Fermi Condensates

Total Page:16

File Type:pdf, Size:1020Kb

Fermi Condensates ��� ���� � �� ������ �� ������� ����� ����������� ��� ��������������� ��������� �� ���� ������ ����� �� � �� ���� ���� ����� ����������� ��������� ��� ������ ������� ���������� �� �������� �� �������� ��� ICTP SCHOOL ON QUANTUM PHASE TRANSITIONS AND NON-EQUILIBRIUM PHENOMENA IN COLD ATOMIC GASES 2005 Fermi condensates Markus Greiner JILA, Group of D. Jin; Coworkers: C. Regal and J. Stewart NIST and the University of Colorado, Boulder Highly controlled many-body quantum systems Weakly interacting Bose gases: Coherence, superfluid flow, vortices … Strongly correlated Bose systems: Superfluid to Mott insulator transition Fermionic superfluidity: BCS-BEC crossover physics • Condensed matter physics studied with an atomic physics system Outline: • Fermionic superfluidity; The tools: trapping, cooling, probing; • Controlling interactions; Molecular Bose-Einstein condensate; Fermi condensate: Generalized Cooper pairs in the BCS-BEC crossover; • Probing the fermion momentum distribution • Detecting atom-atom correlations via atom shot noise; Bosons Fermions integer spin half-integer spin <1,2 = <2,1 <1,2 = -<2,1 Æ Bosonic Æ Pauli exclusion enhancement principle EF= kbTF spin n spin p 1995: Bose-Einstein condensation 1999: Fermi sea of atoms e.g. 87Rb, 23Na, H, 39K … 40K, 6Li photons, liquid 4He electrons, protons, neutrons Pairing and Superfluidity Æ Spin is additive: Fermions can pair up and form effective bosons: <(1,…,N) =  [ I(1,2) I(3,4) … I(N-1,N) ] spin n spin p Molecules of Generalized Cooper Cooper pairs fermionic atoms pairs of fermionic atoms kF BEC of weakly BCS - BEC BCS superconductivity bound molecules crossover Cooper pairs: correlated momentum-space pairing BCS-BEC crossover for example: Eagles, Leggett, Nozieres and Schmitt-Rink, Randeria, Strinati, Zwerger, Holland, Timmermans, Griffin, Levin … Cooling a gas of fermionic 40K atoms 1. Laser cooling and trapping of 40K 300 K to 1 mK a109 atoms 2. Magnetic trapping and evaporative cooling n spin 1 mK to 10 PK spin p a109 ψ 107 atoms Cooling a gas of fermionic 40K atoms 3. Optical trapping and evaporative cooling 10 µK to 50 nK 107 ψ 105 atoms ¾ can confine any spin-state ¾ can apply arbitrary B-field Quantum degeneracy momentum distributions EF= kbTF T/TF=0.77 T=0 spin n kF spin p 1.4 T/TF=0.27 1.2 data Fermi gas fit 1.0 Gauss fit 0.8 T/T = 0.1 F 0.6 0.4 T/TF=0.11 0.2 Optical depth 0.0 0 1020304050 radius (arb) Controlling interaction Magnetic Feshbach resonance Turning the knob: a new molecular bound state appears as B is varied R V(R) internuclear separation R 202 G 200 G 204 G B-field Controlling interaction Magnetic Feshbach resonance: a new molecular bound state appears as B is varied V(R) R R R R 'B Ebinding molecular New bound state leads to binding energy divergence of scattering properties Æ Levinson Theorem Divergence of scattering length a Interactions between two free atoms are characterized by the a > 0 repulsive s-wave scattering length, a Large |a| ĺ strong interactions 'B Ebinding a < 0 attractive Broad feshbach resonance a Broad Feshbach resonance: K: width 22 MHz, approx. 5000 x EF Æ very strong coupling between open and closed channel Æ small closed channel occupancy 2 'B E = V(R) binding 2 mK a R EZ closed Æ well described as single channel channel problem Measurement of scattering length 3000 ) a o a 2000 1000 0 a > 0 repulsive -1000 -2000 scattering length ( scattering -3000 215 220 225 230 B (gauss) 'B Ebinding close to resonance: a < 0 attractive two-body binding energy 2 E = binding 2 mK a Creating molecules a V(R) Creating molecules by adiabatically ramping across R R the Feshbach resonance free atoms 'B Ebinding Theory: bound Timmermans et al., Phys. Rep. 315, 199 (1999), Abeelen et al., PRL83, 1550 (1999) molecules Mies et al., PRA 61, 022721 (2000), Ho et al., cond-mat/0306187 Experiment: coh. osc. atom/molecules Rb85: Donley et al., Nature 417, 529 (2002). Creating molecules ) 3 750 a measured 500 molecule 250 number 0 N molecule (10 molecule N 220 224 228 free atoms B (G) hold 'B Ebinding 40K: C. Regal et al. Nature 424, 47 … and quickly also with other bound Fermionic and Bosonic species: 6Li: Hulet (Houston), Salomon (Paris) molecules Grimm (Innsbruck), Ketterle (Boston) Cs: Grimm (Innsbruck) Rb: Rempe (Munich) Na: Ketterle (Boston) Molecule binding energy a V(R) Measurement of the R R molecular binding energy by rf-spectroscopy 0 -100 'B Ebinding -200 -300 (kHz) -400 'Q -500 220 221 222 223 224 C. Regal et al. Nature 424, 47 B (gauss) Molecule properties a • extremely weakly bound • large, molecule size § a • but: ridiculously stable close to Feshbach resonance free atoms 'B Ebinding C. A. Regal, M. Greiner, and D. S. Jin, condmat/0308606 (2003) size of molecule Interaction: theory prediction: changes D.S. Petrov, C. Salomon, G.V. Shlyapnikov, condmat/0309010 (2003) (accepted at PRL) Timescale of B-ramp a 1) Fast with respect to two-body physics atoms atoms 'B Ebinding Å 2 Ps/G molecules Timescale of B-ramp a 2) Adiabatic with respect to two-body physics atoms 'B Ebinding Å 40 Ps/G molecules up to 90% conversion efficiency Timescale of B-ramp a 2) Adiabatic with respect E to two-body physics F …but fast with respect to many body physics atoms 'B Ebinding Å 40 Ps/G molecules Timescale of B-ramp a 3) Adiabatic with respect E to two-body physics F and adiabatic with respect to many body physics atoms 'B Ebinding Å 4000 Ps/G molecules Timescale of B-ramp a 3) Adiabatic with respect E to two-body physics F and adiabatic with respect to many body physics atoms 'B Ebinding Å 4000 Ps/G Cubizolles et al., PRL 91, 240401 (2003); molecules BEC L. Carr et al., cond-mat/0308306 Molecular Bose-Einstein condensate A molecular BEC a emerges from a Fermi sea! T/TF= 0.19 0.06 Time of flight absorption image 'B M. Greiner, C. A. Regal, and D. S. Jin, Nature 426, 537 (2003) profile 6Li: Jochim et al., Science 302: 2101(2003), M. Zwierlein et al., Phys. Rev. Lett. 91, 250401 (2003). T. Bourdel et al., cond-mat/0403091 Molecular Bose-Einstein condensate A molecular BEC emerges from a Fermi sea! T/TF= 0.19 0.06 Æ timescale for many-body adiabaticity is 100x slower than for two-body adiabaticity Condensation of pairs of fermionic atoms Molecule or BEC side of a Atom or BCS side of Feshbach resonance: Feshbach resonance: BEC of molecules no two-body molecules Æ condensate of pairs of fermionic atoms BCSÆ 'B Ebinding Resonance superfluidity: Holland, Griffin, … Detecting a Fermi condensate 2) rapidly ramping across a 1) adiabatically ramping into the the Feshbach resonance regime with strong to project atoms pair wise attractive interactions onto molecules Æ fast compared to many body physics G 4000 s/G 40 Ps/ P 'B Ebinding Æ immediately probe Æ resonance condensation molecule momentum of fermionic atom pairs distribution Detecting a Fermi condensate condensate of pairs a of fermionic atoms ! G 4000 s/G 40 Ps/ P 'B Ebinding Æ immediately probe molecule momentum distribution Detecting a Fermi condensate a G 40 Ps/ 'B Ebinding No condensate, much too fast for condensation !! Detecting a Fermi condensate a G 4000 s/G 40 Ps/ P 'B Ebinding Condensate, requires condensate of fermionic atom pairs on BCS side! Fermionic condensate condensate of pairs a of fermionic atoms ! 'B=0.12 0.25 0.55 G T/TF=0.08 3x105 'B Ebinding 2x105 1x105 molecules N 0 -0.5 0.0 0.5 'B (gauss) Fermionic condensate 0.15 condensate a T/TF=0.08 fraction / N 0.10 0 N 0.05 0 -0.5 0 0.5 'B (gauss) 3x105 'B Ebinding 2x105 1x105 molecules N 0 -0.5 0.0 0.5 'B (gauss) BCS-BEC crossover F T / BEC T BCS of of molecules Cooper pairs before sweep Temperature inverse interaction strength 1/(kFa) Æ universal parameter S Figure: 0.4 k a T e 2 F M. Randeria Tc,BCS c,BCS | F /T 0.2 BEC-BCS crossover c T theory for example: Eagles, Leggett, Nozieres et al., Randeria, 0 Holland et al., Timmermans 1 0-1 et al., Ohashi et al., Stajic et al. … 1/kFa BCS-BEC crossover 1.0 gap at T=0 in BCS theory F E / two-body molecular ' binding energy 0.1 Figure: J. R. Engelbrecht et al., PRB 55, 15153 (1997) a) 2 1 0 -1 -2 1/(kF F T/T Temperature inverse interaction strength 1/(kFa) Probing atom momentum distribution rapidly switching off interactions before TOF expansion: Æ pairs dissociate, momentum distribution of fermions is measured 40K Feshbach resonance 10 a=0 ) 2000 0 5 0.002 ms/G 1000 B (gauss) ' large a 0 0 on -1000 a=0 trap off -2000 scattering length (a 190 200 210 220 0 102030405060 B (gauss) time (ms) BCS-BEC crossover theory Homogeneous gas, T=0: Momentum distribution broadens because of pairing 1.0 0.8 a=infinity a=0 ) 0.6 F 0.4 k/k ( n 0.2 0 0 0.5 1.0 1.5 2.0 2.5 k/k F M. Marini, F. Pistolesi, G. C. Strinati, Euro. Phys. J. B 1, 151 (1998) Momentum distributions of trapped gas T=0, mean-field theory Experiment 1.0 1.0 a=0 0.8 1 0.8 T = 0.12 TF /kFa=-0.66 OD 1 /k a=0 OD 0.6 F 0.6 1 /kFa=0.59 0.4 0.4 normalized 0.2 0.2 normalized 0 0 0 0.5 1.0 1.5 2.0 2.5 0 0.5 1.0 1.5 2.0 2.5 k/k 0 k/k 0 F F L.
Recommended publications
  • Fermionic Condensation in Ultracold Atoms, Nuclear Matter and Neutron Stars
    Journal of Physics: Conference Series OPEN ACCESS Related content - Condensate fraction of asymmetric three- Fermionic condensation in ultracold atoms, component Fermi gas Du Jia-Jia, Liang Jun-Jun and Liang Jiu- nuclear matter and neutron stars Qing - S-Wave Scattering Properties for Na—K Cold Collisions To cite this article: Luca Salasnich 2014 J. Phys.: Conf. Ser. 497 012026 Zhang Ji-Cai, Zhu Zun-Lue, Sun Jin-Feng et al. - Landau damping in a dipolar Bose–Fermi mixture in the Bose–Einstein condensation (BEC) limit View the article online for updates and enhancements. S M Moniri, H Yavari and E Darsheshdar This content was downloaded from IP address 170.106.40.139 on 26/09/2021 at 20:46 22nd International Laser Physics Worksop (LPHYS 13) IOP Publishing Journal of Physics: Conference Series 497 (2014) 012026 doi:10.1088/1742-6596/497/1/012026 Fermionic condensation in ultracold atoms, nuclear matter and neutron stars Luca Salasnich Dipartimento di Fisica e Astronomia “Galileo Galilei” and CNISM, Universit`a di Padova, Via Marzolo 8, 35131 Padova, Italy E-mail: [email protected] Abstract. We investigate the Bose-Einstein condensation of fermionic pairs in three different superfluid systems: ultracold and dilute atomic gases, bulk neutron matter, and neutron stars. In the case of dilute gases made of fermionic atoms the average distance between atoms is much larger than the effective radius of the inter-atomic potential. Here the condensation of fermionic pairs is analyzed as a function of the s-wave scattering length, which can be tuned in experiments by using the technique of Feshbach resonances from a small and negative value (corresponding to the Bardeen-Cooper-Schrieffer (BCS) regime of Cooper Fermi pairs) to a small and positive value (corresponding to the regime of the Bose-Einstein condensate (BEC) of molecular dimers), crossing the unitarity regime where the scattering length diverges.
    [Show full text]
  • Realization of Bose-Einstein Condensation in Dilute Gases
    Realization of Bose-Einstein Condensation in dilute gases Guang Bian May 3, 2008 Abstract: This essay describes theoretical aspects of Bose-Einstein Condensation and the first experimental realization of BEC in dilute alkali gases. In addition, some recent experimental progress related to BEC are reported. 1 Introduction A Bose–Einstein condensate is a state of matter of bosons confined in an external potential and cooled to temperatures very near to absolute zero. Under such supercooled conditions, a large fraction of the atoms collapse into the lowest quantum state of the external potential, at which point quantum effects become apparent on a macroscopic scale. When a bosonic system is cooled below the critical temperature of Bose-Einstein condensation, the behavior of the system will change dramatically, because the condensed particles behaving like a single quantum entity. In this section, I will review the early history of Bose- Einstein Condensation. In 1924, the Indian physicist Satyendra Nath Bose proposed a new derivation of the Planck radiation law. In his derivation, he found that the indistinguishability of particle was the key point to reach the radiation law and he for the first time took the position that the Maxwell-Boltzmann distribution would not be true for microscopic particles where fluctuations due to Heisenberg's uncertainty principle will be significant. In the following year Einstein generalized Bose’s method to ideal gases and he showed that the quantum gas would undergo a phase transition at a sufficiently low temperature when a large fraction of the atoms would condense into the lowest energy state. At that time Einstein doubted the strange nature of his prediction and he wrote to Ehrenfest the following sentences, ‘From a certain temperature on, the molecules “condense” without attractive forces, that is, they accumulate at zero velocity.
    [Show full text]
  • States of Matter Part I
    States of Matter Part I. The Three Common States: Solid, Liquid and Gas David Tin Win Faculty of Science and Technology, Assumption University Bangkok, Thailand Abstract There are three basic states of matter that can be identified: solid, liquid, and gas. Solids, being compact with very restricted movement, have definite shapes and volumes; liquids, with less compact makeup have definite volumes, take the shape of the containers; and gases, composed of loose particles, have volumes and shapes that depend on the container. This paper is in two parts. A short description of the common states (solid, liquid and gas) is described in Part I. This is followed by a general observation of three additional states (plasma, Bose-Einstein Condensate, and Fermionic Condensate) in Part II. Keywords: Ionic solids, liquid crystals, London forces, metallic solids, molecular solids, network solids, quasicrystals. Introduction out everywhere within the container. Gases can be compressed easily and they have undefined shapes. This paper is in two parts. The common It is well known that heating will cause or usual states of matter: solid, liquid and gas substances to change state - state conversion, in or vapor1, are mentioned in Part I; and the three accordance with their enthalpies of fusion ∆H additional states: plasma, Bose-Einstein f condensate (BEC), and Fermionic condensate or vaporization ∆Hv, or latent heats of fusion are described in Part II. and vaporization. For example, ice will be Solid formation occurs when the converted to water (fusion) and thence to vapor attraction between individual particles (atoms (vaporization). What happens if a gas is super- or molecules) is greater than the particle energy heated to very high temperatures? What happens (mainly kinetic energy or heat) causing them to if it is cooled to near absolute zero temperatures? move apart.
    [Show full text]
  • Quantum Phase Transition from a Super¯Uid to a Mott Insulator in a Gas of Ultracold Atoms
    articles Quantum phase transition from a super¯uid to a Mott insulator in a gas of ultracold atoms Markus Greiner*, Olaf Mandel*, Tilman Esslinger², Theodor W. HaÈnsch* & Immanuel Bloch* * Sektion Physik, Ludwig-Maximilians-UniversitaÈt, Schellingstrasse 4/III, D-80799 Munich, Germany, and Max-Planck-Institut fuÈr Quantenoptik, D-85748 Garching, Germany ² Quantenelektronik, ETH ZuÈrich, 8093 Zurich, Switzerland ............................................................................................................................................................................................................................................................................ For a system at a temperature of absolute zero, all thermal ¯uctuations are frozen out, while quantum ¯uctuations prevail. These microscopic quantum ¯uctuations can induce a macroscopic phase transition in the ground state of a many-body system when the relative strength of two competing energy terms is varied across a critical value. Here we observe such a quantum phase transition in a Bose±Einstein condensate with repulsive interactions, held in a three-dimensional optical lattice potential. As the potential depth of the lattice is increased, a transition is observed from a super¯uid to a Mott insulator phase. In the super¯uid phase, each atom is spread out over the entire lattice, with long-range phase coherence. But in the insulating phase, exact numbers of atoms are localized at individual lattice sites, with no phase coherence across the lattice; this phase is characterized by a gap in the excitation spectrum. We can induce reversible changes between the two ground states of the system. A physical system that crosses the boundary between two phases (here between kinetic and interaction energy) is fundamental to changes its properties in a fundamental way. It may, for example, quantum phase transitions4 and inherently different from normal melt or freeze.
    [Show full text]
  • Driving a Strongly Interacting Superfluid out of Equilibrium
    Driving a Strongly Interacting Superfluid out of Equilibrium Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn von Alexandra Bianca Behrle Bonn, 27.07.2017 Dieser Forschungsbericht wurde als Dissertation von der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Bonn angenommen und ist auf dem Hochschulschriftenserver der ULB Bonn http://hss.ulb.uni-bonn.de/diss_online elektronisch publiziert. 1. Gutachter: Prof. Dr. Michael Köhl 2. Gutachter: Prof. Dr. Stefan Linden Tag der Promotion: 21.12.2017 Erscheinungsjahr: 2018 To my parents and my sister iii "Fortunately science, like that nature to which it belongs, is neither limited by time nor by space. It belongs to the world, and is of no country and no age. The more we know, the more we feel our ignorance; the more we feel how much remains unknown..." -Humphry Davy, the discoverer of the element sodium and the eponym of our experiment. iv Abstract A new field of research, which gained interest in the past years, is the field of non- equilibrium physics of strongly interacting fermionic systems. In this thesis we present a novel apparatus to study an ultracold strongly interacting superfluid Fermi gas driven out of equilibrium. In more detail, we study the excitation of a collective mode, the Higgs mode, and the dynamics occurring after a rapid quench of the interaction strength. Ultracold gases are ideal candidates to explore the physics of strongly inter- acting Fermi gases due to their purity and the possibility to continuously change many different system parameters, such as the interaction strength.
    [Show full text]
  • Multiparticle Interactions for Ultracold Atoms in Optical Tweezers: Cyclic Ring-Exchange Terms
    Multiparticle interactions for ultracold atoms in optical tweezers: Cyclic ring-exchange terms Annabelle Bohrdt,1, 2, ∗ Ahmed Omran,3, ∗ Eugene Demler,3 Snir Gazit,4 and Fabian Grusdt5, 2, 1, y 1Department of Physics and Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany 2Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, D-80799 M¨nchen,Germany 3Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA 4Racah Institute of Physics and The Fritz Haber Research Center for Molecular Dynamics, The Hebrew University, Jerusalem 91904, Israel 5Department of Physics and Arnold Sommerfeld Center for Theoretical Physics (ASC), Ludwig-Maximilians-Universit¨atM¨unchen,Theresienstr. 37, M¨unchenD-80333, Germany (Dated: October 2, 2019) Dominant multi-particle interactions can give rise to exotic physical phases with anyonic excita- tions and phase transitions without local order parameters. In spin systems with a global SU(N) symmetry, cyclic ring-exchange couplings constitute the first higher-order interaction in this class. In this letter we propose a protocol how SU(N) invariant multi-body interactions can be imple- mented in optical tweezer arrays. We utilize the flexibility to re-arrange the tweezer configuration on time scales short compared to the typical lifetimes, in combination with strong non-local Rydberg interactions. As a specific example we demonstrate how a chiral cyclic ring-exchange Hamiltonian can be implemented in a two-leg ladder geometry. We study its phase diagram using DMRG sim- ulations and identify phases with dominant vector chirality, a ferromagnet, and an emergent spin-1 Haldane phase. We also discuss how the proposed protocol can be utilized to implement the strongly frustrated J − Q model, a candidate for hosting a deconfined quantum critical point.
    [Show full text]
  • Cold Fermions, Feshbach Resonance, and Molecular Condensates (II)
    Cold fermions, Feshbach resonance, and molecular condensates (II) D. Jin JILA, NIST and the University of Colorado I. Cold fermions II. Feshbach resonance III. BCS-BEC crossover (Experiments at JILA) $$ NSF, NIST, Hertz Boulder School 2004 I. Cold Fermions Boulder School 2004 Quantum Particles ¾ There are two types of quantum particles found in nature - bosons and fermions. Bosons like to do the same thing. Fermions are independent-minded. ¾ Atoms, depending on their composition, can be either. bosons: 87Rb, 23Na, 7Li, H, 39K, 4He*, 85Rb, 133Cs fermions: 40K, 6Li Boulder School 2004 Bosons . integer spin . Ψ1,2 = Ψ2,1 Atoms in a harmonic potential. Bose-Einstein condensation 1995 other bosons: photons, liquid 4He Boulder School 2004 Fermions . half-integer spin . Ψ1,2 = - Ψ2,1 (Pauli exclusion principle) T = 0 EF= kbTF spin ↑ spin ↓ Fermi sea of atoms 1999 other fermions: protons, electrons, neutrons Boulder School 2004 Quantum gases Bosons TC BEC phase transition Fermions TF Fermi sea of atoms gradually emerges for T<TF d λdeBroglie ∼ d ultralow T Boulder School 2004 Fermionic atoms 40 6 K Jin, JILA Li Hulet, Rice Inguscio, LENS Salomon, ENS Thomas, Duke Ketterle, MIT Grimm, Innsbruck others in progress… Future: Cr, Sr, Yb, radioactive isotopes Rb, metastable *He, *Ne … Boulder School 2004 Cooling fermions Evaporative cooling requires collisions, but at low T identical fermions stop colliding . Boulder School 2004 Cooling strategies for fermions Simultaneous cooling evaporate atoms in two spin-states magnetic trap 40K optical trap 6Li Sympathetic cooling evaporate bosonic atoms and cool fermionic atoms via thermal contact two isotopes 7Li + 6Li two species 87Rb + 40K 23Na + 6Li Boulder School 2004 40K spin-states 4P3/2 ~1014 Hz hyperfine f=7/2 Zeeman 9 m = 9/2 6 7 ~10 Hz f ~10 -10 Hz 4S1/2 mf= 7/2 .
    [Show full text]
  • Table of Contents (Print)
    NEWSPAPER 96 Spin-resolved differential conductance image of cobalt islands on a copper surface. The dots are standing wave patterns of surface state electrons, spin polarized on the islands, but not on the substrate. See article 237203. PHYSICAL REVIEW LETTERS PRL 96 (23), 230401– 239903, 16 June 2006 (264 total pages) Contents Articles published 10 June–16 June 2006 VOLUME 96, NUMBER 23 16 June 2006 General Physics: Statistical and Quantum Mechanics, Quantum Information, etc. Biased Tomography Schemes: An Objective Approach ................................................................ 230401 Z. Hradil, D. Mogilevtsev, and J. Rˇ eha´cˇek Vortex-Lattice Melting in a One-Dimensional Optical Lattice ......................................................... 230402 Michiel Snoek and H. T. Stoof Synchronization in the BCS Pairing Dynamics as a Critical Phenomenon ............................................ 230403 R. A. Barankov and L. S. Levitov Dynamical Vanishing of the Order Parameter in a Fermionic Condensate ............................................ 230404 Emil A. Yuzbashyan and Maxim Dzero Entanglement of Two Impurities through Electron Scattering ......................................................... 230501 A. T. Costa, Jr., S. Bose, and Y. Omar Decoherence in a System of Many Two-Level Atoms ................................................................ 230502 Daniel Braun Anomalous Diffusion of Inertial, Weakly Damped Particles ........................................................... 230601 R. Friedrich, F. Jenko, A.
    [Show full text]
  • Optical Lattices and Artificial Gauge Potentials
    Optical Lattices and Artificial Gauge Potentials Juliette Simonet Institute of Laser Physics, Hamburg University Optical Lattices and Artificial Gauge Potentials Part 1: Build up the Hamiltonian Optical Lattices Non-interacting properties (band structure, wave functions) Hubbard models Cold atoms simulator Part 2: Read out the quantum state Probing quantum gases in optical lattice Mapping phase diagrams of Hubbard models Part 3: Beyond Hubbard models in optical lattices Topological properties and transport Magnetic phenomena for neutral atoms 2 Optical Lattices and Artificial Gauge Potentials Part 2: Read Out the Quantum State Part 2 2.1 Probing quantum gases in optical lattices 2.2 Bose-Hubbard Model 2.3 Fermi-Hubbard Model 3 2.1 Probing quantum gases in optical lattices • Momentum space » Time-of-flight measurement (TOF) » Band mapping • Real space: Quantum Gas Microscopes » Single site / single atom detection » Occupation number at each lattice site • Excitation spectrum » Bragg spectroscopy » Amplitude modulation 4 Momentum Space / Time-of-flight measurement • Time-of-flight measurement (TOF) » Sudden extinction of lattice and trap potentials (Projection onto free momentum states) » Free expansion of the atomic cloud under gravity (interactions neglected due to low density) » Absorption imaging with resonant laser light Thermal atoms BEC 5 Momentum Space / Time-of-flight measurement • Time-of-flight measurement (TOF) » Sudden extinction of lattice and trap potentials (Projection onto free momentum states) » Free expansion of the atomic
    [Show full text]
  • Arxiv:2012.05916V1 [Cond-Mat.Mes-Hall] 10 Dec 2020 Side in Two Parallel Conducting Layers
    Crossover between Strongly-coupled and Weakly-coupled Exciton Superfluids Xiaomeng Liu1y, J.I.A. Li2y, Kenji Watanabe3, Takashi Taniguchi4, James Hone5, Bertrand I. Halperin1, Philip Kim1∗, and Cory R. Dean6∗ y X.Liu and J.I.A.Li contributed equally to this work 1 Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA 2Department of Physics, Brown University, Providence, RI 02912, USA 3Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan 4International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan 5Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA and 6Department of Physics, Columbia University, New York, NY 10027, USA In fermionic systems, superconductivity and inter-particle separation. In this strongly coupled limit, superfluidity are enabled through the condensa- the system behaves like a bosonic gas or liquid, instead tion of fermion pairs. The nature of this con- of a Fermi liquid, and the low temperature ground state densate can be tuned by varying the pairing is characterized by a Bose-Einstein condensate (BEC). strength, with weak coupling yielding a BCS- A crossover between the BEC and BCS regimes can like condensate and strong coupling resulting theoretically be realized by tuning the ratio of U=EF [5{ in a BEC-like process. However, demonstra- 7], which also corresponds to tuning the ratio of the tion of this cross-over has remained elusive in `size' of the fermion pairs versus the inter-bosonic par- electronic systems. Here we study graphene ticle spacing. In solid state systems, where the most double-layers separated by an atomically thin prominent fermionic condensates, i.e.
    [Show full text]
  • Matter-Wave Diffraction from a Quasicrystalline Optical Lattice
    Matter-wave diffraction from a quasicrystalline optical lattice Konrad Viebahn, Matteo Sbroscia, Edward Carter, Jr-Chiun Yu, and Ulrich Schneider∗ Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom (Dated: July 4, 2019) Quasicrystals are long-range ordered and yet non-periodic. This interplay results in a wealth of intriguing physical phenomena, such as the inheritance of topological properties from higher dimensions, and the presence of non-trivial structure on all scales. Here we report on the first experimental demonstration of an eightfold rotationally symmetric optical lattice, realising a two- dimensional quasicrystalline potential for ultracold atoms. Using matter-wave diffraction we observe the self-similarity of this quasicrystalline structure, in close analogy to the very first discovery of quasicrystals using electron diffraction. The diffraction dynamics on short timescales constitutes a continuous-time quantum walk on a homogeneous four-dimensional tight-binding lattice. These measurements pave the way for quantum simulations in fractal structures and higher dimensions. Quasicrystals exhibit long-range order without being and material science [1,3,4,6, 17], in photonic struc- periodic [1{6]. Their long-range order manifests itself tures [9, 13, 18{20], using laser-cooled atoms in the dissi- in sharp diffraction peaks, exactly as in their periodic pative regime [21, 22], and very recently in twisted bilayer counterparts. However, diffraction patterns from qua- graphene [23]. Quasicrystalline order can even appear sicrystals often reveal rotational symmetries, most no- spontaneously in dipolar cold-atom systems [24]. tably fivefold, eightfold, and tenfold, that are incompat- In this work we realise a quasicrystalline potential for ible with translational symmetry.
    [Show full text]
  • October 8-10 , 2018
    Quantum Phases of Fermions in Optical Lattices: The Low-Temperature Frontier OCTOBER 8-10 , 2018 Organizers: Randy Hulet (Rice University) Kaden Hazzard (Rice University) Daniel Greif (Harvard University) Markus Greiner (Harvard University) Sponsored by: Institute for Theoretical Atomic, Molecular and Optical Physics* Harvard - Smithsonian Center for Astrophysics Harvard-Smithsonian Center for Astrophysics 60 Garden St., Cambridge, MA ITAMP https://www.cfa.harvard.edu/itamp-event/ MS-14, B-326 60 Garden Street Abstracts, Program, Participants, and Guide to ITAMP Cambridge, MA 02138 USA *Funded by the National Science Foundation INDEX Notes Welcome ...................................................................................................... 4 Synopsis ....................................................................................................... 6 Participants ................................................................................................. 7 Program ......................................................................................................11 ITAMP Guide .............................................................................................38 Abstracts Ehud Altman........................................................................................14 Waseem Bakr........................................................................................15 Yvan Castin..........................................................................................16 Christie Chiu........................................................................................17
    [Show full text]