States of Matter Elements (From 1Hydrogen to 98 Californium) That Are © R

Total Page:16

File Type:pdf, Size:1020Kb

States of Matter Elements (From 1Hydrogen to 98 Californium) That Are © R A graph of the number of States of Matter elements (from 1Hydrogen to 98 Californium) that are © R. L. McNish, July 2009 solids, liquids and gasses, by temperature, from 0°K to 6000°K. At 0°K all are solid (except 2Helium unless it is under very high pressure). At 3949°K none are solid. Dark At 5869°K all are gasses. At approximately 1660°K Matter ? (1387°C) the number of elements that are solids, liquids and gasses is about Antimatter equal. condensation sublimation deposition melting vaporization ionization Quantum Hall Rydberg Bose-Einstein Fermionic Quark-gluon state molecules condensate condensate SOLID freezing LIQUID condensation GAS deionization PLASMA plasma Quantum Hall state: A One of the A Bose-Einstein A superfluid phase A solid is a state of A liquid is a fluid that A gas consists of a Plasmas (ionized A state of matter state that gives rise to metastable states of condensate, a formed by fermionic matter with resistance has the particles collection of particles gases consisting of discovered at CERN quantized Hall voltage strongly non-ideal superfluid phase particles at low to deformation and loose and can freely (molecules, atoms, negatively charged in 2000, in which the measured in the plasma, which forms formed by bosonic temperatures. It is changes of volume form a distinct surface ions, electrons, etc.) electrons and quarks that would direction upon condensation of atoms, is "colder" closely related to the i.e. matter which at the boundaries of without a definite positively charged normally make up perpendicular to the excited atoms. These than a solid. It may Bose-Einstein Magnetically- maintains a fixed Liquid its bulk material, i.e. shape or volume that ions) can exist at protons and neutrons current flow. The atoms can also turn occur when atoms condensate. The ordered solid volume and shape. Crystal matter which are in more or less temperatures starting are freed and can be quantum spin Hall into ions and have very similar (or earliest recognized Types: maintains a fixed random motion. The at several thousand observed individually, state is a state of electrons if they reach the same) quantum fermionic condensate - Ionic, volume but adapts to following elements degrees C. Some similar to splitting matter proposed to a certain temperature. levels, at described the state of Transition metal - Covalent, Substances with the shape of its are gasses at or near examples of plasma molecules into atoms. exist in special, two- temperatures very electrons in a atoms often have - Molecular, properties between a container. Only six room temperature: are the charged air This state of matter dimensional, close to absolute superconductor magnetic moments - Metallic. conventional liquid a elements are liquid at Hydrogen, Helium, produced by lightning, allows scientists to semiconductors with zero. due to the net spin of Classes: solid crystal, which or about room Nitrogen, Oxygen, and stars such as our observe the spin-orbit coupling. electrons which - Metals may flow like a liquid, temperature and Fluorine, Neon, own Sun. Most of the properties of remain unpaired and - insulators but their molecules pressure: Mercury, Chlorine, Argon, matter in the Universe individual quarks, and do not form chemical - Crystals, etc. may be oriented in a Bromine, Francium, Krypton, Xenon, and is Plasma. not just theorize bonds. In some, the crystal-like way. Cesium, Gallium and Radon. magnetic moments There are many Rubidium. on different atoms are different types of ordered and can liquid crystal phases, form: which can be - ferromagnets, distinguished by their - antiferromagnets, different optical - ferrimagnets properties. Quantum/Micro Quantum Amorphous Non-Newtonian String-net Supercritical Degenerate Superconductors Superfluid Supersolid Superglass Black Holes Black Holes Entanglement solid fluids liquid fluid matter Theoretically, "micro" Photons, electrons Superconductors are Close to absolute A supersolid is a A superglass is These solids do not Fluids where the When in a normal A gas whose Under extremely high Characterized by black holes may exist and atoms may, materials which have zero, some liquids spatially ordered characterized by have a definite viscosity depends on solid state, the atoms temperature and pressure, ordinary enormous mass at any size above the under very special zero electrical form a second liquid material (that is, a superfluidity and a melting point or an applied force or of matter align pressure are above matter undergoes a (thousands to billions Planck mass (2x10 -8 conditions, enter a resistance, and state described as solid or crystal) with frozen amorphous regular repeating shear e.g. a themselves in a grid the critical transition to a series of times the mass of kg) i.e. much more state called quantum therefore perfect superfluid because it superfluid properties. structure at the same units. An amorphous suspension of corn pattern, so that the temperature and of exotic states of our Sun) with no massive, but much entanglement where conductivity. They has zero viscosity or A supersolid is a time. solid is a solid in starch in water. spin of any electron is critical pressure matter collectively spatial dimensions. smaller in size than the entangled also exclude all infinite fluidity. solid, but exhibits so which there is no the opposite of the respectively. It has known as degenerate Surrounded by an an elementary components act as a magnetic fields from many other properties long-range order of spin of all electrons the physical matter. These are of "event horizon" (with particle. However, single entity even their interior. "Superfluid and that many argue it is the positions of the touching it. But in a properties of a gas, great interest to radius dependent on Hawking radiation though the superconducting another state of atoms unlike those in string-net liquid, but its high density astrophysics, the mass), within calculations show that constituent parts may matter" was found in matter. crystalline solids. atoms are arranged in confers solvent because these high- which not even light the smaller the size of be separated by great the neutron star at the Common examples some pattern which properties in some pressure conditions can escape from the the black hole, the distances. centre of the are glass, synthetic would require some cases which lead to are believed to exist gravity well in space- faster the evaporation supernova remnant rubber, polystyrene electrons to have useful applications. inside stars that have time. Other than its rate, resulting in a Cassiopeia A (Cas A, and other polymers. neighbors with the For example, used up their nuclear mass, all other sudden burst of Feb 2011. same spin. This gives supercritical carbon fusion "fuel", such as properties of matter in particles as the micro rise to some curious dioxide is used to white dwarfs and a black hole are black hole suddenly properties, as well as extract caffeine in the neutron stars e.g. the unknown. explodes supporting some manufacture of hypothetical unusual proposals decaffeinated coffee. "Neutronium". about the fundamental conditions of the universe itself. .
Recommended publications
  • Arxiv:0807.2458V2 [Cond-Mat.Dis-Nn] 29 Oct 2008 Se Oee,Tevr Eetwr Eotdi E.7)
    Theory of the superglass phase Giulio Biroli,1 Claudio Chamon,2 and Francesco Zamponi3 1Institut de Physique Th´eorique, CEA, IPhT, F-91191 Gif-sur-Yvette, France CNRS, URA 2306, F-91191 Gif-sur-Yvette, France 2Physics Department, Boston University, Boston, MA 02215, USA 3CNRS-UMR 8549, Laboratoire de Physique Th´eorique, Ecole´ Normale Sup´erieure, 24 Rue Lhomond, 75231 Paris Cedex 05, France (Dated: October 29, 2008) A superglass is a phase of matter which is characterized at the same time by superfluidity and a frozen amorphous structure. We introduce a model of interacting bosons in three dimensions that displays this phase unambiguously and that can be analyzed exactly or using controlled approxima- tions. Employing a mapping between quantum Hamiltonians and classical Fokker-Planck operators, we show that the ground state wavefunction of the quantum model is proportional to the Boltzmann measure of classical hard spheres. This connection allows us to obtain quantitative results on static and dynamic quantum correlation functions. In particular, by translating known results on the glassy dynamics of Brownian hard spheres we work out the properties of the superglass phase and of the quantum phase transition between the superfluid and the superglass phase. I. INTRODUCTION Solids do not flow. This apparently tautological statement can be wrong in two ways. First, solidity is in general a timescale-dependent phenomenon. Crystal or glasses, well known solids on most experimentally relevant timescales, do flow if one waits long enough (see Ref. 1 for example). Second, at very small temperatures, quantum solids may become superfluids as suggested theoretically in the early seventies2–4.
    [Show full text]
  • Insulation Solutions Guide
    Creating Intelligent Environments Insulation Solutions Guide Has anyone ever put more thought into insulation? Our world has changed. The way we live is affecting our planet more than ever, and the buildings we construct need to address this – now. 2 Technical Department: 0808 1645 134 It’s time to think carefully about our future. All our futures. What we do today will have an immeasurable impact on tomorrow. And if we do the right thing, we’ll all benefit. As will the next generation. Superglass may be a brand with 40 years behind it, but our thinking is light years ahead. We create intelligent insulation solutions that enable comfortable living and working environments. And that protect our global environment by saving energy and using recycled glass. A global leader We may still be based in Scotland, but we’re part of global leader in roofing, waterproofing and insulation TECHNONICOL – a business with over 6500 people, 51 manufacturing plants and offices in 79 countries, dedicated to researching and investing in new energy saving solutions to improve the lives of millions of people worldwide. So while insulation is what we make, what we contribute makes an important difference to our planet. www.superglass.co.uk 3 The smartest way to use energy is to not use it at all. That’s the underlying principle behind Superglass thinking. It drives everything we do – from creating new ways of insulating to helping housebuilders make best use of resources. 4 Technical Department: 0808 1645 134 We’ve long been innovators – bringing new ideas, products and thinking to the construction industry.
    [Show full text]
  • Bose-Einstein Condensation in Quantum Glasses
    Bose-Einstein condensation in quantum glasses Giuseppe Carleo,1 Marco Tarzia,2 and Francesco Zamponi3, 4 1SISSA – Scuola Internazionale Superiore di Studi Avanzati and CNR-INFM DEMOCRITOS – National Simulation Center, via Beirut 2-4, I-34014 Trieste, Italy. 2Laboratoire de Physique Th´eorique de la Mati`ere Condens´ee, Universit´ePierre et Marie Curie-Paris 6, UMR CNRS 7600, 4 place Jussieu, 75252 Paris Cedex 05, France. 3Princeton Center for Theoretical Science, Princeton University, Princeton, New Jersey 08544, USA 4Laboratoire de Physique Th´eorique, Ecole Normale Sup´erieure, UMR CNRS 8549, 24 Rue Lhomond, 75231 Paris Cedex 05, France. The role of geometrical frustration in strongly interacting bosonic systems is studied with a com- bined numerical and analytical approach. We demonstrate the existence of a novel quantum phase featuring both Bose-Einstein condensation and spin-glass behaviour. The differences between such a phase and the otherwise insulating “Bose glasses” are elucidated. Introduction. Quantum particles moving in a disor- frustrated magnets [10], valence-bond glasses [11] and dered environment exhibit a plethora of non-trivial phe- the order-by-disorder mechanism inducing supersolidity nomena. The competition between disorder and quan- on frustrated lattices [12]. Another prominent manifes- tum fluctuations has been the subject of vast literature tation of frustration is the presence of a large number [1, 2] in past years, with a renewed interest following of metastable states that constitutes the fingerprint of from the exciting frontiers opened by the experimental spin-glasses. When quantum fluctuations and geomet- research with cold-atoms [3, 4]. One of the most striking rical frustration meet, their interplay raises nontrivial features resulting from the presence of a disordered ex- questions on the possible realisation of relevant phases ternal potential is the appearance of localized states [1].
    [Show full text]
  • Sounds of a Supersolid A
    NEWS & VIEWS RESEARCH hypothesis came from extensive population humans, implying possible mosquito exposure long-distance spread of insecticide-resistant time-series analysis from that earlier study5, to malaria parasites and the potential to spread mosquitoes, worsening an already dire situ- which showed beyond reasonable doubt that infection over great distances. ation, given the current spread of insecticide a mosquito vector species called Anopheles However, the authors failed to detect resistance in mosquito populations. This would coluzzii persists locally in the dry season in parasite infections in their aerially sampled be a matter of great concern because insecticides as-yet-undiscovered places. However, the malaria vectors, a result that they assert is to be are the best means of malaria control currently data were not consistent with this outcome for expected given the small sample size and the low available8. However, long-distance migration other malaria vectors in the study area — the parasite-infection rates typical of populations of could facilitate the desirable spread of mosqui- species Anopheles gambiae and Anopheles ara- malaria vectors. A problem with this argument toes for gene-based methods of malaria-vector biensis — leaving wind-powered long-distance is that the typical infection rates they mention control. One thing is certain, Huestis and col- migration as the only remaining possibility to are based on one specific mosquito body part leagues have permanently transformed our explain the data5. (salivary glands), rather than the unknown but understanding of African malaria vectors and Both modelling6 and genetic studies7 undoubtedly much higher infection rates that what it will take to conquer malaria.
    [Show full text]
  • Quantum Fluctuations Can Promote Or Inhibit Glass Formation
    LETTERS PUBLISHED ONLINE: 9 JANUARY 2011 | DOI: 10.1038/NPHYS1865 Quantum fluctuations can promote or inhibit glass formation Thomas E. Markland1, Joseph A. Morrone1, Bruce J. Berne1, Kunimasa Miyazaki2, Eran Rabani3* and David R. Reichman1* Glasses are dynamically arrested states of matter that do not 0.7 1–4 exhibit the long-range periodic structure of crystals . Here Glass 0.7 we develop new insights from theory and simulation into the 0.6 impact of quantum fluctuations on glass formation. As intuition may suggest, we observe that large quantum fluctuations serve 0.6 φ 0.5 to inhibit glass formation as tunnelling and zero-point energy 0.4 allow particles to traverse barriers facilitating movement. 0.3 However, as the classical limit is approached a regime is 10¬2 10¬1 100 φ 0.5 observed in which quantum effects slow down relaxation Λ∗ making the quantum system more glassy than the classical system. This dynamical ‘reentrance’ occurs in the absence of obvious structural changes and has no counterpart in the phenomenology of classical glass-forming systems. 0.4 Although a wide variety of glassy systems ranging from metallic to colloidal can be accurately described using classical theory, Liquid quantum systems ranging from molecular, to electronic and 5,6 0.3 magnetic form glassy states . Perhaps the most intriguing of these 10¬2 10¬1 100 is the coexistence of superfluidity and dynamical arrest, namely Λ∗ the `superglass' state suggested by recent numerical, theoretical and experimental work7–9. Although such intriguing examples exist, Figure 1 j Dynamic phase diagram calculated from the QMCT for a at present there is no unifying framework to treat the interplay hard-sphere fluid.
    [Show full text]
  • Current Status of Equation of State in Nuclear Matter and Neutron Stars
    Open Issues in Understanding Core Collapse Supernovae June 22-24, 2004 Current Status of Equation of State in Nuclear Matter and Neutron Stars J.R.Stone1,2, J.C. Miller1,3 and W.G.Newton1 1 Oxford University, Oxford, UK 2Physics Division, ORNL, Oak Ridge, TN 3 SISSA, Trieste, Italy Outline 1. General properties of EOS in nuclear matter 2. Classification according to models of N-N interaction 3. Examples of EOS – sensitivity to the choice of N-N interaction 4. Consequences for supernova simulations 5. Constraints on EOS 6. High density nuclear matter (HDNM) 7. New developments Equation of State is derived from a known dependence of energy per particle of a system on particle number density: EA/(==En) or F/AF(n) I. E ( or Boltzman free energy F = E-TS for system at finite temperature) is constructed in a form of effective energy functional (Hamiltonian, Lagrangian, DFT/EFT functional or an empirical form) II. An equilibrium state of matter is found at each density n by minimization of E (n) or F (n) III. All other related quantities like e.g. pressure P, incompressibility K or entropy s are calculated as derivatives of E or F at equilibrium: 2 ∂E ()n ∂F ()n Pn()= n sn()=− | ∂n ∂T nY, p ∂∂P()nnEE() ∂2 ()n Kn()==9 18n +9n2 ∂∂nn∂n2 IV. Use as input for model simulations (Very) schematic sequence of equilibrium phases of nuclear matter as a function of density: <~2x10-4fm-3 ~2x10-4 fm-3 ~0.06 fm-3 Nuclei in Nuclei in Neutron electron gas + ‘Pasta phase’ Electron gas ~0.1 fm-3 0.3-0.5 fm-3 >0.5 fm-3 Nucleons + n,p,e,µ heavy baryons Quarks ???
    [Show full text]
  • Bose-Einstein Condensation
    Physics monitor The oldest galaxy, as seen by the European Southern Observatory's NTT telescope. The left picture shows the target quasar, with right, the quasar image removed to make the galaxy, situated just to the north-west of the quasar, easier to see. superfluidity. Condensates could also play an important role in particle physics and cosmology, explaining, for example, why the pion as a bound quark-antiquark state is so much lighter than the three-quark proton. A hunt to create a pure Bose- Einstein condensate has been underway for over 15 years, with different groups employing different techniques to cool their bosons. The two recent successes have been achieved by incorporating several techniques. In both cases, the bosons have been atoms. In Colo­ just 2 arcsec away from the quasar. led to Einstein's prediction. Unlike rado, rubidium-87 was used, whilst at This tiny angular separation corre­ fermions, which obey the Pauli Rice University, the condensate was sponds to a distance 'on the ground' exclusion principle of only one formed from lithium-7. Both teams of 40,000 light-years. resident particle per allowed quantum started with the technique of laser There are strong indications that state, any number of bosons can cooling. This works by pointing finely this galaxy contains all the necessary pack into an identical quantum state. tuned laser beams at the sample nuclei to produce the observed This led Einstein to suggest that such that any atoms moving towards absorption effects. Only hydrogen under certain conditions, bosons a beam are struck by a photon, which and helium were produced in the Big would lose their individual identities, slows them down.
    [Show full text]
  • The Elastic Constants of a Nematic Liquid Crystal
    The Elastic Constants of a Nematic Liquid Crystal Hans Gruler Gordon McKay Laboratory, Harvard University, Cambridge, Mass. 02138, U.S.A. (Z. Naturforsch. 30 a, 230-234 [1975] ; received November 4, 1974) The elastic constants of a nematic liquid and of a solid crystal were derived by comparing the Gibbs free energy with the elastic energy. The expressions for the elastic constants of the nematic and the solid crystal are isomorphic: k oc | D | /1. In the nematic phase | D | and I are the mean field energy and the molecular length. In the solid crystal, | D | and I correspond to the curvature of the potential and to the lattice constant, respectively. The measured nematic elastic constants show the predicted I dependence. 1. Introduction The mean field of the nematic phase was first derived by Maier and Saupe 3: The symmetry of a crystal determines the number D(0,P2) = -(A/Vn2)P2-P2±... (2) of non-vanishing elastic constants. In a nematic liquid crystal which is a uniaxial crystal, we find five 0 is the angle between the length axis of one mole- elastic constants but only three describe bulk pro- cule and the direction of the preferred axis (optical perties 2. Here we calculate the magnitude of these axis). P2 is the second Legendre polynomial and three elastic constants by determining the elastic P2 is one order parameter given by the distribution function f{0): energy density in two different ways. On the one hand the elastic energy density can be expressed by the elastic constants and the curvature of the optical p2 = Tf (@) Po sin e d e/tf (&) sin e d 0 .
    [Show full text]
  • Bose-Einstein Condensation in Quantum Glasses
    Motivations The quantum cavity method A lattice model for the superglass Discussion Conclusions Bose-Einstein condensation in Quantum Glasses Giuseppe Carleo, Marco Tarzia, and Francesco Zamponi∗ Phys. Rev. Lett. 103, 215302 (2009) Collaborators: Florent Krzakala, Laura Foini, Alberto Rosso, Guilhem Semerjian ∗Laboratoire de Physique Th´eorique, Ecole Normale Sup´erieure, 24 Rue Lhomond, 75231 Paris Cedex 05 March 29, 2010 Motivations The quantum cavity method A lattice model for the superglass Discussion Conclusions Outline 1 Motivations Supersolidity of He4 Helium 4: Monte Carlo results 2 The quantum cavity method Regular lattices, Bethe lattices and random graphs Recursion relations Bose-Hubbard models on the Bethe lattice 3 A lattice model for the superglass Extended Hubbard model on a random graph Results A variational argument 4 Discussion Disordered Bose-Hubbard model: the Bose glass 3D spin glass model with quenched disorder Quantum Biroli-M´ezard model: a lattice glass model 5 Conclusions Motivations The quantum cavity method A lattice model for the superglass Discussion Conclusions Outline 1 Motivations Supersolidity of He4 Helium 4: Monte Carlo results 2 The quantum cavity method Regular lattices, Bethe lattices and random graphs Recursion relations Bose-Hubbard models on the Bethe lattice 3 A lattice model for the superglass Extended Hubbard model on a random graph Results A variational argument 4 Discussion Disordered Bose-Hubbard model: the Bose glass 3D spin glass model with quenched disorder Quantum Biroli-M´ezard model: a lattice glass model 5 Conclusions Experimental Results Discovery by Kim & Chan in He4 (Nature & Science 2004). Motivations• The quantumExperimental cavity method A lattice modelResults for the superglass Discussion Conclusions Reproduced after by many4 other groups.
    [Show full text]
  • Fermionic Condensation in Ultracold Atoms, Nuclear Matter and Neutron Stars
    Journal of Physics: Conference Series OPEN ACCESS Related content - Condensate fraction of asymmetric three- Fermionic condensation in ultracold atoms, component Fermi gas Du Jia-Jia, Liang Jun-Jun and Liang Jiu- nuclear matter and neutron stars Qing - S-Wave Scattering Properties for Na—K Cold Collisions To cite this article: Luca Salasnich 2014 J. Phys.: Conf. Ser. 497 012026 Zhang Ji-Cai, Zhu Zun-Lue, Sun Jin-Feng et al. - Landau damping in a dipolar Bose–Fermi mixture in the Bose–Einstein condensation (BEC) limit View the article online for updates and enhancements. S M Moniri, H Yavari and E Darsheshdar This content was downloaded from IP address 170.106.40.139 on 26/09/2021 at 20:46 22nd International Laser Physics Worksop (LPHYS 13) IOP Publishing Journal of Physics: Conference Series 497 (2014) 012026 doi:10.1088/1742-6596/497/1/012026 Fermionic condensation in ultracold atoms, nuclear matter and neutron stars Luca Salasnich Dipartimento di Fisica e Astronomia “Galileo Galilei” and CNISM, Universit`a di Padova, Via Marzolo 8, 35131 Padova, Italy E-mail: [email protected] Abstract. We investigate the Bose-Einstein condensation of fermionic pairs in three different superfluid systems: ultracold and dilute atomic gases, bulk neutron matter, and neutron stars. In the case of dilute gases made of fermionic atoms the average distance between atoms is much larger than the effective radius of the inter-atomic potential. Here the condensation of fermionic pairs is analyzed as a function of the s-wave scattering length, which can be tuned in experiments by using the technique of Feshbach resonances from a small and negative value (corresponding to the Bardeen-Cooper-Schrieffer (BCS) regime of Cooper Fermi pairs) to a small and positive value (corresponding to the regime of the Bose-Einstein condensate (BEC) of molecular dimers), crossing the unitarity regime where the scattering length diverges.
    [Show full text]
  • Liquid Crystals
    www.scifun.org LIQUID CRYSTALS To those who know that substances can exist in three states, solid, liquid, and gas, the term “liquid crystal” may be puzzling. How can a liquid be crystalline? However, “liquid crystal” is an accurate description of both the observed state transitions of many substances and the arrangement of molecules in some states of these substances. Many substances can exist in more than one state. For example, water can exist as a solid (ice), liquid, or gas (water vapor). The state of water depends on its temperature. Below 0̊C, water is a solid. As the temperature rises above 0̊C, ice melts to liquid water. When the temperature rises above 100̊C, liquid water vaporizes completely. Some substances can exist in states other than solid, liquid, and vapor. For example, cholesterol myristate (a derivative of cholesterol) is a crystalline solid below 71̊C. When the solid is warmed to 71̊C, it turns into a cloudy liquid. When the cloudy liquid is heated to 86̊C, it becomes a clear liquid. Cholesterol myristate changes from the solid state to an intermediate state (cloudy liquid) at 71̊C, and from the intermediate state to the liquid state at 86̊C. Because the intermediate state exits between the crystalline solid state and the liquid state, it has been called the liquid crystal state. Figure 1. Arrangement of Figure 2. Arrangement of Figure 3. Arrangement of molecules in a solid crystal. molecules in a liquid. molecules in a liquid crystal. “Liquid crystal” also accurately describes the arrangement of molecules in this state. In the crystalline solid state, as represented in Figure 1, the arrangement of molecules is regular, with a regularly repeating pattern in all directions.
    [Show full text]
  • Solid State Insurrection
    INTRODUCTION WHAT IS SOLID STATE PHYSICS AND WHY DOES IT MATTER? Solid state physics sounds kind of funny. —GREGORY H. WANNIER, 1943 The Superconducting Super Collider (SSC), the largest scientific instrument ever proposed, was also one of the most controversial. The enormous parti- cle accelerator’s beam pipe would have encircled hundreds of square miles of Ellis County, Texas. It was designed to produce evidence for the last few elements of the standard model of particle physics, and many hoped it might generate unexpected discoveries that would lead beyond. Advocates billed the SSC as the logical apotheosis of physical research. Opponents raised their eyebrows at the facility’s astronomical price tag, which stood at $11.8 billion by the time Congress yanked its funding in 1993. Skeptics also objected to the reductionist rhetoric used to justify the project—which suggested that knowledge of the very small was the only knowledge that could be truly fun- damental—and grew exasperated when SSC boosters ascribed technological developments and medical advances to high energy physics that they thought more justly credited to other areas of science. To the chagrin of the SSC’s supporters, many such skeptics were fellow physicists. The most prominent among them was Philip W. Anderson, a No- bel Prize–winning theorist. Anderson had risen to prominence in the new field known as solid state physics after he joined the Bell Telephone Labora- tories in 1949, the ink on his Harvard University PhD still damp. In a House of Representatives committee hearing in July 1991, Anderson, by then at © 2018 University of Pittsburgh Press.
    [Show full text]