SNS COLLEGE of TECHNOLOGY (An Autonomous Institution) DEPARTMENT of AERONAUTICAL ENGINEERING Subject Code & Name: 16AE407 ROCKETS and MISSILES Date

Total Page:16

File Type:pdf, Size:1020Kb

SNS COLLEGE of TECHNOLOGY (An Autonomous Institution) DEPARTMENT of AERONAUTICAL ENGINEERING Subject Code & Name: 16AE407 ROCKETS and MISSILES Date SNS COLLEGE OF TECHNOLOGY (An Autonomous Institution) DEPARTMENT OF AERONAUTICAL ENGINEERING Subject Code & Name: 16AE407 ROCKETS AND MISSILES Date: DAY: 01 UNIT:4: STAGING OF ROCKETS AND MISSILES TOPIC: 9: Case study on GSLV Geosynchronous Satellite Launch Vehicle Geosynchronous Satellite Launch Vehicle abbreviated as GSLV, is an expendable launch system operated by the Indian Space Research Organisation (ISRO). The Geosynchronous Satellite Launch Vehicle (GSLV) project was initiated in 1990 with the objective of acquiring an Indian launch capability for geosynchronous satellites. The first development flight of the GSLV (Mk.I configuration) was launched on 18 April 2001 was a failure as the payload failed to reach the intended orbit parameters. The launcher was declared operational after the second development flight successfully launched the GSAT-2 satellite. During the initial years from the initial launch to 2014 the launcher had a checked history with only 2 successful launches out of 7. Geosynchronous Satellite Launch Vehicle Mark II (GSLV Mk II) is the largest launch vehicle developed by India, which is currently in operation. This fourth generation launch vehicle is a three stage vehicle with four liquid strap-ons. The indigenously developed cryogenic Upper Stage (CUS), which is flight proven, forms the third stage of GSLV Mk II. From January 2014, the vehicle has achieved four consecutive successes. DESIGN Vehicle Specifications Height: 49.13 m Number of Stages : 3 Lift Off Mass : 414.75 tonnes First Flight : April 18, 2001 TECHNICAL SPECIFICATIONS i. Payload to GTO (geostationary transfer orbit) : 2,500 kg GSLV's primary payloads are INSAT class of communication satellites that operate from Geostationary orbits and hence are placed in Geosynchronous Transfer Orbits by GSLV. K.NEHRU, M.Tech.,(Ph.D) Assistant Professor 16AE409 ROCKETS AND MISSILES ii. Payload to LEO: 5,000 kg Further, GSLV's capability of placing up to 5 tonnes in Low Earth Orbits broadens the scope of payloads from heavy satellites to multiple smaller satellites. Third Stage: CUS Developed under the Cryogenic Upper Stage Project (CUSP), the CE-7.5 is India's first cryogenic engine, developed by the Liquid Propulsion Systems Centre. CE-7.5 has a staged combustion operating cycle. Fuel : LOX + LH2 Max. Thrust : 75 kN Burn-time : 720 sec Second Stage: GS2 One Vikas engine is used in the second stage of GSLV. The stage was derived from the PS2 of PSLV where the Vikas engine has proved its reliability. Engine : Vikas Fuel : UDMH + N2O4 Max. Thrust : 800 kN Burntime : 150 sec First Stage: GS1 The first stage of GSLV was also derived from the PSLV's PS1. The 138 tonne solid rocket motor is augmented by 4 liquid strap-ons. Engine : S139 Fuel : HTPB Max. Thrust : 4700 kN Burntime : 100 sec Strap-on Motors The four liquid engine strap-ons used in GSLV are heavier derivatives of PSLV's PS2, and use one Vikas engine each. Fuel : UDMH + N2O4 Max. Thrust : 680 kN Burntime : 160 sec K.NEHRU, M.Tech.,(Ph.D) Assistant Professor 16AE409 ROCKETS AND MISSILES The 49 metres (161 ft) tall GSLV, with a lift-off mass of 415 metric tons (915,000 lb), is a three-stage vehicle with solid, liquid and cryogenic stages respectively. The payload fairing, which is 7.8 metres (26 ft) long and 3.4 metres (11 ft) in diameter, protects the vehicle electronics and the spacecraft during its ascent through the atmosphere. It is discarded when the vehicle reaches an altitude of about 115 km. GSLV employs S-band telemetry and C-band transponders for enabling vehicle performance monitoring, tracking, range safety / flight safety and preliminary orbit determination. The Redundant Strap Down Inertial Navigation System/Inertial Guidance System of GSLV housed in its equipment bay guides the vehicle from lift-off to spacecraft injection. The digital auto-pilot and closed loop K.NEHRU, M.Tech.,(Ph.D) Assistant Professor 16AE409 ROCKETS AND MISSILES guidance scheme ensure the required altitude maneuver and guide injection of the spacecraft to the specified orbit. The GSLV can place approximately 5,000 kg (11,000 lb) into an easterly Low Earth orbit or 2,500 kg (5,500 lb)(for the Mk. II version) into an 18° geostationary transfer orbit. Liquid boosters The first GSLV flight, GSLV-D1 used the L40 engine. Subsequent flights of the GSLV used high pressure engines in the strap-on boosters called the L40H. The GSLV uses four L40H liquid strap-on boosters derived from the L37.5 second stage, which are loaded with 42.6 tons of hypergolic propellants (UDMH & N2O4). The propellants are stored in tandem in two independent tanks 2.1 metres (6 ft 11 in) diameter. The engine is pump-fed and generates 760 kilonewtons (170,000 lbf) of thrust, with a burn time of 150 seconds. First stage GSLV-D1 used the S125 stage which contained 125 metric tons (276,000 lb) of solid propellant and had a burn time of 100 seconds. All subsequent launches have used enhanced propellant loaded S139 stage. The S139 stage is 2.8 m in diameter and has a nominal burn time of 109 seconds. The stage generates a maximum thrust of 4700 kN. Second stage The GS2 stage is powered by the Vikas engine. It has 2.8 metres (9 ft 2 in) diameter. Third stage The third stage of the GSLV Mk.II is propelled by either the Russian KVD-1 or the Indian CE-7.5 cryogenic rocket engine. It uses liquid hydrogen (LH2) and liquid oxygen (LOX).The Indian cryogenic engine was built at the Liquid Propulsion Systems Centre. The engine has a default thrust of 75 kilonewtons (17,000 lbf) but is capable of a maximum thrust of 93.1 kilonewtons (20,900 lbf). Variants GSLV rockets using the Russian Cryogenic Stage (CS) are designated as the GSLV Mk I while versions using the indigenous Cryogenic Upper Stage (CUS) are designated the GSLV Mk II.[17] All GSLV launches have been conducted from the Satish Dhawan Space Centre in Sriharikota. GSLV Mk. I The first developmental flight of GSLV Mk. I had a 129 tonne (S125) first stage and was capable of launching around 1500 kg into geostationary transfer orbit. The second developmental flight replaced the S125 stage with S139. It used the same solid motor with 138 tonne propellant loading. The chamber pressure in all liquid K.NEHRU, M.Tech.,(Ph.D) Assistant Professor 16AE409 ROCKETS AND MISSILES engines were enhanced, enabling a higher propellant mass and burn time. These improvements allowed GSLV to carry an additional 300 kg of payload.[The fourth operational flight of GSLV Mk. I, GSLV-F06, has a 15 tonne propellant loading in the third stage, called the C-15. GSLV Mk II This variant uses an Indian cryogenic engine, the CE-7.5, and is capable of launching 2500 kg into geostationary transfer orbit. Previous GSLV vehicles (GSLV Mk.I) have used Russian cryogenic engines. K.NEHRU, M.Tech.,(Ph.D) Assistant Professor 16AE409 ROCKETS AND MISSILES .
Recommended publications
  • Sns College of Technology
    SNS COLLEGE OF TECHNOLOGY (An Autonomous Institution) DEPARTMENT OF AERONAUTICAL ENGINEERING Subject Code & Name: 16AE409 ROCKETS AND MISSILES Date: 16.08.19 DAY: 01 UNIT: 4: STAGING OF ROCKETS AND MISSILES TOPIC: 1: TWO MARK QUESTION & ANSWER 1. Define multistage rocket. A multistage (or) multistep rocket is a series of individual vehicles or stages each with its own structure, tanks and engines. The stages are so connected that each operates in turn accelerating the remaining stages and the payload before being detached from them. 2. Nomenclature of the multistage rocket. 3. Write the different types of stage separation techniques. 1. By helical compression springs 2. By short duration solid propellant rockets. 4. Separation of stages with in the atmosphere The burnout of the first stage generally occurs within the upper region of the atmosphere i) Firing in the hole technique ii) Ullage rocket techniques. 5. Advantages of Multistage rocket design. Higher payload Enough to accelerate the initial mass Long-range Easy thrust programming K.NEHRU, M.Tech.,(Ph.D) Assistant Professor 16AE409 ROCKETS AND MISSILES 6. Write the expression for sub rocket 1 and (i+1). Sub rocket 1 = Complete rocket Sub rocket (i+1) = sub rocketi - stagei 7. Write the expression for payload of sub rocket 1 and N. Payload sub rocket i = Sub rocket (i+1) Payload sub rocket N = Actual payload 8. Sketch the thrust to time variation graph of stage separation techniques. i) Firing in the hole technique i) Ullage rocket techniques. 9. Drawbacks of firing in the hole techniques. K.NEHRU, M.Tech.,(Ph.D) Assistant Professor 16AE409 ROCKETS AND MISSILES 1.
    [Show full text]
  • Semi Cryogenic Technology for Gaganyaan: RSTV – in Depth
    Semi Cryogenic Technology for Gaganyaan: RSTV – In Depth Anchor: Teena Jha Context: India's strategic partner Russia has offered its Semi Cryogenic engine technology and critical components for the Gaganyaan project. Gaganyaan: In 2018, India’s first manned space mission was announced by Prime Minister Narendra Modi in his Independence Day speech. Gaganyaan will be the Indian crewed orbital spacecraft intended to be the basis of Indian Human Space Flight Program. With Gaganyaan, India will become only the 4th country after Russia, the USA and China to send humans to space. It will be ISRO’s next big project after the anticipated soft landing of Chandrayaan 2 on the lunar The target is to launch it before the 75 year celebration of India’s independence. Before the manned mission scheduled for December 2021, two unmanned tests will be carried out in December 2020 and July 2021. ISRO’s indigenous mission will be assisted by few other countries in selecting and training astronauts. According to ISRO, a budget of Rs 10,000 Cr. has been set aside for putting the infrastructure in place. It is described as a national mission than an ISRO mission. The Spacecraft: The spacecraft will take 3 Indian astronauts, who will be known as ‘vyomnauts’ (in Sanskrit ‘vyom’ means space. It will circle the earth for 7 days from a distance of 300-400 km. It will be launched by India’s biggest rocket GSLV Mk 3 from Sriharikotta. The 7 ton spacecraft will orbit the earth at an altitude of 400km for up to 7 days.
    [Show full text]
  • GSLV Mk. II Launch Vehicle
    Launch Vehicle Library Compiled by Patrick Blau GSLV Mk. II Launch Vehicle The Geosynchronous Satellite Launch Vehicle, better known by its abbreviation GSLV, is an Indian expendable launch system that was developed and is operated by the Indian Space Research Organization. The GSLV project was initiated back in the 1990s when India determined that it needed its own launch capability for Geosynchronous Satellites to become independent from other launch providers. At the time, India was relying on Russian/Soviet launch vehicles for heavy satellite launches. With the emergence of commercial launch providers, such as Arianespace, India shifted its GSO Satellites to those while GSLV was being developed. The launch system uses a large number of heritage components already employed on the Polar Satellite Launch Vehicle that first flew in 1993. The three-stage GSLV has an improved performance over four-stage PSLV with the addition of strap-on liquid-fueled boosters and a cryogenic upper stage. GSLV uses a combination of solid fueled, liquid-fueled and cryogenic stages. The vehicle weighs 414,000 Kilograms at liftoff standing 49 meters tall with a core diameter of 2.8 meters. The first stage is the S139 solid-fueled stage that is also used on PSLV. Around the core, four strap-on liquid-fueled boosters are mounted each featuring a Vikas engine using storable propellants. The second stage is also a storable propellant stage using a single modified Vikas engine while the third stage is a cryogenic stage using liquid Oxygen and liquid Hydrogen that is consumed by an ICE engine. The vehicle can deploy payloads of up to 2,500 Kilograms to a Geosynchronous Transfer Orbit, Low Earth Orbit Capability is 5,000kg.
    [Show full text]
  • The Annual Compendium of Commercial Space Transportation: 2017
    Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2017 January 2017 Annual Compendium of Commercial Space Transportation: 2017 i Contents About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2017) Publication produced for FAA AST by The Tauri Group under contract. NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Annual Compendium of Commercial Space Transportation: 2017 GENERAL CONTENTS Executive Summary 1 Introduction 5 Launch Vehicles 9 Launch and Reentry Sites 21 Payloads 35 2016 Launch Events 39 2017 Annual Commercial Space Transportation Forecast 45 Space Transportation Law and Policy 83 Appendices 89 Orbital Launch Vehicle Fact Sheets 100 iii Contents DETAILED CONTENTS EXECUTIVE SUMMARY .
    [Show full text]
  • Reliability Assessment of L40 Stage GSLV Mk II
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 04 Issue: 08 | Aug -2017 www.irjet.net p-ISSN: 2395-0072 Reliability Assessment of L40 Stage GSLV Mk II Saureng Kumar1 1M.Tech, Dept. of Management Studies (Industrial Engineering & Management), IIT(ISM) Dhanbad, Jharkhand, India ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - Reliability of a component or system is the probability that a component or system will perform a required function for a given period of time when used under stated operating conditions. This paper discusses the reliability analysis of L 40 stage of Geosynchronous Satellite Launch Vehicle (GSLV Mk II). A variable mean time to failure rate model is also developed for analyzing observed failure data to ascertain probable cause. Key Words: System reliability, System Unreliability, Liquid Strap-on, Geosynchronous Satellite Launch Vehicle, Mean time to failure. 1. INTRODUCTION System reliability is a measurement science of a system or component to perform its intended function for a specific period of time under a given set of time. GSLV Mk II (Figure1) The first stage (GS1) comprises a solid propellant motor (S139) and four liquid strap-ons (L40). The designations of the different version indicate the type of fuel used and the mass of propellant booster strapped on to the rocket. “S” denotes “Solid” and the “L” denotes liquid and the second number represent mass (in ton) of propellant. The liquid strap-ons (L40) comprises 40 ton of liquid propellant powered by vikas engine with four identical separate steel tank, analysing the reliability of these subsystem and their Fig -1: Configuration Description relative contribution to spacecraft failures is important for reliability growth of spacecraft and targeted system Stage 1 improvements.
    [Show full text]
  • ISROSENE PSLV-C37: Mission with 104 Satellites
    ESPI Panel discussion Toulouse 26 June 2018 S. Somanath Director Vikram Sarabhai Space Centre India Indian Space Program Space Transportation Systems SLV-3 ASLV PSLV GSLV LVM3 HLV HLV-HSP Launch Vehicle Propulsion Solid Liquid Engine Testing Chemical Hybrid Rockets Mono propellant Cryogenic Liquid Bi- Semi- propellant Cryogenic Storable Hypergolic Cryo Thrust Chamber Testing Liquid Stage test Solid motorS200 static motor testing firing Cryo Engine Testing LIQUID ENGINES HERITAGE & DEVELOPMENTS BI-PROPELLANT PUMP FED / Engines from 75 mN to 2000 kN N2O4 / UH 25 CRYOGENIC - PUMP FED ELECTRIC LOX / LH2 PROPULSION XENON BI-PROPELLANT PRESSURE FED 75 mN MONO- PROPELLANT 1N 11N 22N 50N 440N 6.4 KN 7.35 KN 75 KN 200 KN 804 KN RCT PS4 CUS C25 VIKAS SATELLITE PROPULSION SEMI CRYO Under ENGINE 2000 kN Development LOX / ISROSENE PSLV-C37: Mission with 104 Satellites CARTOSAT-2D INS-1A & 1B 101 Microsatellites 1382.5 kg PSLV C7 / Space Capsule Recovery India’s historic entry to the elite club of countries having reentry technology Recovery on January 22, 2007 Launched on January 10, 2007 at a pre-determined location in the Bay of Bengal PSLV: The Versatility Of Spacecraft Missions Varieties of Spacecraft Mounting & Dispensing systems developed Demonstrated the Re-start of 4th Stage of PSLV: Multiple orbit mission capability demonstrated. GSLV: The New Operational Launcher GSLV-F05 /INSAT-3DR First Operational Mission GSLV-F09 With GSAT-9 May 2017 Progressive improvements in Payload capability up to 3000kg to GTO targeted. GSLV Mk-III-D1: First Development Flight C25 Cryogenic Stage proved in flight LVM3-X/CARE Mission Outcome A sub-orbital mission To place CARE at 126 km altitude LA = 120 ° • LVM3-X / CARE mission • Passive externally identical C25 stage.
    [Show full text]
  • Annual Report 2020-2021
    ´ÉÉ̹ÉEò Ê®{ÉÉä]Ç ANNUAL REPORT 2020-2021 ´ÉÉ̹ÉEò Ê®{ÉÉä]Ç ANNUAL REPORT 2020-2021 Citizens’ Charter of Department of Space Department Of Space (DOS) has the primary responsibility of promoting the development of space science, technology and applications towards achieving self-reliance and facilitating in all round development of the nation. With this basic objective, DOS has evolved the following programmes: • Indian National Satellite (INSAT) programme for telecommunication, television broadcasting, meteorology, developmental education, societal applications such as telemedicine, tele-education, tele-advisories and similar such services • Indian Remote Sensing (IRS) satellite programme for the management of natural resources and ´ÉÉ̹ÉEò Ê®{ÉÉä]Ç 2020-2021 ¦ÉÉ®úiÉ ºÉ®úEòÉ®, +ÆiÉÊ®úIÉ Ê´É¦ÉÉMÉ ¦ÉÉ®úiÉ ºÉ®úEòÉ®, +ÆiÉÊ®úIÉ Ê´É¦ÉÉMÉ various developmental projects across the country using space based imagery • Indigenous capability for the design and development of satellite and associated technologies for communications, navigation, remote sensing and space sciences • Design and development of launch vehicles for access to space and orbiting INSAT/ GSAT, IRS and IRNSS satellites and space science missions • Research and development in space sciences and technologies as well as application programmes for national development The Department Of Space is committed to: • Carrying out research and development in satellite and launch vehicle technology with a goal to achieve total self reliance • Provide national space infrastructure for telecommunications
    [Show full text]
  • LETTRE 3AF La Revue De La Société Savante Association Aéronautique Et Astronautique De France De L’Aéronautique Et De L’Espace
    NUMÉRO 44 OCTOBRE 2020 LETTRE 3AF La revue de la société savante Association Aéronautique et Astronautique de France de l’Aéronautique et de l’Espace DOSSIER CRISE DU TRANSPORT AÉRIEN Crédit : Philippe Choy (ONERA) DAVID FRABOULET (MESRI) ÉMERGENCE DE NOUVELLES CONCEPTIONS DU TRANSPORT AÉRIEN ? Le plan de relance aéronautique à l’ONERA INTERVIEW DE LUC TYTGAT, DIRECTEUR DE LA STRATÉGIE et l’avion à hydrogène À L’EASA COMMISSION SIGMA2 : POINTS LES ORIGINES DE L’OISEAU BLANC TRAVERSE DE VUE CROISÉS SUR LES PANS L’AÉRONAUTIQUE ROUMAINE L’ATLANTIQUE LES 8 ET 9 MAI EN INFRAROUGE ET RADAR 1927 NUMÉRO 44 OCTOBRE 2020 Table des matières 3 ÉDITORIAL 42 L’AVION À HYDROGÈNE : AMBITION OU ILLUSION ? 4 MESSAGE DU PRÉSIDENT par Eric Dautriat 47 POINTS DE VUE CROISÉS SUR LES INTERVIEW PHÉNOMÈNES AÉROSPATIAUX 5 LUC TYTGAT, EASA NON IDENTIFIÉS OBSERVÉS EN par Jean-Pierre Sanfourche INFRAROUGE ET RADAR par Luc Dini, Jean-Marc André et Joël POINTS DE VUE Deschamps 8 AÉRONAUTIQUE POST COVID-19 : LES NOUVELLES TECHNOLOGIES VIE 3AF DIGITALES SERAIENT ELLES-EN 56 LA COMMISSION PROPULSION MESURE D’AIDERÀ L’ÉMERGENCE 3AF DE NOUVELLES CONCEPTIONS DU par Michel Desaulty et Christophe TRANSPORT AÉRIEN ? Bonhomme par David Fraboulet 12 PROFITER DE LA CRISE DU HISTOIRE TRANSPORT POUR RÉFORMER LE 59 L’OISEAU BLANC... CONTRÔLE AÉRIEN EUROPÉEN PREMIER AÉRONEF À AVOIR LE PLUS GRAND TOURNANT DE TRAVERSÉ L’ATLANTIQUE D’EST L’HISTOIRE D’EUROCONTROL EN OUEST LES 8 ET 9 MAI 1927 ÉDITEUR DEPUIS SA CRÉATION Par Bernard Decré Association Aéronautique et IL Y A 50 ANS 63 LA COOPÉRATION SPATIALE Astronautique de France par Marc Baumgartner, Pierre Andribet et FRANCO-INDIENNE 6, rue Galilée, 75116 Paris Jean-Marc Garot par Mathieu Weiss, Dominique Valentian, Tél.
    [Show full text]
  • Rocket Propellant
    Rocket Propellant. Rocket propellants consist of rocket engines powered by propellants. These are used both in space vehicles as well as in offensive weapons such as missiles. The propellants are chemical substances which on ignition provide thrust for the rocket to move forward. These substances are called rocket propellants. A propellant is a combination of an oxidiser and a fuel which when ignited undergoes combustion to release large quantities of hot gases. The passage of hot gases through the nozzle of the rocket motor provides the necessary thrust for the rocket to move forward according to Newton's third law of motion. The function of a rocket propellant is similar to that of petrol in a motor car except that in the later case, the oxygen needed for burning the fuel is taken from the atmospheric air. (1) Types of rocket propellants: Depending upon the physical state, propellants can be classified as : (i) Solid propellants:The solid propellants are mixtures of solid fuel and a solid oxidiser. These are further divided into two classes, (a) Composite propellants: These are solid propellants which use polymeric binder such as polyurethane or polybutadiene as a fuel and a solid oxidiser such as ammonium perchlorate, nitrate or chlorate. The performance of these propellants can be increased by using some additives such as finely divided magnesium or aluminum metal along with the fuel. (b) Double base propellants: These are solid propellants which mainly use nitroglycerine and nitrocellulose. The nitrocellulose gels in nitroglycerine set in as a solid mass. The main disadvantage of solid propellants is that these propellants once ignited will continue burning with predetermined rate.
    [Show full text]
  • India & France in Space
    India & France in Space (History in Memoirs) Pranav Sharma, Curator, Space Museum, BM Birla Science Centre, Hyderabad, India At the Thumba Equatorial Rocket Launching Station (TERLS) (near Thiruvananthapuram, Kerala) Indian Space Program was launched with the taking off of an American sounding rocket called ‘Nike Apache’ on 21 November 1963. Prof. Jacques Blamont [the founder scientific and technical director of National Centre for Space Studies (CNES-Centre national d'études spatiales)] personally brought the rocket based payload from France, called the Sodium Vapour Payload which marked the beginning of rocket based experiments in India. He was also honored with a Padma Shri by Government of India in 2015 for his contribution to the Indian Space Program. Eknath Vasant Chitnis, an Indian space scientist and a former member secretary of the Indian National Committee for Space Research (INCOSPAR) wrote in his memoir, “...I went to France and...talked to people. We had thus the international collaboration in the offing. The French gave us radar, which we upgraded. Then we had the chaffe experiment for winds and sodium vapour experiment. Then the Germans came with barium payloads and then the Japanese came with X-ray astronomy payloads. Bhabha asked Vikram and me, before that seminar in January 1963, ‘What should I say?’ He wanted to have some brainstorming with us. So we said, ‘This is now the beginning of 1963. In 1957 the space era started and India as a country should go in for applications and build technology of rockets and satellites...” P V Manoranjan Rao, a veteran space scientist remembers, “...In his now famous ‘A Profile for the Decade 1970–1980 for Atomic Energy and Space Research’, Vikram Sarabhai noted, ‘It was clear at the outset that space research could not progress without the simultaneous development of advanced space technology.
    [Show full text]
  • NASA) FOIA Case Logs, 2012-2015
    Description of document: National Aeronautics and Space Administration (NASA) FOIA Case Logs, 2012-2015 Requested date: 19-February-2016 Released date: 24-February-2016 Posted date: 29-August-2016 Source of document: FOIA Request NASA Headquarters 300 E Street, SW Room 5Q16 Washington, DC 20546 Fax: (202) 358-4332 Email: [email protected] Online FOIA Form The governmentattic.org web site (“the site”) is noncommercial and free to the public. The site and materials made available on the site, such as this file, are for reference only. The governmentattic.org web site and its principals have made every effort to make this information as complete and as accurate as possible, however, there may be mistakes and omissions, both typographical and in content. The governmentattic.org web site and its principals shall have neither liability nor responsibility to any person or entity with respect to any loss or damage caused, or alleged to have been caused, directly or indirectly, by the information provided on the governmentattic.org web site or in this file. The public records published on the site were obtained from government agencies using proper legal channels. Each document is identified as to the source. Any concerns about the contents of the site should be directed to the agency originating the document in question. GovernmentAttic.org is not responsible for the contents of documents published on the website. National Aeronautics and Space Administration Headquarters Washington, DC 20546-0001 February 24, 2016 Reply to Attn of: Office of Communication FOIA: 16-HQ-F-00317 Thank you for your Freedom of Information Act (FOIA) request dated and received February 19, 2016, at the NASA Headquarters FOIA Office.
    [Show full text]
  • Cryogenic Rocket Engine
    Cryogenic rocket engine From Wikipedia, the free encyclopedia Vulcain engine of Ariane 5 rocket. RL-10 is an early example of cryogenic rocket engine. A cryogenic rocket engine is a rocket engine that uses a cryogenic fuel or oxidizer, that is, its fuel or oxidizer (or both) are gases liquefied and stored at very low temperatures.[1] Notably, these engines were one of the main factors of NASA's success in reaching the Moon by the Saturn V rocket.[1] During World War II, when powerful rocket engines were first considered by the German, American and Soviet engineers independently, all discovered that rocket engines need high mass flow rate of both oxidizer and fuel to generate a sufficient thrust. At that time oxygen and low molecular weight hydrocarbons were used as oxidizer and fuel pair. At room temperature and pressure, both are in gaseous state. Hypothetically, if propellants had been stored as pressurized gases, the size and mass of fuel tanks themselves would severely decrease rocket efficiency. Therefore, to get the required mass flow rate, the only option was to cool the propellants down to cryogenic temperatures (below −150 °C, −238 °F), converting them to liquid form. Hence, all cryogenic rocket engines are also, by definition, either liquid-propellant rocket engines or hybrid rocket engines.[2] Various cryogenic fuel-oxidizer combinations have been tried, but the combination of liquid hydrogen (LH2) fuel and the liquid oxygen (LOX) oxidizer is one of the most widely used.[1][3] Both components are easily and cheaply available, and when burned have one of the highest enthalpy releases by combustion,[4] producing specific impulse up to 450 s (effective exhaust velocity 4.4 km/s).
    [Show full text]