Cold , Feshbach resonance, and molecular condensates (II)

D. Jin JILA, NIST and the University of Colorado

I. Cold fermions II. Feshbach resonance III. BCS-BEC crossover (Experiments at JILA)

$$ NSF, NIST, Hertz

Boulder School 2004 I. Cold Fermions

Boulder School 2004 Quantum Particles

¾ There are two types of quantum particles found in nature - and fermions. Bosons like to do the same thing.

Fermions are independent-minded.

¾ , depending on their composition, can be either. bosons: 87Rb, 23Na, 7Li, H, 39K, 4He*, 85Rb, 133Cs fermions: 40K, 6Li

Boulder School 2004 Bosons

. integer spin

. Ψ1,2 = Ψ2,1

Atoms in a harmonic potential.

Bose-Einstein 1995 other bosons: photons, 4He

Boulder School 2004 Fermions . half-integer spin

. Ψ1,2 = - Ψ2,1 (Pauli exclusion principle)

T = 0 EF= kbTF

spin ↑ spin ↓ Fermi sea of atoms 1999

other fermions: protons, , neutrons

Boulder School 2004 Quantum

Bosons

TC BEC transition Fermions

TF Fermi sea of atoms gradually emerges for T

d λdeBroglie ∼ d

ultralow T

Boulder School 2004 Fermionic atoms

40 6 K Jin, JILA Li Hulet, Rice Inguscio, LENS Salomon, ENS Thomas, Duke Ketterle, MIT Grimm, Innsbruck others in progress…

Future: Cr, Sr, Yb, radioactive isotopes Rb, metastable *He, *Ne …

Boulder School 2004 Cooling fermions Evaporative cooling requires collisions,

but at low T identical fermions stop colliding .

Boulder School 2004 Cooling strategies for fermions

Simultaneous cooling evaporate atoms in two spin-states ƒ magnetic trap 40K ƒ optical trap 6Li

Sympathetic cooling evaporate bosonic atoms and cool fermionic atoms via thermal contact ƒ two isotopes 7Li + 6Li ƒ two species 87Rb + 40K 23Na + 6Li

Boulder School 2004 40K spin-states

4P3/2

~1014 Hz

hyperfine f=7/2 Zeeman

9 m = 9/2 6 7 ~10 Hz f ~10 -10 Hz 4S1/2 mf= 7/2

. .

f=9/2

mf=-9/2

Boulder School 2004 More on spin-states

spin “↑” Energy splitting is 10’s MHz.

T = 1 μK corresponds to 20 kHz. spin “↓”

¾ spin degree of freedom is frozen

Boulder School 2004 Collision measurement

1. Add energy in one dimension of trap 2. Watch thermal relaxation before after relaxation

Boulder School 2004 Collisions and Fermions

two spin-states

one spin-state cross section elastic collision

Boulder School 2004 Cooling a of 40K atoms

1. Laser cooling and trapping 300 K to 1 mK, ∼109 atoms

2. Magnetic trapping & evaporative cooling

1 mK to 1 μK, ∼108 → 106 atoms spin 2 spin 1

3. Optical trapping & evaporative cooling

1 μK to 50 nK, 106 → 105 atoms ¾ can confine any spin-state ¾ can apply arbitrary B-field

Boulder School 2004 Probing the ultracold gas

Time-of-flight absorption imaging

• Probing the atoms

Boulder School 2004 Stern-Gerlach imaging

Time-of-flight absorption imaging

B gradient

• Probing the atoms

Boulder School 2004 Quantum degenerate atomic Fermi gases 1999: 40K JILA 6Li - Rice, Duke, ENS, MIT, Innsbruck; 40K - LENS, ETH Zurich

EF = kBTF

Fermi sea of atoms

T ~ 0.05 TF low , low density: T ~ 100 nK, n ~ 1013 cm-3

Boulder School 2004 Quantum degeneracy velocity distributions EF EF T/TF=0.77

n0= 0.28

Fermi sea of atoms

T/TF=0.27

n0= 0.944

T/TF=0.11

n0= 0.99984

Boulder School 2004 Quantum degeneracy

T/TFermi = 0.05 N = 4 ·105 , T = 16 nK 20 T/TFermi = 0.05

T b

k 10 / μ

0 0.01 0.1 1 T/T F

Boulder School 2004 thermometry

Determine temperature from 0.3 (1) surface fit to expanded cloud Fermi 0.2

0.1

surface fit T / T fit T surface 0.0 0.0 0.1 0.2 0.3 T / T impurity Fermi (2) an embedded non-degenerate gas

Impurity spin state Fermi gas

Boulder School 2004 II. Feshbach resonance

Boulder School 2004 Interactions ¾ Interactions are characterized by the s-wave scattering length, a a > 0 repulsive, a < 0 attractive Large |a| → strong interactions

¾ In an ultracold atomic gas, we can control a!

0  scattering length

Boulder School 2004 Magnetic-field Feshbach resonance V(R)

R R R R repulsive a>0, repulsive a<0, attractive →← > ΔB

attractive molecules

Boulder School 2004 Magnetic-field Feshbach resonance

repulsive

free atoms →← > ΔB

attractive molecules

Boulder School 2004 Experimental observation 1. Trap Loss (3-body inelastic collisions) three 87Rb-40K Feshbach resonances:

S. Inouye et al., cond-mat, 2004.

Boulder School 2004 Experimental observation 2. Elastic collision rate (σ=4 πa2)

10-9 m = -9/2, -7/2 mixture f 10-10 ) 2 -11

10 (cm σ 10-12 T. Loftus et al., PRL 88, 173202 (2002).

10-13 160 180 200 220 240 260 B (gauss)

Boulder School 2004 More 40K resonances

-9 m = -7/2 gas 10 f 10-10 a p-wave resonance! ) 2 -11 C. A. Regal et al., PRL 90, 053201 (2003) 10 (cm σ 10-12 10-13 180 200 220 B (gauss) 10-9 m =-7/2,-5/2 mixture 10-10 f ) 2 -11 10 another s-wave resonance (cm σ 10-12

10-13 150 160 170 180 190 B (gauss)

Boulder School 2004 Experimental observation 3. Interaction energy (RF spectroscopy)

3000

) 2000 Feshbach

o repulsive resonance between 1000 mf=-9/2,-5/2

0

Use Δν ~n9a59 -1000

attractive -2000 scatteringlength (a C. A. Regal and D. S. Jin, PRL, (2003) -3000 215 220 225 230 B (gauss)

Boulder School 2004 Experimental observation 4. Molecule creation -5/2 -9/2 Ramp across Feshbach resonance from high to low B

→← 1.5 ) 6 energy 1.0

M olecleu creaiot n -5/2

1.56) -9/2

1.0r( 10 be

0.5num at om 0.0220222224226228

B hold(G) B(t)

-5/2

-9/2

B 0.5

-5/2 number (10 0 215 220 225 230 -9/2 B (gauss)

C. A. Regal et al., Nature 424, 47 (2003). Motivation: E. A. Donley et al., Nature 417, 529 (2002) Boulder School 2004

Magnetic field sweep rate

1.5 Reversible →← ) 6 1.0 energy

0.5 B atom number (10

0 0 20406080 Similar experiments: inverse ramp speed (μs/G) Bosons Fermions Innsbruck Rice Garching ENS JILA Innsbruck

Boulder School 2004 Molecule detection

ƒ Apply RF near the atomic mf=-5/2 to mf=-7/2 transition

Σmf = -5/2 + -9/2 →← molecule

-7/2 + -9/2 →←

-5/2 -5/2 photodissociate -7/2 the molecules -7/2 -9/2 -9/2

Boulder School 2004 Molecule detection 1.0 0.8 atoms molecules 0.6

0.4 transfer (arb) transfer 0.2 0 0.4

0.3 dissociation 0.2 threshold

0.1

kinetic energy (MHz) energy kinetic 0 49.8 50.1 50.4 50.7 rf frequency (MHz)

Boulder School 2004 Molecule binding energy

0

-100

-200

-300

(kHz) atoms

Δν -400 molecules binding energy theory -500 (Ticknor, Bohn)

220 221 222 223 224 B (gauss) C. Regal et al. Nature 424, 47 (2003) ¾ extremely weakly bound !

Boulder School 2004 Molecule conversion efficiency

¾ depends strongly on energy of Fermi gas

1.0

0.8 13 -3 npk ~10 cm • up to 70% conversion 0.6 • N > 250,000 molecule 0.4

0.2

molecule fraction 0.0 0.3 0.4 0.5 T (μK) Fermi

Boulder School 2004 Molecule decay rate

1 m =-7/2, -9/2

) f -1 0.1 m =-5/2, -9/2 f (ms

m

/N 0.01 m molecules N 1E-3 1 -3 -2 -1 0 no molecules

) with molecules -1 atoms ΔB (gauss) 0.1 C. A. Regal, M. Greiner, and D. S. Jin, PRL 92, 083201 (2004)

(ms a 0.01 /N

Theorya prediction: D.S. Petrov, C. Salomon, G.V. Shlyapnikov, cond-

mat/0309010N (2003) 1E-3 C. A. Regal, M. Greiner, and D. S. Expts: Rice, ENS, Innsbruck, JILA Jin, cond-mat/0308606 (2003) -3 -2 -1 0 Boulder School 2004 ΔB (gauss) Cold fermions, Feshbach resonance, and molecular condensates (II)

D. Jin JILA, NIST and the University of Colorado

I. Cold fermions II. Feshbach resonance III. BCS-BEC crossover (Experiments at JILA)

$$ NSF, NIST, Hertz

Boulder School 2004 III. BCS-BEC crossover

Boulder School 2004 Bose-Einstein condensation BEC shows up in condensed , nuclear physics, elementary particle physics, astrophysics, and atomic physics. Cooper pairs of electrons in 4He atoms superconductors in superfluid liquid He

Excitons, biexcitons Alkali atoms in in ultracold 3He atom pairs atom gases in superfluid 3He-A,B Neutron pairs, protron pairs in nuclei Mesons in And neutron stars neutron star matter

Boulder School 2004 Bosons and Fermions

ƒ Condensation requires bosons. ƒ Material bosons are composite particles, made up of fermions.

¾ For a gas of bosonic atoms, the underlying degrees of freedom are not accessible. 87Rb, 23Na, … ¾ By starting with a gas of fermionic atoms we can explore how bosonic degrees of freedom emerge. 40K, 6Li, …

Boulder School 2004 Making condensates with fermions spin ↑ ¾ BEC of diatomic molecules spin ↓ 1. Bind fermions together. 2. BEC

¾ BCS / Condensation of Cooper pairs of atoms

(pairing in momentum space, EF near the Fermi surface)

¾ Something in between? BCS-BEC crossover

Boulder School 2004 BCS-BEC landscape M. Holland et al., PRL 87, 120406 (2001) 0 BEC 10

alkali atom BEC -2

10 superfluid 4He c F T/T

BCS high Tc superconductors -4 10 superfluid 3He

transition temperature superconductors 10-6 10-5 105 1010

2/Δ kTBF energy to break fermion pair Boulder School 2004 Pairing and Superfluidity

Æ Spin is additive: Fermions can pair up and form effective bosons: Ψ(1,…,N) = Â [ φ(1,2) φ(3,4) … φ(N-1,N) ] spin ↑ spin ↓

Molecules of Generalized Cooper Cooper pairs fermionic atoms pairs of fermionic atoms kF

BEC of weakly BCS - BEC BCS superconductivity bound molecules crossover Cooper pairs: correlated momentum-space pairing

BCS-BEC crossover for example: Eagles,Boulder Leggett, School Nozieres 2004and Schmitt-Rink, Randeria, Strinati, Zwerger, Holland, Timmermans, Griffin, Levin …

BCS-BEC crossover Predict a smooth connection between BCS and BEC

0.6 BEC BEC BCS 0.4 BCS F

/ T c

T 0.2 J. R. Engelbrecht et al., A. Perali et al., PRB 55, 15153 (1997) cond-mat/0311309

0 -2 -1 0 1 2 ← BCS 1/(k a) BEC → ← BCS BEC → (atoms) F (molecules) (atoms) (molecules)

partial list: Eagles, Leggett, Nozieres and Schmitt-Rink, Randeria, Haussman, Strinati, Holland, Timmermans, Griffin, Levin, …

Boulder School 2004 Magnetic-field Feshbach resonance

repulsive

free atoms →← > ΔB

attractive molecules

Boulder School 2004 Changing the interaction strength in real time: FAST repulsive

EF

2 μs/G > ΔB

attractive

molecules

Boulder School 2004 Changing the interaction strength in real time: SLOW

EF

40 μs/G > ΔB

attractive

molecules

Boulder School 2004 Changing the interaction strength in real time: SLOWER

EF

4000 μs/G > ΔB

attractive

molecules

Cubizolles et al., PRL 91, 240401 (2003); L. Carr et al., cond-mat/0308306 Boulder School 2004 Molecular Condensate

initial T/TF: 0.19 0.06

Time of flight absorption image

M. Greiner, C.A. Regal, and D.S. Jin, Nature 426, 537 (2003).

Boulder School 2004 A BEC from a Fermi Sea!

0.20

0.15

/ N 0.10 0

N 0.05

0 0 0.1 0.2 0.3 0.4 initial T / T F

Boulder School 2004 Timescales Creating molecules Creating molecular BEC → EF ← energy B

)

3 750 0.15

500 0.10

250 many-body 2-body 0.05

0 molecule number (10 molecule number condensate fraction 0 0 20406080 0 2000 4000 6000 8000 inverse ramp speed (μs/G) inverse sweep speed (μs/G) ¾ two orders of magnitude difference in timescales!

Boulder School 2004 Observing a Fermi condensate

repulsive E ? F 40 μs/G 4000 μs/G > ΔB

attractive ?

Boulder School 2004 Condensates w/o a two-body

3x105

2x105 Dissociation of molecules at low density 1x105

molecules C. Regal, M. Greiner,

N 0 and D. S. Jin, PRL 92, 040403 (2004) -0.5 0.0 0.5 ΔB (gauss)

ΔB = 0.12 G ΔB = 0.25 G ΔB=0.55 G

T/TF=0.08 Boulder School 2004

Fermionic condensate

0.15 T/TF=0.08 two-body 0.10 / N / N molecules 0 0

N N pairing due 0.05 to many-body effects 0 -0.5 0 0.5 1.0 ← molecules atoms → ΔB (G) ¾ Clearly see condensation on the “atom-side” of the resonance!

Boulder School 2004 Fermionic condensate 0.15

T/T =0.08 0.10 F / N / N 0 0 N N 0.05

0 -0.5 0 0.5 1.0 ΔB (gauss)

¾ Clearly see condensation on the “atom-side” of the resonance! ¾ Condensate lives much longer near resonance than in BEC limit.

Boulder School 2004 Mapping out a phase diagram

repulsive E a F 40 μs/G 4000 μs/G > ΔB

attractive T/TF molecules

Boulder School 2004 BCS-BEC Crossover

0.20 N0/N 0-0.020 0.15 0.010 0.025

FF 0.050 0.075

0.10 0.100 T/TT/T 0.125 0.05 0.150 0.175 0 -2 -1 0 1 1/(k a) F ← BCS (atoms) BEC (molecules) → C. Regal, M. Greiner, and D. S. Jin, PRL 92, 040403 (2004)

Boulder School 2004 BCS-BEC Crossover 0.20 N0/N 0-0.020 0.15 0.010 0.025

F 0.050 0.075

0.10 0.100 T/T 0.125 0.05 0.150 0.175 0 -2 -1 0 1 ←BCS 1/(k a) BEC→ F Cooper pairs: diatomic molecules: collective, many-body effect two-body effect weakly bound tightly bound (pairing in momentum-space) (pairing in real space) pair size >> n-1/3 pair size << n-1/3 Tc/TF << 1 Tc/TF ~ 1 Tpairing = Tc Tpairing >> Tc Fermion excitations excitations

Boulder School 2004 BCS-BEC crossover Predict a smooth connection between BCS and BEC

0.6 BEC BEC BCS 0.4 BCS F

/ T c

T 0.2 J. R. Engelbrecht et al., A. Perali et al., PRB 55, 15153 (1997) cond-mat/0311309

0 -2 -1 0 1 2 ← BCS 1/(k a) BEC → ← BCS BEC → (atoms) F (molecules) (atoms) (molecules)

partial list: Eagles, Leggett, Nozieres and Schmitt-Rink, Randeria, Haussman, Strinati, Holland, Timmermans, Griffin, Levin, …

Boulder School 2004 Measuring the excitation spectrum

Utilize tunable interaction to a measure spectrum: B 1/ν Æ dissociate pairs of atoms pert Bpert by modulating B-field B0 t

tpert

ΔB Ebinding

B(t)=B0 +Bpert sin(ωt) collective excitations: Grimm, Thomas rf measurement at crossover: Grimm

Boulder School 2004 Excitation spectrum: BEC side

dissociation threshold: molecule binding energy EB /h 0.5 Δ B=-801 m G )

-2 0.0 2 -491 m G single particle excitation spectrum: 0

(kHz ms mG -367 m G

5

tilde • molecule dissociation N 0 -119 m G

5

0 1 10 100 f (k H z)

Boulder School 2004 Excitation spectrum: BCS side collective excitation pair dissociation

ΔB=5 mG

) 5 excitation spectrum -2 0 Æ shows pairing 1 253 mG Æcontaining information about

(kHz ms mG 0 crossover regime,

tilde 378 mG no theoretical model 1 N available yet

0 626 mG 0.05

0.00 1 10 100 f (kHz) Boulder School 2004 Exctitation spectrum

100 maximumν position 80 max νthreshold position 60 0

(kHz) 40 ν 20 0 • BEC side: dissociation threshold 20 according to molecule

15 binding energy

10 • BCS side: nonzero (kHz)

ν maximum Æ pairing 5 0 -800 -400 0 400 800 ΔB (mG) Boulder School 2004 Conclusion ¾ An atomic Fermi gas provides experimental access to the BCS-BEC crossover region. ƒ Fermi gas ↔ molecular BEC interconversion has been explored. ƒ Condensates of fermionic atom pairs have been achieved !

• “Cooper pairs” with strong interactions • “BEC” with extremely weakly bound molecules

Next… Many opportunities for further experimental and theoretical work ...

Boulder School 2004 Current group members:

M. Greiner J. Goldwin S. Inouye C. Regal J. Smith M. Olsen

Boulder School 2004 The End.

Boulder School 2004