QuickandDirtyIntroduction toMottInsulators BranislavK.Nikoli ć DepartmentofandAstronomy,UniversityofDelaware,U.S.A.

PHYS 624: Introduction to State Physics http://www.physics.udel.edu/~bnikolic/teaching/phys624/phys624.html Weaklycorrelated: Coulombinteractioneffects

WhenlocalperturbationδU(r ) potentialisswitchedon,some willleavethisregioninordertoensure µε ≃ constant(chemicalpotentialisaF thermodynamicpotential;therefore,in equilibriumitmustbehomogeneous throughoutthecrystal).

ε δδ = n()r eD ()F U () r

εδ ≪ assume:e U (r ) F θ ε ε ε → = − f( , T 0) (F )

PHYS624:QuickandDirtyIntroductiontoMottInsulators Thomas–FermiScreening

Exceptintheimmediatevicinityofthe perturbationcharge,assumethatiscauseδU(r ) d eδ n (r ) bytheinducedspacecharge → Poissonequation: ∇2δU(r ) = − ε − 0 1 ∂ ∂ αe r/ r TF ∇2 = r 2 ⇒ δ U (r ) = 2 −1/ 6 ∂ ∂ 2 rrr r 1 n  4π εℏ ≃ = 0 rTF   , a 0 ε 2 a3 me 2 r = 0 0  TF 2 ε = ⋅23− 3 Cu = e D (F ) nCu8.510 cm , r TF 0.55Å q in vacuum: α D δ (ε )= 0, U (r ) = = F πε 4 0 2 1/3 312n m 2/3ℏ 2/3− 4 1/3 n π π ε π D()ε = =() 3,32 n = () 222 nr⇒ = () 3 π F π ε 2ℏ 2 F TF 2F 2 2 m a 0

PHYS624:QuickandDirtyIntroductiontoMottInsulators MottMetalTransition

1 a r2≃0 ≫ a 2 TF 4 n1/3 0 −1/3 ≫ n4 a 0

Belowthecriticalelectronconcentration,thepotential wellofthe screenedfield extendsfarenoughforabound statetobeformed → screeninglengthincreasessothat freeelectronsbecomelocalized → MottInsulators Examples: transition metal , glasses, amorphous

PHYS624:QuickandDirtyIntroductiontoMottInsulators Metalvs.Insulator:Theory

ω ω σ ω = Ohmlaw: β αβ jα (,)q∑ (,) q E (,) q β

 Theoretical Definition of a Metal: τ Re ωσ αβ (T= 0, → 0)  = () D   c αβ ωπ τ(1+ 2 2 ) π 2 ne −1 Drude:()D δ ω= τ ω σ αβδ αβ ,Re ( T =→→= 0, 0, 0)  () D () c αβ m*   c αβ

Theoretical Definition of an Insulator:

limlimlimRe ωσ α β (q , )  = 0 T →0ω → 0||q → 0  

PHYS624:QuickandDirtyIntroductiontoMottInsulators Metalvs.Insulator:Experiment

Fundamental requirements for electron transport in Fermi systems: 1)Quantummechanical statesforelectronhole excitationsmustbe availableatenergies immediatelyabovethe groundstate( no gap! )since ρ theexternalfieldprovides ρ vanishinglysmallenergy. 2)Theseexcitationsmust describedelocalized charges( no wave function localization! )thatcan contributetotransport overthemacroscopic T T samplesizes.

PHYS624:QuickandDirtyIntroductiontoMottInsulators SingleParticlevs.ManyBody Insulators

Mott Insulators due to electron-electron interaction (many-body physics leads to the Insulators due to electron-ion gap in the charge excitation spectrum ): interaction ( single-particle physics ): MottHeisenberg(antiferromagnetic orderof BandInsulators(electroninteracts thepreformedlocalmagneticmomentsbelow → withaperiodicpotentialoftheions Néel temperature) gap in the single particle spectrum ) MottHubbard(nolongrangeorderoflocal Peierls Insulators(electroninteracts magneticmoments) withstaticlatticedeformations → gap ) MottAnderson(disorder+correlations) Wigner Crystal( Coulombinteractiondominates AndersonInsulators(electron atlowdensityofcharge ,rs (2D)=Eee/E F interactswiththedisorder=suchas 1/2 =n s /n s=33or rs (3D)=67 ,therebylocalizing impuritiesandlatticeimperfections) electronsintoa Wigner lattice )

PHYS624:QuickandDirtyIntroductiontoMottInsulators EnergyBandTheory

Electroninaperiodicpotential(crystal) → energyband(ε ()k= − 2cos( t ka ) :1Dtightbindingband)

N = 1 N = 2 N = 4 N = 8 N = 16 N = ∞

EF

kinetic energy gain

PHYS624:QuickandDirtyIntroductiontoMottInsulators Band(BlochWilson)Insulator

Wilson’srule1931:partiallyfilledenergyband → metal otherwise → insulator metal insulator

Counter example: transitionmetaloxides,halides,chalcogenides Fe:metalwith3d 6(4sp) 2 FeO:insulatorwith3d 6

PHYS624:QuickandDirtyIntroductiontoMottInsulators AndersonInsulator

ˆ =ε + ε ∈ − W W  H∑mmm ∑ t mn mn disorder:m  ,  m m,n 2 2 

δ=W B

PHYS624:QuickandDirtyIntroductiontoMottInsulators MetalInsulatorTransitions

Mott Insulator: Asolidinwhich strongrepulsion betweenthe particles impedestheirflow → simplestcartoonisasystemwith aclassicalgroundstateinwhich thereisoneparticleoneachsite ofacrystallinelatticeandsucha largerepulsionbetweentwo particlesonthesamesitethat fluctuationsinvolvingthemotion ofaparticlefromonesitetothe nextaresuppressed.

FromweaklycorrelatedFermiliquidtostronglycorrelatedMottinsulators INSULATOR STRANGE METAL n 2n c F. L. METAL c n

STRONG CORRELATION WEAK CORRELATION

PHYS624:QuickandDirtyIntroductiontoMottInsulators MottGedanken Experiment(1949)

electrontransferintegral t

energycost U

d atomic distance d → ∞ (atomiclimit:nokineticenergygain):insulator d → 0:possiblemetalasseeninalkalimetals Competition between W(=2zt) and U → Metal-Insulator Transition

e.g.:V 2O3,Ni(S,Se) 2

PHYS624:QuickandDirtyIntroductiontoMottInsulators Mottvs.BlochWilsoninsulators

Bandinsulator,includingfamiliarsemiconductors,isstateproduced byasubtlequantuminterferenceeffectswhicharisefromthefact that electronsarefermions .Neverthelessonegenerallyaccountsband insulatorstobe“simple”becausethebandtheoryofsuccessfully accountsfortheirproperties. Generallyspeaking,stateswithchargegaps(includingbothMott andBloch Wilsoninsulators)occurincrystallinesystemsatisolated “occupationnumbers”* whereisthenumberofparticlesperunitcelν * l. ν ν= AlthoughthephysicaloriginofaMottinsulatorisunderstandableto * anychild,otherproperties,especiallytheresponsetoν ν δ→ − areonlypartiallyunderstood. Mottstate,inadditiontobeinginsulating,canbecharacterizedby:presence orabsenceof spontaneouslybrokensymmetry (e.g.,spin); gappedorgaplesslowenergy neutral particleexcitations;andpresenceor absenceoftopologicalorderandchargefractionalization.

PHYS624:QuickandDirtyIntroductiontoMottInsulators TrendinthePeriodicTable

U ↑ U ↓

PHYS624:QuickandDirtyIntroductiontoMottInsulators Theoreticalmodeling:HubbardHamiltonian

HubbardHamiltonian1960s: on-site Coulomb interaction is most dominant

band structure correlation e.g.: U ~5eV, W ~3eV formost3 d transitionmetalsuchas MnO,FeO,CoO,NiO :Mottinsulator

♠ Hubbard’ssolutionbytheGreen’sfunction decouplingmethod → insulatorforallfinite U value

♦ Lieb andWu’sexactsolutionfortheground stateofthe1DHubbardmodel(PRL68) → insulatorforallfinite U value

PHYS624:QuickandDirtyIntroductiontoMottInsulators SolvingHubbardModelinDimensions∞

PHYS624:QuickandDirtyIntroductiontoMottInsulators DynamicalMeanFieldTheoryinPictures

Dynamical mean-field theory (DMFT) of correlatedelectronsolidsreplacesthefull latticeofatomsandelectronswithasingle impurityatomimaginedtoexistinabathof electrons.Theapproximationcapturesthe dynamicsofelectronsonacentralatom(in orange)asitfluctuatesamongdifferent atomicconfigurations,shownhereas snapshotsintime.Inthesimplestcaseofan sorbitaloccupyinganatom,fluctuations ↑ ↓ ↓ ↑ couldvaryamong|0 〉,| 〉,| 〉,or| 〉,which refertoanunoccupiedstate,astatewitha singleelectronofspinup,onewithspin down,andadoublyoccupiedstatewith In ∞D,spatialfluctuationcanbeneglected. oppositespins.Inthisillustrationofone → meanfieldsolutionbecomesexact. possiblesequenceinvolvingtwotransitions, Hubbardmodel → singleimpurityAnderson anatominanemptystateabsorbsan electronfromthesurroundingreservoirin modelinameanfieldbath. eachtransition.ThehybridizationVν isthe Solveexactlyinthetimedomain quantummechanicalamplitudethatspecifies → “dynamical ” meanfieldtheory howlikelyastateflipsbetweentwo differentconfigurations.

PHYS624:QuickandDirtyIntroductiontoMottInsulators Staticvs.Dynamic MeanFieldTheory

Static=HartreeFock orDensityFunctionalTheory: ρ ρ Γ[()]ρ r =E [()] r + V ()() rrr d 3  kinetic∫ ext ℏ2  +  Ψ=Ψε 1ρ ρ ()()r r ′  ⇒ VKS()r  () r i () r +d3r d 3 r′ + E [ρ ( r )] 2m ∫ exchange    2 |r− r ′ |  ρδ ρ(r′ ) E [ (r )] 2 VVd[()]ρ rrr=+ ()3 ′ +exchange ε ,()ρ r =Ψ f ()|()| r KS ext ∫ − ′ δρ ∑ i i ||r r () r i Dynamic=DynamicalMeanFieldTheory:

3 ρ ρ Γ[(),]ρ rGE = [(),] r GV + ()() rrr d  −1 kinetic∫ ext  ∆ ω ω ω =[] −Σ∆ −  G[()]∑ [()] t k 1ρ ρ ()()r r ′ ⇒  k +ddE3r 3 r′ + [ρ (), r G ] ∫ exchange   Σ∆[()] ω ω ω ω ≡∆ () − 1/G [()] ∆ + 2 |r− r ′ |  

PHYS624:QuickandDirtyIntroductiontoMottInsulators TransitionfromnonFermiLiquid MetaltoMottInsulator

NOTE: DOSwelldefined eventhoughthereareno fermionic . ↑ Model: Mobilespin electronsinteractwith ↓ frozenspin electrons.

PHYS624:QuickandDirtyIntroductiontoMottInsulators Experiment:PhotoemissionSpectroscopy

Einstein’s photoelectric effect hν (K,λ) > W - σσσ e (Ek,k, )

N-particle (N−1)-particle

Sudden approximation

N −1 N Ef Ei P(| i 〉 → | f 〉) Photoemission current is given by: 1 − N 2 − ω = Ei / kBT < > δ ω + N 1 − N A− ( ) ∑e f | Tr | i ( E f Ei ) Z i, f

PHYS624:QuickandDirtyIntroductiontoMottInsulators MottInsulatingMaterial:V 2O3

surface-layer thickness =

2.44Å – (1012) cleavage plane side view → c = 14.0 Å

→ a = 4.95 Å Vanadium

Oxygen top view

PHYS624:QuickandDirtyIntroductiontoMottInsulators Theoryvs.Experiment: PhotoemissionSpectroscopy

Photoemission spectrum of

metallicvanadiumoxideV 2O3 nearthemetal−insulator transition.Thedynamical meanfieldtheorycalculation (solidcurve)mimicsthe qualitativefeaturesofthe experimentalspectra.The theoryresolvesthesharp bandadjacent totheFermilevelandthe occupiedHubbardband, whichaccountsforthe effectoflocalizedd electronsinthelattice. Higherenergyphotons(used tocreatethebluespectrum) arelesssurfacesensitiveand canbetterresolvethe quasiparticle peak.

Phys.Rev.Lett. 90 ,186403(2003)

PHYS624:QuickandDirtyIntroductiontoMottInsulators Diagramof V2O3

PHYS624:QuickandDirtyIntroductiontoMottInsulators Wigner Crystal

Sincethemid1930s,theoristshavepredicted thecrystallizationofelectrons.Ifasmallnumber ofelectronsarerestrictedtoaplane,putintoa liquidlikestate,andsqueezed,theyarrange themselvesintothelowestenergyconfiguration possibleaseriesofconcentricrings.Each electroninhabitsonlyasmallregionofaring,and thisbull'seyepatterniscalledaWigner crystal. Onlyahandfulofdifficultexperimentshave shownindirectevidenceofthisphenomenon → Electronstrappedonafreesurfaceofliquid heliumofferanexcellenthighmobility2D electronsystem.Sincethefreesurfaceofliquid Heisextremelysmooth,themobilityofelectrons increasesenormouslyatlowtemperatures.

PHYS624:QuickandDirtyIntroductiontoMottInsulators BeyondSolidStatePhysics: Bosonic MottInsulatorsinOpticalLattices

EVOLUTION: Superfluid statewith coherence, Mott Insulatorwithout coherence ,and superfluid stateafter restoringthecoherence.

PHYS624:QuickandDirtyIntroductiontoMottInsulators