Quantum Phase Transition from a Super¯Uid to a Mott Insulator in a Gas of Ultracold Atoms

Total Page:16

File Type:pdf, Size:1020Kb

Quantum Phase Transition from a Super¯Uid to a Mott Insulator in a Gas of Ultracold Atoms articles Quantum phase transition from a super¯uid to a Mott insulator in a gas of ultracold atoms Markus Greiner*, Olaf Mandel*, Tilman Esslinger², Theodor W. HaÈnsch* & Immanuel Bloch* * Sektion Physik, Ludwig-Maximilians-UniversitaÈt, Schellingstrasse 4/III, D-80799 Munich, Germany, and Max-Planck-Institut fuÈr Quantenoptik, D-85748 Garching, Germany ² Quantenelektronik, ETH ZuÈrich, 8093 Zurich, Switzerland ............................................................................................................................................................................................................................................................................ For a system at a temperature of absolute zero, all thermal ¯uctuations are frozen out, while quantum ¯uctuations prevail. These microscopic quantum ¯uctuations can induce a macroscopic phase transition in the ground state of a many-body system when the relative strength of two competing energy terms is varied across a critical value. Here we observe such a quantum phase transition in a Bose±Einstein condensate with repulsive interactions, held in a three-dimensional optical lattice potential. As the potential depth of the lattice is increased, a transition is observed from a super¯uid to a Mott insulator phase. In the super¯uid phase, each atom is spread out over the entire lattice, with long-range phase coherence. But in the insulating phase, exact numbers of atoms are localized at individual lattice sites, with no phase coherence across the lattice; this phase is characterized by a gap in the excitation spectrum. We can induce reversible changes between the two ground states of the system. A physical system that crosses the boundary between two phases (here between kinetic and interaction energy) is fundamental to changes its properties in a fundamental way. It may, for example, quantum phase transitions4 and inherently different from normal melt or freeze. This macroscopic change is driven by microscopic phase transitions, which are usually driven by the competition ¯uctuations. When the temperature of the system approaches zero, between inner energy and entropy. all thermal ¯uctuations die out. This prohibits phase transitions in The physics of the above-described system is captured by the classical systems at zero temperature, as their opportunity to change Bose±Hubbard model1, which describes an interacting boson gas in has vanished. However, their quantum mechanical counterparts can a lattice potential. The hamiltonian in second quantized form reads: show fundamentally different behaviour. In a quantum system, 1 ¯uctuations are present even at zero temperature, due to Heisen- H 2 J aòaà e nà U nà nà 2 1 1 berg's uncertainty relation. These quantum ¯uctuations may be ^ i j ^ i i 2 ^ i i hi;ji i i strong enough to drive a transition from one phase to another, ² bringing about a macroscopic change. Here aÃi and aÃi correspond to the bosonic annihilation and ² A prominent example of such a quantum phase transition is the creation operators of atoms on the ith lattice site, nÃi aÃi aÃi is change from the super¯uid phase to the Mott insulator phase in a the atomic number operator counting the number of atoms on system consisting of bosonic particles with repulsive interactions the ith lattice site, and ei denotes the energy offset of the ith hopping through a lattice potential. This system was ®rst studied lattice site due to an external harmonic con®nement of the theoretically in the context of super¯uid-to-insulator transitions in atoms2. The strength of the tunnelling term in the hamiltonian liquid helium1. Recently, Jaksch et al.2 have proposed that such a is characterized by the hopping matrix element between adja- 3 2 2 transition might be observable when an ultracold gas of atoms with cent sites i,j J 2ed xw x 2 xi 2~ = =2m V lat xw x 2 xj, repulsive interactions is trapped in a periodic potential. To illustrate where w x 2 xi is a single particle Wannier function localized to this idea, we consider an atomic gas of bosons at low enough the ith lattice site (as long as ni < O 1), Vlat(x) indicates the optical temperatures that a Bose±Einstein condensate is formed. The lattice potential and m is the mass of a single atom. The repulsion condensate is a super¯uid, and is described by a wavefunction between two atoms on a single lattice site is quanti®ed by the on-site that exhibits long-range phase coherence3. An intriguing situation interaction matrix element U 4p~2a=mejw xj4d3x, with a appears when the condensate is subjected to a lattice potential in being the scattering length of an atom. In our case the interaction which the bosons can move from one lattice site to the next only by energy is very well described by the single parameter U, due to the tunnel coupling. If the lattice potential is turned on smoothly, the short range of the interactions, which is much smaller than the system remains in the super¯uid phase as long as the atom±atom lattice spacing. interactions are small compared to the tunnel coupling. In this In the limit where the tunnelling term dominates the hamilto- regime a delocalized wavefunction minimizes the dominant kinetic nian, the ground-state energy is minimized if the single-particle energy, and therefore also minimizes the total energy of the many- wavefunctions of N atoms are spread out over the entire lattice with body system. In the opposite limit, when the repulsive atom±atom M lattice sites. The many-body ground state for a homogeneous interactions are large compared to the tunnel coupling, the total system (ei const:) is then given by: energy is minimized when each lattice site is ®lled with the same !N number of atoms. The reduction of ¯uctuations in the atom M jª i ~ aò j0i 2 number on each site leads to increased ¯uctuations in the phase. SF U0 ^ i Thus in the state with a ®xed atom number per site phase coherence i1 is lost. In addition, a gap in the excitation spectrum appears. The Here all atoms occupy the identical extended Bloch state. An competition between two terms in the underlying hamiltonian important feature of this state is that the probability distribution NATURE | VOL 415 | 3 JANUARY 2002 | www.nature.com © 2002 Macmillan Magazines Ltd 39 articles for the local occupation ni of atoms on a single lattice site is period of 500 ms to nrad 24 Hz such that a spherically symmetric poissonian, that is, its variance is given by Var nihnÃii. Further- Bose±Einstein condensate with a Thomas±Fermi diameter of more, this state is well described by a macroscopic wavefunction 26 mm is present in the magnetic trapping potential. with long-range phase coherence throughout the lattice. In order to form the three-dimensional lattice potential, three If interactions dominate the hamiltonian, the ¯uctuations in optical standing waves are aligned orthogonal to each other, with atom number of a Poisson distribution become energetically very their crossing point positioned at the centre of the Bose±Einstein costly and the ground state of the system will instead consist of condensate. Each standing wave laser ®eld is created by focusing a localized atomic wavefunctions with a ®xed number of atoms per laser beam to a waist of 125 mm at the position of the condensate. A site that minimize the interaction energy. The many-body ground second lens and a mirror are then used to re¯ect the laser beam back state is then a product of local Fock states for each lattice site. In this onto itself, creating the standing wave interference pattern. The limit, the ground state of the many-body system for a commensu- lattice beams are derived from an injection seeded tapered ampli®er rate ®lling of n atoms per lattice site in the homogeneous case is and a laser diode operating at a wavelength of l 852 nm. All given by: beams are spatially ®ltered and guided to the experiment using M optical ®bres. Acousto-optical modulators are used to control the ² n jªMIiJ0 ~ & aÃi j0i 3 intensity of the lattice beams and introduce a frequency difference of i1 about 30 MHz between different standing wave laser ®elds. The This Mott insulator state cannot be described by a macroscopic polarization of a standing wave laser ®eld is chosen to be linear and wavefunction like in a Bose condensed phase, and thus is not orthogonal polarized to all other standing waves. Due to the amenable to a treatment via the Gross-Pitaevskii equation or different frequencies in each standing wave, any residual interfer- Bogoliubov's theory of weakly interacting bosons. In this state no ence between beams propagating along orthogonal directions is phase coherence is prevalent in the system, but perfect correlations time-averaged to zero and therefore not seen by the atoms. The in the atom number exist between lattice sites. resulting three-dimensional optical potential (see ref. 20 and As the strength of the interaction term relative to the tunnelling references therein) for the atoms is then proportional to the sum term in the Bose±Hubbard hamiltonian is changed, the system of the intensities of the three standing waves, which leads to a simple reaches a quantum critical point in the ratio of U/J, for which the cubic type geometry of the lattice: system will undergo a quantum phase transition from the super¯uid V x; y; zV sin2 kxsin2 kysin2 kz 4 state to the Mott insulator state. In three dimensions, the phase 0 transition for an average number of one atom per lattice site is Here k 2p=l denotes the wavevector of the laser light and V0 is expected to occur at U=J z 3 5:8 (see refs 1, 5, 6, 7), with z being the maximum potential depth of a single standing wave laser ®eld.
Recommended publications
  • Mott Insulators Atomic Limit - View Electrons in Real Space
    Mott insulators Atomic limit - view electrons in real space Virtual system: lattice of H-Atoms: aB << d 2aB d H Mott insulators Atomic limit - view electrons in real space lattice of H-Atoms: Virtual system: aB << d 2aB d hopping - electron transfer - H H + -t ionization energy H delocalization localization kinetic energy charge excitation energy metal Mott insulator Mott insulators Atomic limit - view electrons in real space lattice of H-Atoms: Virtual system: aB << d 2aB d hopping - electron transfer ionization energy H -t S = 1/2 Mott isolator effective low-energy model low-energy physics no charge fluctuation only spin fluctuation Mott insulators Metal-insulator transition from the insulating side Hubbard-model: n.n. hopping onsite repulsion density: n=1 „ground state“ t = 0 E charge excitation U h d Mott insulators Metal-insulator transition from the insulating side Hubbard-model: n.n. hopping onsite repulsion density: n=1 t > 0 „ground state“ E W = 4d t U charge excitation h d metal-insulator transition: Uc = 4dt Mott insulators Metal-insulator transition from the metallic side h d tight-binding model density empty sites h = 1/4 doubly occupied sites d = 1/4 half-filled singly occupied sites s = 1/2 conduction band reducing mobility Mott insulators Gutzwiller approximation Metal-insulator transition from the metallic side Gutzwiller-approach: variational diminish double-occupancy uncorrelated state variational groundstate density of doubly occupied sites renormalized hopping Mott insulators Gutzwiller approximation Metal-insulator
    [Show full text]
  • 9 Quantum Phases and Phase Transitions of Mott Insulators
    9 Quantum Phases and Phase Transitions of Mott Insulators Subir Sachdev Department of Physics, Yale University, P.O. Box 208120, New Haven CT 06520-8120, USA, [email protected] Abstract. This article contains a theoretical overview of the physical properties of antiferromagnetic Mott insulators in spatial dimensions greater than one. Many such materials have been experimentally studied in the past decade and a half, and we make contact with these studies. Mott insulators in the simplest class have an even number of S =1/2 spins per unit cell, and these can be described with quantitative accuracy by the bond operator method: we discuss their spin gap and magnetically ordered states, and the transitions between them driven by pressure or an applied magnetic field. The case of an odd number of S =1/2 spins per unit cell is more subtle: here the spin gap state can spontaneously develop bond order (so the ground state again has an even number of S =1/2 spins per unit cell), and/or acquire topological order and fractionalized excitations. We describe the conditions under which such spin gap states can form, and survey recent theories of the quantum phase transitions among these states and magnetically ordered states. We describe the breakdown of the Landau-Ginzburg-Wilson paradigm at these quantum critical points, accompanied by the appearance of emergent gauge excitations. 9.1 Introduction The physics of Mott insulators in two and higher dimensions has enjoyed much attention since the discovery of cuprate superconductors. While a quan- titative synthesis of theory and experiment in the superconducting materials remains elusive, much progress has been made in describing a number of antiferromagnetic Mott insulators.
    [Show full text]
  • Structural Superfluid-Mott Insulator Transition for a Bose Gas in Multi
    Structural Superfluid-Mott Insulator Transition for a Bose Gas in Multi-Rods Omar Abel Rodríguez-López,1, ∗ M. A. Solís,1, y and J. Boronat2, z 1Instituto de Física, Universidad Nacional Autónoma de México, Apdo. Postal 20-364, 01000 Ciudad de México, México 2Departament de Física, Universitat Politècnica de Catalunya, Campus Nord B4-B5, E-08034 Barcelona, España (Dated: Modified: January 12, 2021/ Compiled: January 12, 2021) We report on a novel structural Superfluid-Mott Insulator (SF-MI) quantum phase transition for an interacting one-dimensional Bose gas within permeable multi-rod lattices, where the rod lengths are varied from zero to the lattice period length. We use the ab-initio diffusion Monte Carlo method to calculate the static structure factor, the insulation gap, and the Luttinger parameter, which we use to determine if the gas is a superfluid or a Mott insulator. For the Bose gas within a square Kronig-Penney (KP) potential, where barrier and well widths are equal, the SF-MI coexistence curve shows the same qualitative and quantitative behavior as that of a typical optical lattice with equal periodicity but slightly larger height. When we vary the width of the barriers from zero to the length of the potential period, keeping the height of the KP barriers, we observe a new way to induce the SF-MI phase transition. Our results are of significant interest, given the recent progress on the realization of optical lattices with a subwavelength structure that would facilitate their experimental observation. I. INTRODUCTION close experimental realization of a sequence of Dirac-δ functions, forming the well-known Dirac comb poten- Phase transitions are ubiquitous in condensed matter tial [13], and could be useful to test many mean-field physics.
    [Show full text]
  • Arxiv:2002.00554V2 [Cond-Mat.Str-El] 28 Jul 2020
    Topological Bose-Mott insulators in one-dimensional non-Hermitian superlattices Zhihao Xu1, 2, 3, 4, ∗ and Shu Chen2, 5, 6, y 1Institute of Theoretical Physics, Shanxi University, Taiyuan 030006, China 2Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 3Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, P.R.China 4State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, P.R.China 5School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China 6Yangtze River Delta Physics Research Center, Liyang, Jiangsu 213300, China We study the topological properties of Bose-Mott insulators in one-dimensional non-Hermitian superlattices, which may serve as effective Hamiltonians for cold atomic optical systems with either two-body loss or one-body loss. We find that in the strongly repulsive limit, the Mott insulator states of the Bose-Hubbard model with a finite two-body loss under integer fillings are topological insulators characterized by a finite charge gap, nonzero integer Chern numbers, and nontrivial edge modes in a low-energy excitation spectrum under an open boundary condition. The two-body loss suppressed by the strong repulsion results in a stable topological Bose-Mott insulator which has shares features similar to the Hermitian case. However, for the non-Hermitian model related to the one-body loss, we find the non-Hermitian topological Mott insulators are unstable with a finite imaginary excitation gap. Finally, we also discuss the stability of the Mott phase in the presence of two-body loss by solving the Lindblad master equation.
    [Show full text]
  • Polariton Panorama (QED) with Atomic Systems
    Nanophotonics 2020; ▪▪▪(▪▪▪): 20200449 Review D. N. Basov*, Ana Asenjo-Garcia, P. James Schuck, Xiaoyang Zhu and Angel Rubio Polariton panorama https://doi.org/10.1515/nanoph-2020-0449 (QED) with atomic systems. Here, we attempt to summarize Received August 5, 2020; accepted October 2, 2020; (in alphabetical order) some of the polaritonic nomenclature published online November 11, 2020 in the two subfields. We hope this summary will help readers to navigate through the vast literature in both of Abstract: In this brief review, we summarize and elaborate these fields [1–520]. Apart from its utilitarian role, this on some of the nomenclature of polaritonic phenomena summary presents a broad panorama of the physics and and systems as they appear in the literature on quantum technology of polaritons transcending the specifics of materials and quantum optics. Our summary includes at particular polaritonic platforms (Boxes 1 and 2). We invite least 70 different types of polaritonic light–matter dres- readers to consult with reviews covering many important sing effects. This summary also unravels a broad pano- aspects of the physics of polaritons in QMs [1–3], atomic and rama of the physics and applications of polaritons. A molecular systems [4], and in circuit QED [5, 6], as well as constantly updated version of this review is available at general reviews of the closely related topic of strong light– https://infrared.cni.columbia.edu. matter interaction [7–11, 394]. A constantly updated version Keywords: portions; quantum electrodynamics; quantum is available at https://infrared.cni.columbia.edu. materials; quantum optics. Anderson–Higgs polaritons [12, 13].
    [Show full text]
  • Mott Insulators
    Quick and Dirty Introduction to Mott Insulators Branislav K. Nikoli ć Department of Physics and Astronomy, University of Delaware, U.S.A. PHYS 624: Introduction to Solid State Physics http://www.physics.udel.edu/~bnikolic/teaching/phys624/phys624.html Weakly correlated electron liquid: Coulomb interaction effects When local perturbation δ U ( r ) potential is switched on, some electrons will leave this region in order to ensure ε≃ µ constant F (chemical potential is a thermodynamic potential; therefore, in equilibrium it must be homogeneous throughout the crystal). δ= ε δ n()r eD ()F U () r δ≪ ε assume:e U (r ) F ε→ = θεε − f( , T 0) (F ) PHYS 624: Quick and Dirty Introduction to Mott Insulators Thomas –Fermi Screening Except in the immediate vicinity of the perturbation charge, assume thatδ U ( r ) is caused eδ n (r ) by the induced space charge → Poisson equation: ∇2δU(r ) = − ε − 0 1 ∂ ∂ αe r/ r TF ∇2 = r 2 ⇒ δ U (r ) = 2 −1/ 6 ∂ ∂ 2 rrr r 1 n 4πℏ ε ≃ = 0 rTF , a 0 ε 2 a3 me 2 r = 0 0 TF 2 ε = ⋅23− 3 Cu = e D (F ) nCu8.510 cm , r TF 0.55Å q in vacuum:D (ε )= 0, δ U (r ) = = α F πε 4 0 2 1/3 312n m 2/3ℏ 2/3− 4 1/3 n D()ε= =() 3,3 πεπ2 n = () 222 nr⇒ = () 3 π F ε π2ℏ 2 F TF π 2F 2 2 m a 0 PHYS 624: Quick and Dirty Introduction to Mott Insulators Mott Metal-Insulator Transition 1 a r2≃0 ≫ a 2 TF 4 n1/3 0 −1/3 ≫ n4 a 0 Below the critical electron concentration, the potential well of the screened field extends far enough for a bound state to be formed → screening length increases so that free electrons become localized → Mott Insulators Examples: transition metal oxides, glasses, amorphous semiconductors PHYS 624: Quick and Dirty Introduction to Mott Insulators Metal vs.
    [Show full text]
  • Origin of Mott Insulating Behavior and Superconductivity in Twisted Bilayer Graphene
    Origin of Mott Insulating Behavior and Superconductivity in Twisted Bilayer Graphene The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Po, Hoi Chun et al. "Origin of Mott Insulating Behavior and Superconductivity in Twisted Bilayer Graphene." Physical Review X 8, 3 (September 2018): 031089 As Published http://dx.doi.org/10.1103/PhysRevX.8.031089 Publisher American Physical Society Version Final published version Citable link http://hdl.handle.net/1721.1/118618 Terms of Use Creative Commons Attribution Detailed Terms http://creativecommons.org/licenses/by/3.0 PHYSICAL REVIEW X 8, 031089 (2018) Origin of Mott Insulating Behavior and Superconductivity in Twisted Bilayer Graphene Hoi Chun Po,1 Liujun Zou,1,2 Ashvin Vishwanath,1 and T. Senthil2 1Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA 2Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA (Received 4 June 2018; revised manuscript received 13 August 2018; published 28 September 2018) A remarkable recent experiment has observed Mott insulator and proximate superconductor phases in twisted bilayer graphene when electrons partly fill a nearly flat miniband that arises a “magic” twist angle. However, the nature of the Mott insulator, the origin of superconductivity, and an effective low-energy model remain to be determined. We propose a Mott insulator with intervalley coherence that spontaneously breaks Uð1Þ valley symmetry and describe a mechanism that selects this order over the competing magnetically ordered states favored by the Hund’s coupling. We also identify symmetry-related features of the nearly flat band that are key to understanding the strong correlation physics and constrain any tight- binding description.
    [Show full text]
  • Spin Density Wave Order, Topological Order, and Fermi Surface Reconstruction
    arXiv:1606.07813 Spin density wave order, topological order, and Fermi surface reconstruction Subir Sachdev,1, 2 Erez Berg,3 Shubhayu Chatterjee,1 and Yoni Schattner3 1Department of Physics, Harvard University, Cambridge MA 02138, USA 2Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada N2L 2Y5 3Department of Condensed Matter Physics, The Weizmann Institute of Science, Rehovot, 76100, Israel (Dated: September 22, 2016) Abstract In the conventional theory of density wave ordering in metals, the onset of spin density wave (SDW) order co-incides with the reconstruction of the Fermi surfaces into small `pockets'. We present models which display this transition, while also displaying an alternative route between these phases via an intermediate phase with topological order, no broken symmetry, and pocket Fermi surfaces. The models involve coupling emergent gauge fields to a fractionalized SDW order, but retain the canonical electron operator in the underlying Hamiltonian. We establish an intimate connection between the suppression of certain defects in the SDW order, and the presence of Fermi surface sizes distinct from the Luttinger value in Fermi liquids. We discuss the relevance of such models to the physics of the hole-doped cuprates near optimal doping. arXiv:1606.07813v3 [cond-mat.str-el] 21 Sep 2016 1 I. INTRODUCTION A number of recent experiments [1{4] have highlighted a remarkable transformation in the electronic state of the hole-doped cuprates at a hole density around p = pc 0:19: many electronic ≈ properties change from those characteristic of a Fermi gas of charge +e carriers of density p for p < pc, to those of a Fermi gas of charge +e carriers of density 1 + p for p > pc.
    [Show full text]
  • Understanding Correlated Electron Systems by a Classification of Mott
    Understanding correlated electron systems by a classification of Mott insulators Subir Sachdev Department of Physics, Yale University, P.O. Box 208120, New Haven, CT 06520-8120, USA Abstract This article surveys the physics of systems proximate to Mott insulators, and presents a classification using conventional and topological order parameters. This classifi- cation offers a valuable perspective on a variety of conducting correlated electron systems, from the cuprate superconductors to the heavy fermion compounds. Con- nections are drawn, and distinctions made, between collinear/non-collinear magnetic order, bond order, neutral spin 1/2 excitations in insulators, electron Fermi surfaces which violate Luttinger’s theorem, fractionalization of the electron, and the fraction- alization of bosonic collective modes. Two distinct categories of Z2 gauge theories are used to describe the interplay of these orders. Experimental implications for the cuprates are briefly noted, but these appear in more detail in a companion review article (S. Sachdev, cond-mat/0211005). 1 Introduction The foundations of solid state physics reside on a few simple paradigms of electron behavior which have been successfully applied and extended in a wide variety of physical contexts. The paradigms include the independent electron theory of Bloch, its more sophisticated formulation in Landau’s Fermi liquid theory, and the Bardeen-Cooper-Schrieffer (BCS) theory of electron pairing by an instability of the Fermi surface under attractive interactions between the electrons. In the past decade, it has become increasingly clear that these paradigms are not particularly useful in understanding correlated electron systems such Email address: [email protected] (Subir Sachdev). URL: http://pantheon.yale.edu/~subir (Subir Sachdev).
    [Show full text]
  • Metal Insulator Transition
    Metal Insulator Transition Qinglei Meng May 13, 2010 Abstract Metal Insulator transition(MIT) is characterized by the conductiv- ity which will be zero in the insulator phase. In this term paper, we focus on Mott insulator, and a simple theoritical way to describe this MIT is the Hubbard Model .Finally, we will look at the experiments of Mott insulator transition . 1 1 Introduction Mott Insulator is a typical example of strongly correlated system. It was first proposed by Mott[1] in 1949. Since then, it continuously receive attention from physics society. Specially after the discovery of High Tc superconductor, it serves as the start point to High-Tc superconductor in most research. The most successful model for metal insulator transition is the Hubbard model, which is non-solvable in high dimensions; still can generate many predication of metal insulator transition. 2 Band theory of Metal and Insulator The first quantum version of electron behavior in solid is the Sommerfeld Theory, which treat electron as free and do not include the underlying ion field and the electron-electron interaction. The band theory is the next step after Sommerfeld theory, which take the ion field into account. One of the important triumphs of Band theroy is its explanation of the Metal and In- sulator. Insulator is corresponding to the fully filled band and Metal just partially filled. FIG.1[5] However, despite its great explanation of metal and insulator, its igno- rance of electron-electron interaction will certainly bring itself into trouble. One example of this is NiO[2],which should be metallic according to the Band theory.
    [Show full text]
  • Multiparticle Interactions for Ultracold Atoms in Optical Tweezers: Cyclic Ring-Exchange Terms
    Multiparticle interactions for ultracold atoms in optical tweezers: Cyclic ring-exchange terms Annabelle Bohrdt,1, 2, ∗ Ahmed Omran,3, ∗ Eugene Demler,3 Snir Gazit,4 and Fabian Grusdt5, 2, 1, y 1Department of Physics and Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany 2Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, D-80799 M¨nchen,Germany 3Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA 4Racah Institute of Physics and The Fritz Haber Research Center for Molecular Dynamics, The Hebrew University, Jerusalem 91904, Israel 5Department of Physics and Arnold Sommerfeld Center for Theoretical Physics (ASC), Ludwig-Maximilians-Universit¨atM¨unchen,Theresienstr. 37, M¨unchenD-80333, Germany (Dated: October 2, 2019) Dominant multi-particle interactions can give rise to exotic physical phases with anyonic excita- tions and phase transitions without local order parameters. In spin systems with a global SU(N) symmetry, cyclic ring-exchange couplings constitute the first higher-order interaction in this class. In this letter we propose a protocol how SU(N) invariant multi-body interactions can be imple- mented in optical tweezer arrays. We utilize the flexibility to re-arrange the tweezer configuration on time scales short compared to the typical lifetimes, in combination with strong non-local Rydberg interactions. As a specific example we demonstrate how a chiral cyclic ring-exchange Hamiltonian can be implemented in a two-leg ladder geometry. We study its phase diagram using DMRG sim- ulations and identify phases with dominant vector chirality, a ferromagnet, and an emergent spin-1 Haldane phase. We also discuss how the proposed protocol can be utilized to implement the strongly frustrated J − Q model, a candidate for hosting a deconfined quantum critical point.
    [Show full text]
  • Fermi Condensates
    ��� ���� � �� ������ �� ������� ����� ����������� ��� ��������������� ��������� �� ���� ������ ����� �� � �� ���� ���� ����� ����������� ��������� ��� ������ ������� ���������� �� �������� �� �������� ��� ICTP SCHOOL ON QUANTUM PHASE TRANSITIONS AND NON-EQUILIBRIUM PHENOMENA IN COLD ATOMIC GASES 2005 Fermi condensates Markus Greiner JILA, Group of D. Jin; Coworkers: C. Regal and J. Stewart NIST and the University of Colorado, Boulder Highly controlled many-body quantum systems Weakly interacting Bose gases: Coherence, superfluid flow, vortices … Strongly correlated Bose systems: Superfluid to Mott insulator transition Fermionic superfluidity: BCS-BEC crossover physics • Condensed matter physics studied with an atomic physics system Outline: • Fermionic superfluidity; The tools: trapping, cooling, probing; • Controlling interactions; Molecular Bose-Einstein condensate; Fermi condensate: Generalized Cooper pairs in the BCS-BEC crossover; • Probing the fermion momentum distribution • Detecting atom-atom correlations via atom shot noise; Bosons Fermions integer spin half-integer spin <1,2 = <2,1 <1,2 = -<2,1 Æ Bosonic Æ Pauli exclusion enhancement principle EF= kbTF spin n spin p 1995: Bose-Einstein condensation 1999: Fermi sea of atoms e.g. 87Rb, 23Na, H, 39K … 40K, 6Li photons, liquid 4He electrons, protons, neutrons Pairing and Superfluidity Æ Spin is additive: Fermions can pair up and form effective bosons: <(1,…,N) =  [ I(1,2) I(3,4) … I(N-1,N) ] spin n spin p Molecules of Generalized Cooper Cooper pairs fermionic atoms pairs of fermionic atoms kF BEC of weakly BCS - BEC BCS superconductivity bound molecules crossover Cooper pairs: correlated momentum-space pairing BCS-BEC crossover for example: Eagles, Leggett, Nozieres and Schmitt-Rink, Randeria, Strinati, Zwerger, Holland, Timmermans, Griffin, Levin … Cooling a gas of fermionic 40K atoms 1. Laser cooling and trapping of 40K 300 K to 1 mK a109 atoms 2.
    [Show full text]