Matthew Poti1,2, Sarah K. Henkel3, Joseph J. Bizzarro4, Thomas F. Hourigan5, M. Elizabeth Clarke6, Curt E. Whitmire7, Abigail Powell8, Mary M. Yoklavich4, Laurie Bauer1,2, Arliss J. Winship1,2, Michael Coyne1,2, David J. Gillett9, Lisa Gilbane10, John Christensen2, and Christopher F.G. Jeffrey1,2 1. CSS, Inc., 10301 Democracy Ln, Suite 300, Fairfax, VA 22030 2. National Centers for Coastal Ocean Science (NCCOS), National Oceanic and Atmospheric Administration (NOAA), National Ocean Service, 1305 East West Hwy SSMC4, Silver Spring, MD 20910 3. Oregon State University, Hatfield Marine Science Center, 2030 Marine Science Drive, Newport, OR 97365 4. Institute of Marine Sciences, University of California, Santa Cruz & Fisheries Ecology Division, Southwest Fisheries Science Center (SWFSC), NOAA National Marine Fisheries Service (NMFS), Santa Cruz, CA 95060 5. Deep Sea Coral Research & Technology Program, NOAA NMFS, 1315 East West Hwy, Silver Spring, MD 20910 6. Northwest Fisheries Science Center (NWFSC), NOAA NMFS, 2725 Montlake Blvd East, Seattle, WA 98112 7. Fishery Resource Analysis and Monitoring Division, NWFSC, NOAA NMFS, 99 Pacific St, Bldg 255-A, Monterey, CA 93940 8. Lynker Technologies under contract to the NWFSC, NOAA NMFS, 2725 Montlake Blvd East, Seattle, WA 98112 9. -
Fmicb-11-00716.Pdf
fmicb-11-00716 April 23, 2020 Time: 17:27 # 1 ORIGINAL RESEARCH published: 24 April 2020 doi: 10.3389/fmicb.2020.00716 Compositional and Quantitative Insights Into Bacterial and Archaeal Communities of South Pacific Deep-Sea Sponges (Demospongiae and Hexactinellida) Georg Steinert1,2, Kathrin Busch1, Kristina Bayer1, Sahar Kodami3, Pedro Martinez Arbizu3, Michelle Kelly4, Sadie Mills5, Dirk Erpenbeck6,7, Martin Dohrmann6, Gert Wörheide6,7,8, Ute Hentschel1,9* and Peter J. Schupp2,10* 1 RD3 Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany, 2 Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Oldenburg, Germany, 3 German Center for Marine Edited by: Biodiversity Research, Senckenberg Research Institute, Wilhelmshaven, Germany, 4 National Institute of Water Zhiyong Li, and Atmospheric Research, Ltd., Auckland, New Zealand, 5 National Institute of Water and Atmospheric Research, Ltd., Shanghai Jiao Tong University, China Wellington, New Zealand, 6 Department of Earth and Environmental Sciences, Paleontology & Geobiology, 7 Reviewed by: Ludwig-Maximilians-Universität München, Munich, Germany, GeoBio-Center, Ludwig-Maximilians-Universität München, 8 9 Nicole De Voogd, Munich, Germany, Bayerische Staatssammlung für Paläontologie und Geologie, Munich, Germany, Christian-Albrecht 10 Naturalis Biodiversity Center, University of Kiel, Kiel, Germany, Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg Netherlands (HIFMB), Oldenburg, Germany Marco J. L. Coolen, Curtin University, Australia In the present study, we profiled bacterial and archaeal communities from 13 Lu Fan, Southern University of Science phylogenetically diverse deep-sea sponge species (Demospongiae and Hexactinellida) and Technology, China from the South Pacific by 16S rRNA-gene amplicon sequencing. Additionally, the *Correspondence: associated bacteria and archaea were quantified by real-time qPCR. -
Hexactinellida from the Perth Canyon, Eastern Indian Ocean, with Descriptions of Five New Species
Zootaxa 4664 (1): 047–082 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2019 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4664.1.2 http://zoobank.org/urn:lsid:zoobank.org:pub:4434E866-7C52-48D1-9A6B-1E6220D71549 Hexactinellida from the Perth Canyon, Eastern Indian Ocean, with descriptions of five new species KONSTANTIN TABACHNICK1, JANE FROMONT2,5, HERMANN EHRLICH3 & LARISA MENSHENINA4 1P.P. Shirshov Institute of Oceanology of Academy of Sciences of Russia, Moscow 117997, Russia. E-mail:[email protected] 2Department of Aquatic Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, Western Australia 6986, Australia. E-mail: [email protected] 3Institute of Electronic and Sensor materials, TU Bergakademie Freiberg, Gustav-Zeuner Str. 3, 09599 Freiberg, Germany. E-mail: [email protected] 4Biophysical department, Physical Faculty, MSU-2, b.2 Moscow State University, Moscow, 119992, Russia. 5Corresponding author. E-mail: [email protected] Abstract Glass sponges (Class Hexactinellida) are described from the Perth Canyon in the eastern Indian Ocean, resulting in 10 genera being recorded, including 11 species, five of which are new to science. In addition, the study resulted in two new records for Australia, Pheronema raphanus and Monorhaphis chuni, and one new record for the Indian Ocean, Walteria flemmingi. A second species of Calyptorete is described over 90 years after the genus was first established with a single species. A significant difference was noted between the condition of sponges collected on the RV Falkor, which used an ROV, and the earlier RV Southern Surveyor expedition, which used sleds and trawls. -
List of Publications PD Dr. Dorte Janussen Peer-Reviewed Articles In
List of Publications PD Dr. Dorte Janussen Peer-reviewed Articles in scientific journals Fengjie Li,; Pandey, P.; Janussen, D.; Chittiboyina, A.; Ferreira, D.; Tasdemir, D.: Tridiscorhabdin and Didiscorhabdin, the First Discorhabdin Oligomers Linked with a Direct C-N Bridge from the Sponge, Latrunculia biformis, Collected from the Deep-Sea in Antarctica.- Journal of Natural Products (in review). Fengjie Li, Janussen D., Tasdemir D. (2020): New Discorhabdin B Dimers with Anticancer Activity from the Antarctic Deep-Sea Sponge Latrunculia biformis.-Marine Drugs 2020, 18, 107-128 (doi:10.3390/md18020107) Federwisch, L., Janussen, D. & Richter, C. (2020): Macroscopic characteristics facilitate identification of common Antarctic glass sponges. Polar Biology, 43(2), 91-110 (DOI 10.1007/s00300-019-02612-2) Li Fengjie, Peifer C., Janussen D. &Tasdemir D. (2019): New Discorhabdin Alkaloids from the Antarctic Deep-Sea Sponge Latrunculia biformis.- Marine Drugs, 2019, 17, 439 (DOI https://doi.org/10.3390/md17080439) Li Lixia, Dorte Janussen, Renbin Zhan & Joachim Reitner (2019): Oldest known fossil Rossellids (Hexactinellida, Porifera) from the Ordovician–Silurian transition of Anhui, South China.- Paläontologische Zeitschrift, May 2019 (DOI: https://doi.org/10.1007/s12542-019-00452-3) Steinert G., Wemheuer B., Janussen D., Erpenbeck D., Daniel R., Simon M., Brinkhoff T., Schupp P. J. (2019): Prokaryotic Diversity and Community Patterns in Antarctic Continental Shelf Sponges Frontiers in Marine Science, 05 June 2019 | https://doi.org/10.3389/fmars.2019.00297 Li F., Janussen D., Peifer C., Pérez-Victoria I., Tasdemir D. (2018): Targeted Isolation of Tsitsikammamines from the Antarctic Deep-sea Sponge Latrunculia biformis by Molecular Networking and Anticancer Activity.- Marine Drugs 2018, 16, 268; doi:10.3390/md16080268 Herzog S., Amon D. -
Océano Profundo 2018: Exploring Deep-Sea Habitats Off Puerto Rico and the U.S. Virgin Islands Cruise Report
EX-18-11 Expedition Report Océano Profundo 2018: Exploring Deep-Sea Habitats off Puerto Rico and the U.S. Virgin Islands EX-18-11: Puerto Rico and U.S. Virgin Islands (ROV & Mapping) October 30 - November 20, 2018 San Juan, Puerto Rico to San Juan, Puerto Rico Report Contributors: Daniel Wagner, Expedition Coordinator, NOAA Office of Ocean Exploration & Research Derek Sowers, Mapping Lead, NOAA Office of Ocean Exploration & Research Stacey M. Williams, Science Co-Lead, Institute for Socio-Ecological Research Steven Auscavitch, Science Co-Lead, Temple University Debi Blaney, Web Coordinator, NOAA Office of Ocean Exploration & Research Megan Cromwell, Sample Data Manager, NOAA National Centers of Environmental Information 1, 2019 March 2 NOAA Office of Ocean Exploration and Research 1315 East-West Highway, SSMC3 RM 10210 Silver Spring, MD 20910 ` Abstract Between October 30 and November 20, 2018, the Office of Ocean Exploration and Research (OER) of the National Oceanic and Atmospheric Administration (NOAA) and partners conducted a 22-day telepresence-enabled expedition on NOAA Ship Okeanos Explorer to collect critical baseline information about unknown and poorly understood deep-water areas surrounding Puerto Rico and the U.S. Virgin Islands. The goal of the expedition was to use remotely operated vehicle (ROV) dives in combination with mapping operations to increase our understanding of deep-sea ecosystems of this poorly studied region, as well as to provide a foundation of publicly-accessible data to spur further exploration, research, and management activities. Using OER’s dual-body ROV the expedition completed 19 successful dives ranging in depth from 250 to 5,000 meters that explored a wide diversity of habitats and geological features, including deep-sea fish habitats, deep-sea coral and sponge communities, midwater habitats, submarine canyons, submarine landslides, and more. -
State of Deep-Sea Coral and Sponge Ecosystems of the U.S. Pacific
State of Deep‐Sea Coral and Sponge Ecosystems of the U.S. Pacific Islands Region Chapter 7 in The State of Deep‐Sea Coral and Sponge Ecosystems of the United States Report Recommended citation: Parrish FA, Baco AR, Kelley C, Reiswig H (2017) State of Deep‐Sea Coral and Sponge Ecosystems of the U.S. Pacific Islands Region. In: Hourigan TF, Etnoyer, PJ, Cairns, SD (eds.). The State of Deep‐Sea Coral and Sponge Ecosystems of the United States. NOAA Technical Memorandum NMFS‐OHC‐4, Silver Spring, MD. 40 p. Available online: http://deepseacoraldata.noaa.gov/library. Iridogorgia soft coral located off the Northwest Hawaiian Islands. Courtesy of the NOAA Office of Ocean Exploration and Research. STATE OF DEEP‐SEA CORAL AND SPONGE ECOSYSTEMS OF THE U.S. PACIFIC ISLANDS REGION STATE OF DEEP-SEA Frank A. CORAL AND SPONGE Parrish1*, Amy R. ECOSYSTEMS OF THE Baco2, Christopher U.S. PACIFIC ISLANDS Kelley3, and Henry Reiswig4 REGION 1 NOAA Ecosystem Sciences Division, Pacific Islands Fisheries Science I. Introduction Center, Honolulu, HI * Corresponding author: The U.S. Pacific Islands Region consists of more than 50 oceanic [email protected] islands, including the Hawaiian Archipelago, the Commonwealth 2 Department of Earth, of the Northern Mariana Islands (CNMI), and the territories of Ocean, and Atmospheric Guam and American Samoa, as well as the Pacific Remote Islands Science, Florida State (Kingman Reef; Palmyra Atoll; Jarvis Island; Howland and Baker University, Tallahassee Islands; Johnston Atoll; and Wake Island) and Rose Atoll. The 3 Department of Pacific Island States in free association with the United States, Oceanography, University including the Republic of Palau, the Federated States of of Hawaii, Manoa, HI Micronesia, and the Republic of the Marshall Islands, encompass 4 additional large portions of the central and western Pacific with Department of Biology, University of Victoria; close ties to the U.S. -
Sur Ridge Field Guide: Monterey Bay National Marine Sanctuary
Office of National Marine Sanctuaries National Oceanic and Atmospheric Administration Marine Conservation Science Series Sur Ridge Field Guide: Monterey Bay National Marine Sanctuary ©MBARI October 2017 | sanctuaries.noaa.gov | MARINE SANCTUARIES CONSERVATION SERIES ONMS-17-10 U.S. Department of Commerce Wilbur Ross, Secretary National Oceanic and Atmospheric Administration Benjamin Friedman, Acting Administrator National Ocean Service Russell Callender, Ph.D., Assistant Administrator Office of National Marine Sanctuaries John Armor, Director Report Authors: Erica J. Burton1, Linda A. Kuhnz2, Andrew P. DeVogelaere1, and James P. Barry2 1Monterey Bay National Marine Sanctuary National Ocean Service National Oceanic and Atmospheric Administration 99 Pacific Street, Bldg 455A, Monterey, CA, 93940, USA 2Monterey Bay Aquarium Research Institute 7700 Sandholdt Road, Moss Landing, CA, 95039, USA Suggested Citation: Burton, E.J., L.A. Kuhnz, A.P. DeVogelaere, and J.P. Barry. 2017. Sur Ridge Field Guide: Monterey Bay National Marine Sanctuary. Marine Sanctuaries Conservation Series ONMS- 17-10. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, Office of National Marine Sanctuaries, Silver Spring, MD. 122 pp. Cover Photo: Clockwise from top left: bamboo coral (Isidella tentaculum, foreground center), sea star (Hippasteria californica), Shortspine Thornyhead (Sebastolobus alascanus), and crab (Gastroptychus perarmatus). Credit: Monterey Bay Aquarium Research Institute. About the Marine Sanctuaries Conservation Series The Office of National Marine Sanctuaries, part of the National Oceanic and Atmospheric Administration, serves as the trustee for a system of underwater parks encompassing more than 620,000 square miles of ocean and Great Lakes waters. The 13 national marine sanctuaries and two marine national monuments within the National Marine Sanctuary System represent areas of America’s ocean and Great Lakes environment that are of special national significance. -
New Hexactinellid Sponges from Deep Mediterranean Canyons
Zootaxa 4236 (1): 118–134 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2017 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4236.1.6 http://zoobank.org/urn:lsid:zoobank.org:pub:A2569FC8-0E88-416A-92A3-C61691E6FDFE New hexactinellid sponges from deep Mediterranean canyons NICOLE BOURY-ESNAULT1, JEAN VACELET1, MAUDE DUBOIS1, ADRIEN GOUJARD2, MAÏA FOURT1, THIERRY PÉREZ1 & PIERRE CHEVALDONNÉ1 1IMBE, CNRS, Aix Marseille Univ, Univ Avignon, IRD, Station Marine d’Endoume, 13007 Marseille, France. E-mail: [email protected] 2GIS Posidonie, Campus de Luminy, Océanomed, Case 901, 13288 Marseille Cedex 09, France Abstract During the exploration of the NW Mediterranean deep-sea canyons (MedSeaCan and CorSeaCan cruises), several hexacti- nellid sponges were observed and collected by ROV and manned submersible. Two of them appeared to be new species of Farrea and Tretodictyum. The genus Farrea had so far been reported with doubt from the Mediterranean and was listed as "taxa inquirenda" for two undescribed species. We here provide a proper description for the specimens encountered and sampled. The genus Tretodictyum had been recorded several times in the Mediterranean and in the near Atlantic as T. tubulosum Schulze, 1866, again with doubt, since the type locality is the Japan Sea. We here confirm that the Mediterra- nean specimens are a distinct new species which we describe. We also provide18S rDNA sequences of the two new species and include them in a phylogenetic tree of related hexactinellids. Key words: new species, Porifera, Farrea, Tretodictyum, Cosmopolitan species, 18S rDNA, Molecular phylogeny, Red mud deposits Introduction The recent renewed interest for the exploration of the bathyal zone of the Mediterranean keeps revealing a higher diversity of hexactinellid sponges than previously thought (Pardo et al. -
Silicon Isotopes of Deep Sea Sponges: New Insights Into Biomineralisation and Skeletal Structure
Biogeosciences, 15, 6959–6977, 2018 https://doi.org/10.5194/bg-15-6959-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Silicon isotopes of deep sea sponges: new insights into biomineralisation and skeletal structure Lucie Cassarino1, Christopher D. Coath1, Joana R. Xavier2,3, and Katharine R. Hendry1 1University of Bristol, School of Earth Sciences, Wills Memorial Building, Queen’s Road, Bristol, BS8 1RJ, UK 2CIIMAR – Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal 3Department of Biological Sciences and K.G. Jebsen Centre for Deep Sea Research, University of Bergen, P.O. Box 7803, 5020 Bergen, Norway Correspondence: Lucie Cassarino ([email protected]) Received: 6 July 2018 – Discussion started: 10 July 2018 Revised: 24 October 2018 – Accepted: 26 October 2018 – Published: 21 November 2018 Abstract. The silicon isotopic composition (δ30Si) of deep 1 Introduction sea sponges’ skeletal element – spicules – reflects the sili- cic acid (DSi) concentration of their surrounding water and 1.1 Introduction to the Porifera world can be used as natural archives of bottom water nutrients. In order to reconstruct the past silica cycle robustly, it is essen- Sponges (phylum Porifera) are one of the most primitive tial to better constrain the mechanisms of biosilicification, metazoans and have likely occupied ocean sea floors since which are not yet well understood. Here, we show that the the Precambrian period as indicated by molecular fossil apparent isotopic fractionation (δ30Si) during spicule forma- records from the end of the Marinoan glaciation 635 Myr ago tion in deep sea sponges from the equatorial Atlantic ranges (Love et al., 2009) and Mongolian silica spicules dating from from −6.74 ‰ to −1.50 ‰ in relatively low DSi concentra- 545 million years ago (Antcliffe et al., 2014).