Fermi Condensates

Fermi Condensates

��� ���� � �� ������ �� ������� ����� ����������� ��� ��������������� ��������� �� ���� ������ ����� �� � �� ���� ���� ����� ����������� ��������� ��� ������ ������� ���������� �� �������� �� �������� ��� ICTP SCHOOL ON QUANTUM PHASE TRANSITIONS AND NON-EQUILIBRIUM PHENOMENA IN COLD ATOMIC GASES 2005 Fermi condensates Markus Greiner JILA, Group of D. Jin; Coworkers: C. Regal and J. Stewart NIST and the University of Colorado, Boulder Highly controlled many-body quantum systems Weakly interacting Bose gases: Coherence, superfluid flow, vortices … Strongly correlated Bose systems: Superfluid to Mott insulator transition Fermionic superfluidity: BCS-BEC crossover physics • Condensed matter physics studied with an atomic physics system Outline: • Fermionic superfluidity; The tools: trapping, cooling, probing; • Controlling interactions; Molecular Bose-Einstein condensate; Fermi condensate: Generalized Cooper pairs in the BCS-BEC crossover; • Probing the fermion momentum distribution • Detecting atom-atom correlations via atom shot noise; Bosons Fermions integer spin half-integer spin <1,2 = <2,1 <1,2 = -<2,1 Æ Bosonic Æ Pauli exclusion enhancement principle EF= kbTF spin n spin p 1995: Bose-Einstein condensation 1999: Fermi sea of atoms e.g. 87Rb, 23Na, H, 39K … 40K, 6Li photons, liquid 4He electrons, protons, neutrons Pairing and Superfluidity Æ Spin is additive: Fermions can pair up and form effective bosons: <(1,…,N) =  [ I(1,2) I(3,4) … I(N-1,N) ] spin n spin p Molecules of Generalized Cooper Cooper pairs fermionic atoms pairs of fermionic atoms kF BEC of weakly BCS - BEC BCS superconductivity bound molecules crossover Cooper pairs: correlated momentum-space pairing BCS-BEC crossover for example: Eagles, Leggett, Nozieres and Schmitt-Rink, Randeria, Strinati, Zwerger, Holland, Timmermans, Griffin, Levin … Cooling a gas of fermionic 40K atoms 1. Laser cooling and trapping of 40K 300 K to 1 mK a109 atoms 2. Magnetic trapping and evaporative cooling n spin 1 mK to 10 PK spin p a109 ψ 107 atoms Cooling a gas of fermionic 40K atoms 3. Optical trapping and evaporative cooling 10 µK to 50 nK 107 ψ 105 atoms ¾ can confine any spin-state ¾ can apply arbitrary B-field Quantum degeneracy momentum distributions EF= kbTF T/TF=0.77 T=0 spin n kF spin p 1.4 T/TF=0.27 1.2 data Fermi gas fit 1.0 Gauss fit 0.8 T/T = 0.1 F 0.6 0.4 T/TF=0.11 0.2 Optical depth 0.0 0 1020304050 radius (arb) Controlling interaction Magnetic Feshbach resonance Turning the knob: a new molecular bound state appears as B is varied R V(R) internuclear separation R 202 G 200 G 204 G B-field Controlling interaction Magnetic Feshbach resonance: a new molecular bound state appears as B is varied V(R) R R R R 'B Ebinding molecular New bound state leads to binding energy divergence of scattering properties Æ Levinson Theorem Divergence of scattering length a Interactions between two free atoms are characterized by the a > 0 repulsive s-wave scattering length, a Large |a| ĺ strong interactions 'B Ebinding a < 0 attractive Broad feshbach resonance a Broad Feshbach resonance: K: width 22 MHz, approx. 5000 x EF Æ very strong coupling between open and closed channel Æ small closed channel occupancy 2 'B E = V(R) binding 2 mK a R EZ closed Æ well described as single channel channel problem Measurement of scattering length 3000 ) a o a 2000 1000 0 a > 0 repulsive -1000 -2000 scattering length ( scattering -3000 215 220 225 230 B (gauss) 'B Ebinding close to resonance: a < 0 attractive two-body binding energy 2 E = binding 2 mK a Creating molecules a V(R) Creating molecules by adiabatically ramping across R R the Feshbach resonance free atoms 'B Ebinding Theory: bound Timmermans et al., Phys. Rep. 315, 199 (1999), Abeelen et al., PRL83, 1550 (1999) molecules Mies et al., PRA 61, 022721 (2000), Ho et al., cond-mat/0306187 Experiment: coh. osc. atom/molecules Rb85: Donley et al., Nature 417, 529 (2002). Creating molecules ) 3 750 a measured 500 molecule 250 number 0 N molecule (10 molecule N 220 224 228 free atoms B (G) hold 'B Ebinding 40K: C. Regal et al. Nature 424, 47 … and quickly also with other bound Fermionic and Bosonic species: 6Li: Hulet (Houston), Salomon (Paris) molecules Grimm (Innsbruck), Ketterle (Boston) Cs: Grimm (Innsbruck) Rb: Rempe (Munich) Na: Ketterle (Boston) Molecule binding energy a V(R) Measurement of the R R molecular binding energy by rf-spectroscopy 0 -100 'B Ebinding -200 -300 (kHz) -400 'Q -500 220 221 222 223 224 C. Regal et al. Nature 424, 47 B (gauss) Molecule properties a • extremely weakly bound • large, molecule size § a • but: ridiculously stable close to Feshbach resonance free atoms 'B Ebinding C. A. Regal, M. Greiner, and D. S. Jin, condmat/0308606 (2003) size of molecule Interaction: theory prediction: changes D.S. Petrov, C. Salomon, G.V. Shlyapnikov, condmat/0309010 (2003) (accepted at PRL) Timescale of B-ramp a 1) Fast with respect to two-body physics atoms atoms 'B Ebinding Å 2 Ps/G molecules Timescale of B-ramp a 2) Adiabatic with respect to two-body physics atoms 'B Ebinding Å 40 Ps/G molecules up to 90% conversion efficiency Timescale of B-ramp a 2) Adiabatic with respect E to two-body physics F …but fast with respect to many body physics atoms 'B Ebinding Å 40 Ps/G molecules Timescale of B-ramp a 3) Adiabatic with respect E to two-body physics F and adiabatic with respect to many body physics atoms 'B Ebinding Å 4000 Ps/G molecules Timescale of B-ramp a 3) Adiabatic with respect E to two-body physics F and adiabatic with respect to many body physics atoms 'B Ebinding Å 4000 Ps/G Cubizolles et al., PRL 91, 240401 (2003); molecules BEC L. Carr et al., cond-mat/0308306 Molecular Bose-Einstein condensate A molecular BEC a emerges from a Fermi sea! T/TF= 0.19 0.06 Time of flight absorption image 'B M. Greiner, C. A. Regal, and D. S. Jin, Nature 426, 537 (2003) profile 6Li: Jochim et al., Science 302: 2101(2003), M. Zwierlein et al., Phys. Rev. Lett. 91, 250401 (2003). T. Bourdel et al., cond-mat/0403091 Molecular Bose-Einstein condensate A molecular BEC emerges from a Fermi sea! T/TF= 0.19 0.06 Æ timescale for many-body adiabaticity is 100x slower than for two-body adiabaticity Condensation of pairs of fermionic atoms Molecule or BEC side of a Atom or BCS side of Feshbach resonance: Feshbach resonance: BEC of molecules no two-body molecules Æ condensate of pairs of fermionic atoms BCSÆ 'B Ebinding Resonance superfluidity: Holland, Griffin, … Detecting a Fermi condensate 2) rapidly ramping across a 1) adiabatically ramping into the the Feshbach resonance regime with strong to project atoms pair wise attractive interactions onto molecules Æ fast compared to many body physics G 4000 s/G 40 Ps/ P 'B Ebinding Æ immediately probe Æ resonance condensation molecule momentum of fermionic atom pairs distribution Detecting a Fermi condensate condensate of pairs a of fermionic atoms ! G 4000 s/G 40 Ps/ P 'B Ebinding Æ immediately probe molecule momentum distribution Detecting a Fermi condensate a G 40 Ps/ 'B Ebinding No condensate, much too fast for condensation !! Detecting a Fermi condensate a G 4000 s/G 40 Ps/ P 'B Ebinding Condensate, requires condensate of fermionic atom pairs on BCS side! Fermionic condensate condensate of pairs a of fermionic atoms ! 'B=0.12 0.25 0.55 G T/TF=0.08 3x105 'B Ebinding 2x105 1x105 molecules N 0 -0.5 0.0 0.5 'B (gauss) Fermionic condensate 0.15 condensate a T/TF=0.08 fraction / N 0.10 0 N 0.05 0 -0.5 0 0.5 'B (gauss) 3x105 'B Ebinding 2x105 1x105 molecules N 0 -0.5 0.0 0.5 'B (gauss) BCS-BEC crossover F T / BEC T BCS of of molecules Cooper pairs before sweep Temperature inverse interaction strength 1/(kFa) Æ universal parameter S Figure: 0.4 k a T e 2 F M. Randeria Tc,BCS c,BCS | F /T 0.2 BEC-BCS crossover c T theory for example: Eagles, Leggett, Nozieres et al., Randeria, 0 Holland et al., Timmermans 1 0-1 et al., Ohashi et al., Stajic et al. … 1/kFa BCS-BEC crossover 1.0 gap at T=0 in BCS theory F E / two-body molecular ' binding energy 0.1 Figure: J. R. Engelbrecht et al., PRB 55, 15153 (1997) a) 2 1 0 -1 -2 1/(kF F T/T Temperature inverse interaction strength 1/(kFa) Probing atom momentum distribution rapidly switching off interactions before TOF expansion: Æ pairs dissociate, momentum distribution of fermions is measured 40K Feshbach resonance 10 a=0 ) 2000 0 5 0.002 ms/G 1000 B (gauss) ' large a 0 0 on -1000 a=0 trap off -2000 scattering length (a 190 200 210 220 0 102030405060 B (gauss) time (ms) BCS-BEC crossover theory Homogeneous gas, T=0: Momentum distribution broadens because of pairing 1.0 0.8 a=infinity a=0 ) 0.6 F 0.4 k/k ( n 0.2 0 0 0.5 1.0 1.5 2.0 2.5 k/k F M. Marini, F. Pistolesi, G. C. Strinati, Euro. Phys. J. B 1, 151 (1998) Momentum distributions of trapped gas T=0, mean-field theory Experiment 1.0 1.0 a=0 0.8 1 0.8 T = 0.12 TF /kFa=-0.66 OD 1 /k a=0 OD 0.6 F 0.6 1 /kFa=0.59 0.4 0.4 normalized 0.2 0.2 normalized 0 0 0 0.5 1.0 1.5 2.0 2.5 0 0.5 1.0 1.5 2.0 2.5 k/k 0 k/k 0 F F L.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    58 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us