ABSTRACT BOZDAG, AHMET. Investigation of Methanol and Formaldehyde Metabolism in Bacillus Methanolicus

Total Page:16

File Type:pdf, Size:1020Kb

ABSTRACT BOZDAG, AHMET. Investigation of Methanol and Formaldehyde Metabolism in Bacillus Methanolicus ABSTRACT BOZDAG, AHMET. Investigation of Methanol and Formaldehyde Metabolism in Bacillus methanolicus.(Under the direction of Prof. Michael C. Flickinger). Bacillus methanolicus is a Gram-positive aerobic methylotroph growing optimally at 50-53 °C. Wild-type strains of B. methanolicus have been reported to secrete 58 g/l of L- glutamate in fed-batch cultures. Mutants of B. methanolicus created via classical mutangenesis can secrete 37 g/l of L-lysine, at 50 °C. The genes required for methylotrophyin B. methanolicus are encoded by an endogenous plasmid, pBM19 in strain MGA3, except for hexulose phosphate synthase (hps) and phosphohexuloisomerase (phi) which are encoded on the chromosome.It is a promising candidate for industrial production of chemical intermediates or amino acids from methanol. B. methanolicus employs the ribulose monophospate (RuMP) pathway to assimilate the carbon derived from the methanol, but enzymes that dissimilate carbon are not identified, although formaldehyde and formate were identified as intermediates by 13C NMR. It is important to understand how methanol is oxidized to formaldehyde and then, to formate and carbon dioxide. This study aims to elucidate the methanol dissimilation pathway of B. methanolicus. Growth rates of B. methanolicus MGA3 were assessed on methanol, mannitol, and glucose as a substrate. B. methanolicus achieved maximum growth rate, µmax, when growing on 25 mM methanol, 0.65±0.007 h-1, and it gradually decreased to 0.231±0.004 h-1 at 2Mmethanol concentration which demonstrates substrate inhibition. The maximum growth rates (µmax) of B. methanolicus MGA3 on mannitol and glucose are 0.532±0.002 and 0.336±0.003 h-1, respectively. Spiking with 100 mM methanol did not cause any growth perturbation ofB. methanolicus MGA3 when grown on methanol, whereas, 50 mM methanol was enough to halt the growth when it was grown on mannitol. However, growth of B. methanolicus MGA3 on methanol was halted completely by a 1 mM formaldehyde spike, while mannitol grown B. methanolicus MGA3 can tolerate 2 mM formaldehyde addition. Formate did not have any apparent growth perturbations at tested levels (up to 2 mM). B. methanolicus MGA3 has a small genome, ~3.3 Mb, and contains 2,773 ORFs larger than 100 bp. Its genome encodes two methanol dehydrogenase(mdh) genes beside the mdh on pBM19. All of the RuMP pathway genes encoded on the pBM19 have counterparts encoded on the chromosome also. The genome contains putative tetrahydrofolate (THF)- linked enzymes for formaldehyde oxidation besides putative aldehyde dehydrogenase(aldh) genes. Two putative formate dehydrogenase (fdh) genes were also identified in the genome as were the genes of the Wood-Ljungdahl pathway genes.B. methanolicus strain PB1 was also found to carry a plasmid which we named as pBM20. The difference in the formaldehyde dissimilation pathway of strain PB1 was shown via Southern Blot. The PB1 strain also has 2-fold higher formaldehyde dehydrogenase and 3-fold higher formate dehydrogenase activity compared to strain MGA3. The methanol dissimilation pathway genes,- putative THF-linked formaldehyde oxidation genes, putative aldh genes, putative fdh gene- are all down regulated in response to spikes of methanol, formaldehyde and formate. However, the regulation of RuMP pathway genes were different in methanol vs. mannitol grown B. methanolicus MGA3 in that they were down regulated from already high levels in methanol grown cells whereas they were upregulated in mannitol grown cells. Formate is a more potent regulatory compound compared to methanol and formaldehyde. © Copyright 2012 by Ahmet Bozdag All Rights Reserved Investigation of Methanol and Formaldehyde Metabolism in Bacillus Methanolicus by Ahmet Bozdag A dissertation submitted to the Graduate Faculty of North CarolinaStateUniversity in partial fulfillment of the requirements for the degree of Doctor of Philosophy Microbiology Raleigh, North Carolina 2013 APPROVED BY: _______________________________ ______________________________ Dr. Michael C. Flickinger Dr. Michael R. Hyman Committee Chair ________________________________ ________________________________ Dr. Jose Manuel Bruno-Barcena Dr. Amy M. Grunden DEDICATION To my wife Turkan and daughter Vildan ii BIOGRAPHY Ahmet Bozdag was born in Besni, Southeast Turkey as the youngest of a large family. He moved to Gaziantep after elementary school, to seek a better education at the age of 11. He completed his high school and attended Middle East Technical University (METU) in Ankara. He taught science in middle and high schools in Adiyaman and Ankara while seeking a graduate degree at METU. Winning the Diversity Visa lottery, or Green Card, he moved to United States with his ambition to seek a doctoral degree in microbiology. He earned his Master’s Degree at Georgia College & State University before attending the Microbiology department at NCSU during which he married to a beautiful woman, Turkan. He had his first child, a gorgeous baby girl Vildan just before completing his PhD degree. iii ACKNOWLEDGMENTS I would like to thank professor Michael C. Flickinger foremost, my thesis advisor, for accepting me into his laboratory and for his invaluable guidance. I would also like to thank my thesis committee members Drs. Jose Manuel Bruno-Barcena, Amy M. Grunden, Michael B. Goshe, and Michael R. Hyman. I would also like to thank my colleagues in the Flickinger laboratory, past and present. I would like to thank Dr. Thomas Pribyl for his partnership in the project, Dr. Jimmy Gosse for his ideas and discussions, Dr. Jessica Jenkins, Oscar I. Bernal and Mark Schulte for their friendship and ideas. I would like to thank German visiting students who helped me on the project along the way; Paul Simon, Fabian Gutmacher, Felix Hart and Elisa Degenkolbe. I would like to thank specially Dr. Claire Komives of San Jose State University for her help with sequencing theB. methanolicus genome. Also, I would like to thank Microbiology department staff members; Cindy Whitehead for reminding me everything I forgot and Robert Davis for his friendship. iv TABLE OF CONTENTS LIST OF TABLES ......................................................................................................... vi LIST OF FIGURES ....................................................................................................... vii CHAPTER 1 INTRODUCTION .................................................................................. 1 CHAPTER 2 GROWTH CHRACTERISTICS OF B. methanolicus ........................ 29 CHAPTER 3 GENOME SEQUENCE OF Bacillus methanolicus MGA3 AND ELUCIDATION OF CARBON DISSIMILATION PATHWAY ............................. 55 CHAPTER 4 ELUCIDATION OF C1 ASSIMILATION AND DISSIMILATION PATHWAYS IN B. methanolicus ................................................................................. 68 CHAPTER 5 REGULATION OF METHANOL AND FORMALDEHYDE METABOLISM BY MeOH, FORMALDEHYDE AND FORMATE ...................... 92 CHAPTER 6 FORMALDEHYDE AND FORMATE DEHYDROGENASES OF Bacilli .................................................................................................................. 136 CHAPTER 7 INVESTIGATION OF ANAEROBIC GROWTH OF Bacillus methanolicus MGA3....................................................................................................... 156 CHAPTER 8 STUDY CONCLUSIONS ...................................................................... 162 REFERENCES ............................................................................................................... 165 APPENDICES ................................................................................................................ 181 APPENDIX A Sequence of pBM20 .............................................................................. 182 APPENDIX B Annotation of Bacillus methanolicus MGA genome .......................... 191 APPENDIX CJournal Article Heggeset et al. 2012 .................................................... 365 v LIST OF TABLES Table 1.1 Distribution of carbon assimilation pathways in methylotrophs .............. 5 Table 1.2 Energetics of the RuMP pathway of formaldehyde fixation ................... 8 Table 2.1 Composition of trace metal solution ......................................................... 31 Table 2.2 Composition of vitamin stock solution ..................................................... 32 Table 3.1 Summary of B. methanolicus MGA3 genome sequencing ....................... 59 Table 4.1 List of primers used for cloning and DIG-labeled probes ........................ 75 Table 5.1 List of primers used for RT-qPCR ............................................................ 96 Table 6.1 List of primers used for cloning ................................................................ 146 Table 6.2 Formaldehyde dehydrogenase activities of crude cell extracts ................ 154 Table 6.3 Formate dehydrogenase activities of crude cell extracts .......................... 155 vi LIST OF FIGURES Figure 1.1 Four different pathways for one-carbon assimilation in methylotrophs .. 4 Figure 1.2 Comparison of C1 assimilation pathways by isocitratelyase-negative (A) and positive (B) methylotrophs ...................................................................... 10 Figure 1.3 Formaldehyde oxidation pathways by aerobic methylotrophic bacteria . 18 Figure 1.4 Specific CO2 production rates of B. methanolicus MGA3 and PB1 in 1-L fed- batch fermentation ................................................................................... 25 Figure
Recommended publications
  • NIH Public Access Author Manuscript Biochemistry
    NIH Public Access Author Manuscript Biochemistry. Author manuscript; available in PMC 2010 June 23. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Biochemistry. 2009 June 23; 48(24): 5731±5737. doi:10.1021/bi9003099. Neisseria gonorrhoeae Penicillin-Binding Protein 3 Demonstrates a Pronounced Preference for Nε-Acylated Substrates† Sridhar Peddi‡,§, Robert A. Nicholas∥, and William G. Gutheil‡,* ‡Division of Pharmaceutical Sciences, University of Missouri-Kansas City, 5005 Rockhill Road, Kansas City, Missouri 64110. ∥Department of Pharmacology, CB#7365, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7365. Abstract Penicillin-binding proteins (PBPs) are bacterial enzymes involved in the final stages of cell wall biosynthesis, and are the lethal targets of β-lactam antibiotics. Despite their importance, their roles in cell wall biosynthesis remain enigmatic. A series of eight substrates, based on variation of the pentapeptide Boc-L-Ala-γ-D-Glu-L-Lys-D-Ala-D-Ala, were synthesized to test specificity for three features of PBP substrates: 1) the presence or absence of an Nε-acyl group, 2) the presence of D- IsoGln in place of γ-D-Glu, and 3) the presence or absence of the N-terminal L-Ala residue. The capacity of these peptides to serve as substrates for Neisseria gonorrhoeae (NG) PBP3 was assessed. NG PBP3 demonstrated good catalytic efficiency (2.5 × 105 M−1sec−1) with the best of these substrates, with a pronounced preference (50-fold) for Nε-acylated substrates over Nε-nonacylated substrates. This observation suggests that NG PBP3 is specific for the ∼D-Ala-D-Ala moiety of pentapeptides engaged in cross-links in the bacterial cell wall, such that NG PBP3 would act after transpeptidase-catalyzed reactions generate the acylated amino group required for its specificity.
    [Show full text]
  • Molecular Markers of Serine Protease Evolution
    The EMBO Journal Vol. 20 No. 12 pp. 3036±3045, 2001 Molecular markers of serine protease evolution Maxwell M.Krem and Enrico Di Cera1 ment and specialization of the catalytic architecture should correspond to signi®cant evolutionary transitions in the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Box 8231, St Louis, history of protease clans. Evolutionary markers encoun- MO 63110-1093, USA tered in the sequences contributing to the catalytic apparatus would thus give an account of the history of 1Corresponding author e-mail: [email protected] an enzyme family or clan and provide for comparative analysis with other families and clans. Therefore, the use The evolutionary history of serine proteases can be of sequence markers associated with active site structure accounted for by highly conserved amino acids that generates a model for protease evolution with broad form crucial structural and chemical elements of applicability and potential for extension to other classes of the catalytic apparatus. These residues display non- enzymes. random dichotomies in either amino acid choice or The ®rst report of a sequence marker associated with serine codon usage and serve as discrete markers for active site chemistry was the observation that both AGY tracking changes in the active site environment and and TCN codons were used to encode active site serines in supporting structures. These markers categorize a variety of enzyme families (Brenner, 1988). Since serine proteases of the chymotrypsin-like, subtilisin- AGY®TCN interconversion is an uncommon event, it like and a/b-hydrolase fold clans according to phylo- was reasoned that enzymes within the same family genetic lineages, and indicate the relative ages and utilizing different active site codons belonged to different order of appearance of those lineages.
    [Show full text]
  • Adaptive Laboratory Evolution Enhances Methanol Tolerance and Conversion in Engineered Corynebacterium Glutamicum
    ARTICLE https://doi.org/10.1038/s42003-020-0954-9 OPEN Adaptive laboratory evolution enhances methanol tolerance and conversion in engineered Corynebacterium glutamicum Yu Wang 1, Liwen Fan1,2, Philibert Tuyishime1, Jiao Liu1, Kun Zhang1,3, Ning Gao1,3, Zhihui Zhang1,3, ✉ ✉ 1234567890():,; Xiaomeng Ni1, Jinhui Feng1, Qianqian Yuan1, Hongwu Ma1, Ping Zheng1,2,3 , Jibin Sun1,3 & Yanhe Ma1 Synthetic methylotrophy has recently been intensively studied to achieve methanol-based biomanufacturing of fuels and chemicals. However, attempts to engineer platform micro- organisms to utilize methanol mainly focus on enzyme and pathway engineering. Herein, we enhanced methanol bioconversion of synthetic methylotrophs by improving cellular tolerance to methanol. A previously engineered methanol-dependent Corynebacterium glutamicum is subjected to adaptive laboratory evolution with elevated methanol content. Unexpectedly, the evolved strain not only tolerates higher concentrations of methanol but also shows improved growth and methanol utilization. Transcriptome analysis suggests increased methanol con- centrations rebalance methylotrophic metabolism by down-regulating glycolysis and up- regulating amino acid biosynthesis, oxidative phosphorylation, ribosome biosynthesis, and parts of TCA cycle. Mutations in the O-acetyl-L-homoserine sulfhydrylase Cgl0653 catalyzing formation of L-methionine analog from methanol and methanol-induced membrane-bound transporter Cgl0833 are proven crucial for methanol tolerance. This study demonstrates the importance of
    [Show full text]
  • Enhanced Phosphorylation of High-Mobility-Group Proteins In
    Proc. Nati. Acad. Sci. USA Vol. 78, No. 4, pp. 2189-2193, April 1981 Biochemistry Enhanced phosphorylation of high-mobility-group proteins in nuclease-sensitive mononucleosomes from butyrate-treated HeLa cells (hyperphosphorylation/transcriptionally active chromatin/sodium butyrate) BEATRIZ LEVY-WILSON Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92717 Communicated by James F. Bonner, December 29, 1980 ABSTRACT The protein composition of nucleosome fractions MATERIALS AND METHODS differing in their sensitivity to micrococcal nuclease and derived from butyrate-treated or untreated HeLa cells has been com- Cell Cultures. HeLa cells, line S3, were grown in monolay- pared. Most of the high-mobility-group-14 (HMG-14) and HMG- ers, either in T-150 culture flasks or in roller bottles, at 370C 17 content of HeLa cell chromatin is associated with those nu- in minimal essential medium (Flow Laboratories, Rockville, cleosomes that are preferentially sensitive to micrococcal nu- MD) supplemented with 7% bovine calfserum (KC Biologicals) clease. Furthermore, electrophoresis of these two HMG proteins and penicillin (100 units/ml) and streptomycin (100 Ag/ml) from the transcriptionally active chromatin fraction MN, of bu- (Sigma). In experiments involving sodium butyrate, this com- tyrate-treated cells resolves them into a series ofbands. The mul- pound was added to the cultures at a final concentration of5 mM tiple band pattern of HMG-14 and -17 from butyrate-treated cells about 20 hr prior to harvesting of the cells. results from hyperphosphorylation rather than hyperacetylation. Preparation of Nuclei. HeLa cell nuclei were prepared as Phosphorylation of these two small nonhistone proteins may play described by Milcarek et al.
    [Show full text]
  • (Helianthus Annuus L.) Plastidial Lipoyl Synthases Genes Expression In
    Impact of sunflower (Helianthus annuus L.) plastidial lipoyl synthases genes expression in glycerolipids composition of transgenic Arabidopsis plants Raquel Martins-Noguerol, Antonio Javier Moreno-Pérez, Acket Sebastien, Manuel Adrián Troncoso-Ponce, Rafael Garcés, Brigitte Thomasset, Joaquín Salas, Enrique Martínez-Force To cite this version: Raquel Martins-Noguerol, Antonio Javier Moreno-Pérez, Acket Sebastien, Manuel Adrián Troncoso- Ponce, Rafael Garcés, et al.. Impact of sunflower (Helianthus annuus L.) plastidial lipoyl synthases genes expression in glycerolipids composition of transgenic Arabidopsis plants. Scientific Reports, Nature Publishing Group, 2020, 10, pp.3749. 10.1038/s41598-020-60686-z. hal-02881038 HAL Id: hal-02881038 https://hal.archives-ouvertes.fr/hal-02881038 Submitted on 25 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. www.nature.com/scientificreports OPEN Impact of sunfower (Helianthus annuus L.) plastidial lipoyl synthases genes expression in glycerolipids composition of transgenic Arabidopsis plants Raquel Martins-Noguerol1,2, Antonio Javier Moreno-Pérez 1,2, Acket Sebastien2, Manuel Adrián Troncoso-Ponce2, Rafael Garcés1, Brigitte Thomasset2, Joaquín J. Salas1 & Enrique Martínez-Force 1* Lipoyl synthases are key enzymes in lipoic acid biosynthesis, a co-factor of several enzyme complexes involved in central metabolism.
    [Show full text]
  • Crystallographic Snapshots of Sulfur Insertion by Lipoyl Synthase
    Crystallographic snapshots of sulfur insertion by lipoyl synthase Martin I. McLaughlina,b,1, Nicholas D. Lanzc, Peter J. Goldmana, Kyung-Hoon Leeb, Squire J. Bookerb,c,d, and Catherine L. Drennana,e,f,2 aDepartment of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139; bDepartment of Chemistry, The Pennsylvania State University, University Park, PA 16802; cDepartment of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802; dHoward Hughes Medical Institute, The Pennsylvania State University, University Park, PA 16802; eDepartment of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139; and fHoward Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139 Edited by Vern L. Schramm, Albert Einstein College of Medicine, Bronx, NY, and approved July 5, 2016 (received for review March 8, 2016) Lipoyl synthase (LipA) catalyzes the insertion of two sulfur atoms substrate and at an intermediate stage in the reaction, just after at the unactivated C6 and C8 positions of a protein-bound octanoyl insertion of the C6 sulfur atom but before sulfur insertion at C8. chain to produce the lipoyl cofactor. To activate its substrate for sulfur insertion, LipA uses a [4Fe-4S] cluster and S-adenosylmethio- Results nine (AdoMet) radical chemistry; the remainder of the reaction The crystal structure of LipA from M. tuberculosis was de- mechanism, especially the source of the sulfur, has been less clear. termined to 1.64-Å resolution by iron multiwavelength anoma- One controversial proposal involves the removal of sulfur from a lous dispersion phasing (Table S1). The overall fold of LipA consists second (auxiliary) [4Fe-4S] cluster on the enzyme, resulting in de- of a (β/α)6 partial barrel common to most AdoMet radical enzymes struction of the cluster during each round of catalysis.
    [Show full text]
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • Supplemental Methods
    Supplemental Methods: Sample Collection Duplicate surface samples were collected from the Amazon River plume aboard the R/V Knorr in June 2010 (4 52.71’N, 51 21.59’W) during a period of high river discharge. The collection site (Station 10, 4° 52.71’N, 51° 21.59’W; S = 21.0; T = 29.6°C), located ~ 500 Km to the north of the Amazon River mouth, was characterized by the presence of coastal diatoms in the top 8 m of the water column. Sampling was conducted between 0700 and 0900 local time by gently impeller pumping (modified Rule 1800 submersible sump pump) surface water through 10 m of tygon tubing (3 cm) to the ship's deck where it then flowed through a 156 µm mesh into 20 L carboys. In the lab, cells were partitioned into two size fractions by sequential filtration (using a Masterflex peristaltic pump) of the pre-filtered seawater through a 2.0 µm pore-size, 142 mm diameter polycarbonate (PCTE) membrane filter (Sterlitech Corporation, Kent, CWA) and a 0.22 µm pore-size, 142 mm diameter Supor membrane filter (Pall, Port Washington, NY). Metagenomic and non-selective metatranscriptomic analyses were conducted on both pore-size filters; poly(A)-selected (eukaryote-dominated) metatranscriptomic analyses were conducted only on the larger pore-size filter (2.0 µm pore-size). All filters were immediately submerged in RNAlater (Applied Biosystems, Austin, TX) in sterile 50 mL conical tubes, incubated at room temperature overnight and then stored at -80oC until extraction. Filtration and stabilization of each sample was completed within 30 min of water collection.
    [Show full text]
  • Generate Metabolic Map Poster
    Authors: Pallavi Subhraveti Ron Caspi Peter Midford Peter D Karp An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Ingrid Keseler Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Gcf_001591825Cyc: Bacillus vietnamensis NBRC 101237 Cellular Overview Connections between pathways are omitted for legibility. Anamika Kothari sn-glycerol phosphate phosphate pro phosphate phosphate phosphate thiamine molybdate D-xylose D-ribose glutathione 3-phosphate D-mannitol L-cystine L-djenkolate lanthionine α,β-trehalose phosphate phosphate [+ 3 more] α,α-trehalose predicted predicted ABC ABC FliY ThiT XylF RbsB RS10935 UgpC TreP PutP RS10200 PstB PstB RS10385 RS03335 RS20030 RS19075 transporter transporter of molybdate of phosphate α,β-trehalose 6-phosphate L-cystine D-xylose D-ribose sn-glycerol D-mannitol phosphate phosphate thiamine glutathione α α phosphate phosphate phosphate phosphate L-djenkolate 3-phosphate , -trehalose 6-phosphate pro 1-phosphate lanthionine molybdate phosphate [+ 3 more] Metabolic Regulator Amino Acid Degradation Amine and Polyamine Biosynthesis Macromolecule Modification tRNA-uridine 2-thiolation Degradation ATP biosynthesis a mature peptidoglycan a nascent β an N-terminal-
    [Show full text]
  • Enzymatic Conversion of CO2 to Methanol
    Verónica Catarina Ferreira Amado Licenciada em Bioquímica “One-pot” enzymatic conversion of CO2 to methanol Dissertação para obtenção do Grau de Mestre em Biotecnologia Orientador: Susana Barreiros, Professora Associada com Agregação Universidade Nova de Lisboa Co-orientador: Alexandre Paiva, Investigador Doutorado Universidade Nova de Lisboa Júri: Presidente: Prof. Doutor Carlos Alberto Gomes Salgueiro Arguente: Doutora Ana Sofia Diogo Ferreira Vogal: Prof. Doutora Susana Filipe Barreiros Setembro de 2013 i ii “One-pot” enzymatic conversion of CO2 to methanol Copyright Verónica Catarina Ferreira Amado, FCT/UNL, UNL A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito, perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios científicos e de admitir a sua cópia e distribuição com objetivos educativos ou de investigação, não comerciais, desde que seja dado crédito ao autor e editor. iii iv Ao meu irmão Rafael v AGRADECIMENTOS Gostaria de agradecer a todos aqueles que me apoiaram nesta jornada e que, de algum modo contribuíram para a realização desta tese. Quero expressar a mais sincera gratidão aos meus orientadores. Em primeiro lugar à minha orientadora Prof. Doutora Susana Barreiros por todo o interesse e entusiasmo que demonstrou no meu trabalho, por todas as críticas científicas que tanto o enriqueceram, e por estar sempre disponível para discutir o mesmo. Gostaria de agradecer também ao meu co-orientador o Doutor Alexandre Paiva pela paciência, concelhos dados, discussão de ideias e alternativas, pelo espírito crítico sempre incisivo em pontos fulcrais e também pelos momentos de descontracção.
    [Show full text]
  • The Microbiota-Produced N-Formyl Peptide Fmlf Promotes Obesity-Induced Glucose
    Page 1 of 230 Diabetes Title: The microbiota-produced N-formyl peptide fMLF promotes obesity-induced glucose intolerance Joshua Wollam1, Matthew Riopel1, Yong-Jiang Xu1,2, Andrew M. F. Johnson1, Jachelle M. Ofrecio1, Wei Ying1, Dalila El Ouarrat1, Luisa S. Chan3, Andrew W. Han3, Nadir A. Mahmood3, Caitlin N. Ryan3, Yun Sok Lee1, Jeramie D. Watrous1,2, Mahendra D. Chordia4, Dongfeng Pan4, Mohit Jain1,2, Jerrold M. Olefsky1 * Affiliations: 1 Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California, USA. 2 Department of Pharmacology, University of California, San Diego, La Jolla, California, USA. 3 Second Genome, Inc., South San Francisco, California, USA. 4 Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA. * Correspondence to: 858-534-2230, [email protected] Word Count: 4749 Figures: 6 Supplemental Figures: 11 Supplemental Tables: 5 1 Diabetes Publish Ahead of Print, published online April 22, 2019 Diabetes Page 2 of 230 ABSTRACT The composition of the gastrointestinal (GI) microbiota and associated metabolites changes dramatically with diet and the development of obesity. Although many correlations have been described, specific mechanistic links between these changes and glucose homeostasis remain to be defined. Here we show that blood and intestinal levels of the microbiota-produced N-formyl peptide, formyl-methionyl-leucyl-phenylalanine (fMLF), are elevated in high fat diet (HFD)- induced obese mice. Genetic or pharmacological inhibition of the N-formyl peptide receptor Fpr1 leads to increased insulin levels and improved glucose tolerance, dependent upon glucagon- like peptide-1 (GLP-1). Obese Fpr1-knockout (Fpr1-KO) mice also display an altered microbiome, exemplifying the dynamic relationship between host metabolism and microbiota.
    [Show full text]
  • Developing a Riboswitch-Mediated Regulatory System for Metabolic Flux Control in Thermophilic Bacillus Methanolicus
    International Journal of Molecular Sciences Article Developing a Riboswitch-Mediated Regulatory System for Metabolic Flux Control in Thermophilic Bacillus methanolicus Marta Irla , Sigrid Hakvåg and Trygve Brautaset * Department of Biotechnology and Food Sciences, Norwegian University of Science and Technology, 7034 Trondheim, Norway; [email protected] (M.I.); [email protected] (S.H.) * Correspondence: [email protected]; Tel.: +47-73593315 Abstract: Genome-wide transcriptomic data obtained in RNA-seq experiments can serve as a re- liable source for identification of novel regulatory elements such as riboswitches and promoters. Riboswitches are parts of the 50 untranslated region of mRNA molecules that can specifically bind various metabolites and control gene expression. For that reason, they have become an attractive tool for engineering biological systems, especially for the regulation of metabolic fluxes in industrial microorganisms. Promoters in the genomes of prokaryotes are located upstream of transcription start sites and their sequences are easily identifiable based on the primary transcriptome data. Bacillus methanolicus MGA3 is a candidate for use as an industrial workhorse in methanol-based biopro- cesses and its metabolism has been studied in systems biology approaches in recent years, including transcriptome characterization through RNA-seq. Here, we identify a putative lysine riboswitch in B. methanolicus, and test and characterize it. We also select and experimentally verify 10 putative B. methanolicus-derived promoters differing in their predicted strength and present their functionality in combination with the lysine riboswitch. We further explore the potential of a B. subtilis-derived purine riboswitch for regulation of gene expression in the thermophilic B. methanolicus, establishing a Citation: Irla, M.; Hakvåg, S.; novel tool for inducible gene expression in this bacterium.
    [Show full text]