Space India 2.0 Commerce, Policy, Security and Governance Perspectives

Total Page:16

File Type:pdf, Size:1020Kb

Space India 2.0 Commerce, Policy, Security and Governance Perspectives Space India 2.0 Commerce, Policy, Security and Governance Perspectives Rajeswari Pillai Rajagopalan Narayan Prasad (Eds.) ISBN: 978-81-86818-28-2 Printed by: Mohit Enterprises © 2017 Observer Research Foundation. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without permission in writing from ORF. CONTENTS Foreword vii K Kasturirangan, former Chairman, ISRO Introduction xi Rajeswari Pillai Rajagopalan and Narayan Prasad I Space Commerce 1. Space 2.0 India: Leapfrogging Indian Space Commerce 1 Narayan Prasad 2. Traditional Space and NewSpace Industry in India: Current Outlook and Perspectives for the Future 11 Narayan Prasad 3. A Review of India’s Commercial Space Efforts 23 K R Sridhara Murthi 4. Exploring the Potential of Satellite Connectivity for Digital India 37 Neha Satak, Madhukara Putty, Prasad H L Bhat 5. Unlocking the Potential of Geospatial Data 51 Arup Dasgupta 6. Developing a Space Start-up Incubator to Build a NewSpace Ecosystem in India 71 Narayan Prasad 7. Electronic Propulsion & Launch Vehicles: Today and Beyond – An Indian Perspective 85 Rohan M Ganapathy, Arun Radhakrishnan and Yashas Karanam iv II Space Policy 8. Privatisation of Space in India and the Need for A Law 103 Kumar Abhijeet 9. SATCOM Policy: Bridging the Present and the Future 119 Ashok GV and Riddhi D’ Souza 10. A Review of India’s Geospatial Policy 141 Ranjana Kaul 11. Formation of PSLV Joint Venture: Legal Issues 151 Malay Adhikari 12. Exploring Space as an Instrument in India’s Foreign Policy & Diplomacy 165 Vidya Sagar Reddy III Space Security 13. India’s Strategic Space Programme: From Apprehensive Beginner to Ardent Operator 179 Ajey Lele 14. Space Situational Awareness and Its Importance 193 Moriba Jah 15. Need for an Indian Military Space Policy 199 Rajeswari Pillai Rajagopalan IV International Cooperation 16. Cooperation in Space between India and France 215 Jacques Blamont 17. India-US: New Dynamism in Old Partnership 235 Victoria Samson 18. Evolution of India-Russia Partnership 245 Vladimir Korovkin v 19. Cooperating with Israel: Strategic Convergence 265 Deganit Paikowsky and Daniel Barok 20. An Asian Space Partnership with Japan? 275 Kazuto Suzuki 21. India and Australia: Emerging Possibilities 283 Jason Held V Space Sustainability and Global Governance 22. Space Debris Tracking: An Indian Perspective 295 MYS Prasad 23. Astro-propriation: Investment Protections for and from Space Mining Operations 311 Daniel A Porras 24. Sustainability, Security and Article VI of the Outer Space Treaty 335 Charles Stotler 25. Space Security, Sustainability, and Global Governance: India-Japan Collaboration in Outer Space 359 Yasushi Horikawa 26. India and Global Space Governance: Need for A Pro-active Approach 371 Rajeswari Pillai Rajagopalan About the Authors 383 FOREWORD In the modern history of humankind’s forays into the field of exploration and uses of outer space, India’s space endeavours have occupied a special place due to the richness and the quality of their contributions. With few rivals in sheer mystery, space continues to capture the imagination of our younger generation, presenting an inexhaustible potential for exploration, discovery and diverse uses that modern society demands. What has been established with certainty through the past decades of space endeavours, of the world in general and of India in particular, is its multidimensional role and relevance—from international diplomacy for peace to applications that touch the daily lives of large populations across the world. As is true with any modern tool, space technology can serve as an instrument in enhancing human welfare, forewarning against disasters, and expanding the horizons of human knowledge. It can also be used to mitigate the devastating consequences of conflicts, wars and deprivation that threaten human survival. Space governance has thus become a major concern for the international community in recent decades, amidst new threats such as the growth and evolution of terrorism. The number of stakeholders in outer space has also increased considerably, and a key role is now being played by private entities in an environment which is becoming congested and heavily contested in some parts. Today, more nations are actively participating in space activities by building and operating space systems. Informed debates on issues relevant to space governance assume high priority both at national and international levels. By its fundamental nature, space inspires a global perspective, and reveals a viewpoint that extends to a universal dimension. Indeed, space endeavours of diverse nations have global implications. The ancient Indian thought and traditions reflect such a broader and universal outlook, as they explored the principles of human development and mysteries of viii origins, existence and destiny of the universe by dwelling deeper into human consciousness. India’s current progress is also extending to the outer world, addressing the quality of life of a billion-plus population. India stands at a cusp to establish harmony of inner and outer lives; this may yet prove to be its major contribution to global development. A hallmark of India’s space programme has been international cooperation. Some of the finest expressions of this paradigm can be seen from the beginnings of the programme, such as the dedication of Thumba Equatorial Rocket Launching Station to the United Nations and the assistance to an international community of scientists in the study of upper- atmospheric phenomena. Transcending ideological barriers, India’s cooperation has also flowered into different hues, including joint space missions, data sharing, capacity building in space applications, and policy coordination. Of great relevance is how this can be evolved in the future as a vibrant instrument of new advances in space activities, including human space flight, space commerce, actions against climate change, and international peace and security. Over the decades, challenges of space activities have grown manifold. This is a time when the world is seeing the emergence of NewSpace as a revolution in space industry, with private industries leading the way in applying the foundation elements established by space agencies as commercial value propositions. Disruptive business models are being built and there are distinct signs of growing potential for the overall size of the space economy to grow multi-fold. Policy elements relevant to space commerce and the private sector’s role in the future is extremely relevant for the growth of India’s space endeavours. Security applications of space, on one hand, and ensuring secure environment using space, on the other, are no longer a matter of choice for spacefaring states like India. Several initiatives at the international level need to be coordinated and harmonised with India’s national interests, as the country emerges as an economic power and seeks to strengthen its relations with other states in an interdependent world. Examining the various aspects of this dimension is extremely important, both to develop holistic perspectives and to generate required capacities in India. ix The Observer Research Foundation’s (ORF) initiative is commendable for creating a platform for discourse. As it involves both national and international experts on these extremely relevant issues, this volume of well-researched articles provides highly relevant analyses in the context of future developments in the field of space. Indeed, such interaction at the international level is not new to the Indian space programme. From the outset, with Dr. Vikram Sarabhai, the leadership of the Indian Space Research Organisation (ISRO) has pursued interaction with the finest minds in science, government, and industry. Such fruitful interactions have generated valuable contributions not only for India but also for the global community in terms of a vast array of societal applications of space technology, cost-effective approaches, and enriching collaborative endeavours such as Chandrayaan. This book gives insights by providing a glimpse into the past, while it connects with the present and delivers perspectives on the future dimensions of India’s space programme. The chapters cover a broad range– Commercial & NewSpace, Space Policy, Space Security, International Cooperation, and Space Sustainability & Global Governance—and they deliver educated suggestions and opinions to policymakers of the country to review their strategies on these issues. Understanding expert opinions in these areas shall bestow the emerging managers of the space programme with holistic insights. This work is a unique collection of thoughts and analyses on matters relevant to space policy and governance, a good account of accomplishments, and thought-provoking puzzles on future possibilities. The authors are national and international experts in different disciplines, both veteran and young scholars, and thus will be an invaluable resource for policymakers, academic researchers, and the public at large. This work can also be a concrete step for continuing discourse on varied subjects or issues of importance, which demand an interactive and evolutionary approach to progress on policy. While there could be some differences in the positions taken by writers with reference to the views of some stakeholders in policymaking, the academic yet non-formal nature of the content in this book will hopefully create enough spaces for reflecting on a cohesive and harmonious
Recommended publications
  • Department of Space Demand No 94 1
    Department of Space Demand No 94 1. Space Technology (CS) FINANCIAL OUTLAY (Rs OUTPUTS 2020-21 OUTCOME 2020-21 in Cr) Targets Targets 2020-21 Output Indicators Outcome Indicators 2020-21 2020-21 1. Research & 1.1 No. of Earth 05 1. Augmentation of Space 1.1 Introduction of 01 Developmen Observation (EO) Infrastructure for Ocean Colour t, design of spacecrafts ready for providing continuity of Monitor with technologies launch EO Services with 13 spectral and improved capabilities bands realization 1.2 Number of Launches of 05 1.2 Sea surface 01 of space Polar Satellite Launch temperature systems for Vehicle(PSLV) sensor launch 1.3 Number of Launches of 01 1.3 Continuation 01 vehicles and Geosynchronous Satellite of Microwave spacecrafts. Launch Vehicle - GSLV Imaging in C- Mk-III band. 1.4 Number of Launches of 02 2. Ensuring operational 2.1 No. of 05 9761.50 Geosynchronous Satellite launch services for Indigenous Launch Vehicle -GSLV domestic and commercial launches using Operational Flights Satellites. PSLV. 3. Self-sufficiency in 3.1 Operational 01 launching 4 Tone class of launches of communication satellites GSLV Mk III into Geo-synchronous transfer orbit. 4. Self-sufficiency in 4.1 No of 02 launching 2.5 - 3 Tone indigenous class of Communication launches using Satellites into Geo- GSLV. synchronous Transfer Orbit. 2. Space Applications (CS) FINANCIAL OUTLAY (Rs OUTPUTS 2020-21 OUTCOME 2020-21 in Cr) Targets Targets 2020-21 Output Indicators Outcome Indicators 2020-21 2020-21 1. Design & 1.1 No. of EO/ Communication 11 1. Information on optimal 1.1 Availability of 07 Develop Payloads realized management of natural advanced sensors to ment of 1.2 Information support for major 85% resource, natural provide space based Applicati disaster events (as %ge of Total disasters, agricultural information with ons for events occurred) planning, infrastructure improved capability 1810.00 EO, 1.3 No.
    [Show full text]
  • Drafting Committee for the 'Asia‐Pacific
    Drafting Committee for the ‘Asia‐Pacific Plan of Action for Space Applications for Sustainable Development (2018‐2030) Dr Rajeev Jaiswal EOS Programme Office Indian Space Research Organisation (ISRO) India Bangkok, Thailand 31 May ‐ 1 June 2018 India’s Current Space Assets Communication Satellites • 15 Operational (INSAT- 4A, 4B, 4CR and GSAT- 6, 7, 8, 9 (SAS), 10, 12, 14, 15, 16, 17, 18 & 19) • >300 Transponders in C, Ext C & Ku bands Remote sensing Satellites • Three in Geostationary orbit (Kalpana-1, INSAT 3D & 3DR) • 14 in Sun-synchronous orbit (RESOURCESAT- 2 & 2A; CARTOSAT-1/ 2 Series (5); RISAT-2; OCEANSAT 2; MEGHA-TROPIQUES; SARAL, SCATSAT-1) Navigation Satellites : 7 (IRNSS 1A - IG) & GAGAN Payloads in GSAT 8, 10 & 15 Space Science: MOM & ASTROSAT 1 Space Applications Mechanism in India Promoting Space Technology Applications & Tools For Governance and Development NATIONAL MEET “There should not be any space between common man and space technology” . 160 Projects across 58 Ministries . Web & Mobile Applications : 200+ . MoUs with stakeholders : 120+ . Capacity Building : 10,000+ . Space Technology Cells : 21 17 STATE MEETS Haryana, Bihar, Uttarakhand, Mizoram, Nagaland, Rajasthan, Punjab, Jharkhand, Meghalaya, Himachal 20 58 Pradesh, Kerala, Chhattisgarh, Assam, Madhya Ministries Ministries Pradesh, Tamil Nadu, Mizoram & Uttar Pradesh Space Applications Verticals SOCIO ECONOMIC SECURITY SUSTAINABLE DEVELOPMENT Food Impact Assessment Water Bio- Resources Conservation Energy Fragile & Coastal Ecosystem Health Climate Change Induced
    [Show full text]
  • Why NASA Consistently Fails at Congress
    W&M ScholarWorks Undergraduate Honors Theses Theses, Dissertations, & Master Projects 6-2013 The Wrong Right Stuff: Why NASA Consistently Fails at Congress Andrew Follett College of William and Mary Follow this and additional works at: https://scholarworks.wm.edu/honorstheses Part of the Political Science Commons Recommended Citation Follett, Andrew, "The Wrong Right Stuff: Why NASA Consistently Fails at Congress" (2013). Undergraduate Honors Theses. Paper 584. https://scholarworks.wm.edu/honorstheses/584 This Honors Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. The Wrong Right Stuff: Why NASA Consistently Fails at Congress A thesis submitted in partial fulfillment of the requirement for the degree of Bachelors of Arts in Government from The College of William and Mary by Andrew Follett Accepted for . John Gilmour, Director . Sophia Hart . Rowan Lockwood Williamsburg, VA May 3, 2013 1 Table of Contents: Acknowledgements 3 Part 1: Introduction and Background 4 Pre Soviet Collapse: Early American Failures in Space 13 Pre Soviet Collapse: The Successful Mercury, Gemini, and Apollo Programs 17 Pre Soviet Collapse: The Quasi-Successful Shuttle Program 22 Part 2: The Thin Years, Repeated Failure in NASA in the Post-Soviet Era 27 The Failure of the Space Exploration Initiative 28 The Failed Vision for Space Exploration 30 The Success of Unmanned Space Flight 32 Part 3: Why NASA Fails 37 Part 4: Putting this to the Test 87 Part 5: Changing the Method.
    [Show full text]
  • ORF Issue Brief 59 Dr. Rajeswari Pillai Rajagopalan
    ORF ISSUE BRIEF OCTOBER 2013 ISSUE BRIEF # 59 Synergies in Space: The Case for an Indian Aerospace Command Dr. Rajeswari Pillai Rajagopalan Introduction he Indian Armed Forces have been mulling over the establishment of an aerospace command for close to a decade now. Over those years, international circumstances and Tgeopolitics relating to outer space have changed, making it imperative for India to make decisions now. Though outer space is part of the global commons, it is increasingly getting appropriated and fenced as powerful States are seen seeking to monopolise space. The growing advanced military space capabilities of some nations, which include the development of their anti-satellite missile capabilities, are also a worrying trend. With much of outer space having been utilised by a small number of great powers and the increasing presence of non-state players in the recent years, even a nominal increase in terms of space activity by some developing countries is leading to issues related to overcrowding and access. In order to protect its interests, India must institutionalise its own strengths in the form of an Aerospace Command. While all the three services are becoming increasingly reliant on outer space assets, the Indian Air Force (IAF) has taken the lead, at least going by open sources. Back in 2003, Indian Air Force Chief Air Marshal S Krishnaswamy had already articulated the need for an aerospace command: “Any country on the fringe of space technology like India has to work towards such a command as advanced countries are already moving towards laser weapon platforms in space and killer satellites.” Some years after that, in 2006, the IAF established a Directorate of Aerospace in Thiruvananthapuram in South India, which can be referred to as the initial avatar of the Indian Observer Research Foundation is a public policy think-tank that aims to influence formulation of policies for building a strong and prosperous India.
    [Show full text]
  • T He Indian Army Is Well Equipped with Modern
    Annual Report 2007-08 Ministry of Defence Government of India CONTENTS 1 The Security Environment 1 2 Organisation and Functions of The Ministry of Defence 7 3 Indian Army 15 4 Indian Navy 27 5 Indian Air Force 37 6 Coast Guard 45 7 Defence Production 51 8 Defence Research and Development 75 9 Inter-Service Organisations 101 10 Recruitment and Training 115 11 Resettlement and Welfare of Ex-Servicemen 139 12 Cooperation Between the Armed Forces and Civil Authorities 153 13 National Cadet Corps 159 14 Defence Cooperaton with Foreign Countries 171 15 Ceremonial and Other Activities 181 16 Activities of Vigilance Units 193 17. Empowerment and Welfare of Women 199 Appendices I Matters Dealt with by the Departments of the Ministry of Defence 205 II Ministers, Chiefs of Staff and Secretaries who were in position from April 1, 2007 onwards 209 III Summary of latest Comptroller & Auditor General (C&AG) Report on the working of Ministry of Defence 210 1 THE SECURITY ENVIRONMENT Troops deployed along the Line of Control 1 s the world continues to shrink and get more and more A interdependent due to globalisation and advent of modern day technologies, peace and development remain the central agenda for India.i 1.1 India’s security environment the deteriorating situation in Pakistan and continued to be infl uenced by developments the continued unrest in Afghanistan and in our immediate neighbourhood where Sri Lanka. Stability and peace in West Asia rising instability remains a matter of deep and the Gulf, which host several million concern. Global attention is shifting to the sub-continent for a variety of reasons, people of Indian origin and which is the ranging from fast track economic growth, primary source of India’s energy supplies, growing population and markets, the is of continuing importance to India.
    [Show full text]
  • Space Commercialization
    Space commercialization August 23, 2019 Source : The Hindu Manifest pedagogy: Space commercialisation is one aspect which was left untapped until the last few years. After successful stint of ISRO as a scientific body it is now accelerating its activities as a commercial body. This is a very important topic for Mains. In news: ISRO arm NSIL has begun search for PSLV makers Placing it in syllabus: Space commercialisation by India (explicitly mentioned) Static dimensions: Role of Antrix Corporation Current dimensions: Establishment of NSIL Outsourcing of PSLV ISRO’s space commercialisation plan and its impact Content: NewSpace India Ltd (NSIL), the new public sector space business company have launched a formal search for industry consortia which can regularly manufacture and deliver entire PSLV satellite launch vehicles for the Indian Space Research Organisation (ISRO). Role of Antrix Corporation: Antrix Corporation Limited (ACL), Bengaluru is a wholly owned Government of India Companyunder the administrative control of the Department of Space. Was incorporated as a private limited company owned by the Government of India in September 1992 as a Marketing arm of ISRO for promotion and commercial exploitation of space products, technical consultancy services and transfer of technologies developed by ISRO. Another major objective is to facilitate development of space related industrial capabilities in India. Antrix markets space products and services to global customers. It is committed to configuring a cost-effective, advanced and reliable solution for every space programme related need. Antrix optimizes the space systems keeping in view the specific customer objectives. It plays a pivotal role in delivering space systems and services that meet the expectations of leading global organizations.
    [Show full text]
  • India and China Space Programs: from Genesis of Space Technologies to Major Space Programs and What That Means for the Internati
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2009 India And China Space Programs: From Genesis Of Space Technologies To Major Space Programs And What That Means For The Internati Gaurav Bhola University of Central Florida Part of the Political Science Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Bhola, Gaurav, "India And China Space Programs: From Genesis Of Space Technologies To Major Space Programs And What That Means For The Internati" (2009). Electronic Theses and Dissertations, 2004-2019. 4109. https://stars.library.ucf.edu/etd/4109 INDIA AND CHINA SPACE PROGRAMS: FROM GENESIS OF SPACE TECHNOLOGIES TO MAJOR SPACE PROGRAMS AND WHAT THAT MEANS FOR THE INTERNATIONAL COMMUNITY by GAURAV BHOLA B.S. University of Central Florida, 1998 A dissertation submitted in partial fulfillment of the requirements for the degree of Master of Arts in the Department of Political Science in the College of Arts and Humanities at the University of Central Florida Orlando, Florida Summer Term 2009 Major Professor: Roger Handberg © 2009 Gaurav Bhola ii ABSTRACT The Indian and Chinese space programs have evolved into technologically advanced vehicles of national prestige and international competition for developed nations. The programs continue to evolve with impetus that India and China will have the same space capabilities as the United States with in the coming years.
    [Show full text]
  • Annual Report 2017 - 2018 Annual Report 2017 - 2018 Citizens’ Charter of Department of Space
    GSAT-17 Satellites Images icro M sat ries Satellit Se e -2 at s to r a C 0 SAT-1 4 G 9 -C V L S P III-D1 -Mk LV GS INS -1 C Asia Satell uth ite o (G S S A T - 09 9 LV-F ) GS ries Sat Se ellit t-2 e sa to 8 r -C3 a LV C PS Annual Report 2017 - 2018 Annual Report 2017 - 2018 Citizens’ Charter of Department Of Space Department Of Space (DOS) has the primary responsibility of promoting the development of space science, technology and applications towards achieving self-reliance and facilitating in all round development of the nation. With this basic objective, DOS has evolved the following programmes: • Indian National Satellite (INSAT) programme for telecommunication, television broadcasting, meteorology, developmental education, societal applications such as telemedicine, tele-education, tele-advisories and similar such services • Indian Remote Sensing (IRS) satellite programme for the management of natural resources and various developmental projects across the country using space based imagery • Indigenous capability for the design and development of satellite and associated technologies for communications, navigation, remote sensing and space sciences • Design and development of launch vehicles for access to space and orbiting INSAT / GSAT, IRS and IRNSS satellites and space science missions • Research and development in space sciences and technologies as well as application programmes for national development The Department Of Space is committed to: • Carrying out research and development in satellite and launch vehicle technology with a goal to achieve total self reliance • Provide national space infrastructure for telecommunications and broadcasting needs of the country • Provide satellite services required for weather forecasting, monitoring, etc.
    [Show full text]
  • Triggered Lightning Risk Assessment for Reusable Launch Vehicles at Four Regional Spaceports
    AEROSPACE REPORT NO. ATR-2010(5387)-1 Triggered Lightning Risk Assessment for Reusable Launch Vehicles at Four Regional Spaceports April 30, 2010 Richard L. Walterscheid1, Lynette J. Gelinas1, Glenn W. Law2, Grace S. Peng3, Robert W. Seibold2, Frederick S. Simmons4, Paul F. Zittel5 John C. Willett Consultant, Garrett Park, Maryland E. Philip Krider Institute of Atmospheric Physics University of Arizona, Tucson, Arizona 1Space Sciences Department, Physical Sciences Laboratories; 2Civil and Commercial Launch Systems, Space Launch Projects; 3Computer Systems Research Department, Computer Science and Technology Subdivision; 4Sensor Systems Subdivision, Electronics and Sensors Division; 5Remote Sensing Department, Physical Sciences Laboratories Prepared for: Volpe National Transportation Systems Center U.S. Department of Transportation Cambridge, Massachusetts Contract No. DTRT57-05-D-30103 Task 13A Authorized by: Space Launch Operations Public release is authorized. REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to the Department of Defense. Executive Services and Communications Directorate (0704-0188). Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMP control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION.
    [Show full text]
  • Human Spaceflight Plans of Russia, China and India
    Presentation to the ASEB Committee on NASA Technology Roadmaps Panel on Human Health and Surface Exploration June 1, 2011 by Marcia S. Smith Space and Technology Policy Group, LLC Russia Extensive experience in human spaceflight First animal in space (1957), first man in space (1961), first woman in space (1963), first spacewalk (1965), first space station (1971) Seven successful space stations (Salyut 1, 3, 4, 5, 6, 7 and Mir) before partnering in International Space Station (ISS) No people beyond low Earth orbit (LEO), however For earth orbit, continues to rely on Soyuz, first launched in 1967, but upgraded many times and is key to ISS operations Designed space shuttle, Buran, but launched only once in automated mode (no crew) in 1988 06-01-2011 2 Russia (2) Existing reliable launch vehicles Proton is largest: 21 tons to LEO; 5.5 tons to geostationary transfer orbit (GTO) Attempts to build Saturn V-equivalent in 1960s and 1970s failed (N1 failed four times in four attempts 1969-1972) Energiya booster in 1980s only flew twice (1987 with Polyus and 1988 with Buran). Abandoned for financial reasons. Was 100 tons to LEO; 18-20 tons to GTO; 32 tons to lunar trajectory. RD-170 engines for Energiya’s strap-ons live on today in other forms for Zenit, Atlas V, and Angara (under development) 06-01-2011 3 Russia (3) Robotic planetary space exploration mixed Excellent success at – Moon (Luna and Lunokhod series, plus Zond circumlunar flights) Venus (Venera series) Halley’s Comet (Vega 1 and 2—also Venus) Jinxed at Mars More than a dozen failures in 1960s - 1970s Partial success with Phobos 2 in 1988 (Phobos 1 failed) Mars 96 failed to leave Earth orbit Phobos-Grunt scheduled for later this year; designed as sample return from Phobos (includes Chinese orbiter) 06-01-2011 4 Russia (4) Grand statements over decades about sending people to the Moon and Mars, but never enough money to proceed.
    [Show full text]
  • *Pres Report 97
    42 APPENDIX C U.S. and Russian Human Space Flights 1961–September 30, 1997 Spacecraft Launch Date Crew Flight Time Highlights (days:hrs:min) Vostok 1 Apr. 12, 1961 Yury A. Gagarin 0:1:48 First human flight. Mercury-Redstone 3 May 5, 1961 Alan B. Shepard, Jr. 0:0:15 First U.S. flight; suborbital. Mercury-Redstone 4 July 21, 1961 Virgil I. Grissom 0:0:16 Suborbital; capsule sank after landing; astronaut safe. Vostok 2 Aug. 6, 1961 German S. Titov 1:1:18 First flight exceeding 24 hrs. Mercury-Atlas 6 Feb. 20, 1962 John H. Glenn, Jr. 0:4:55 First American to orbit. Mercury-Atlas 7 May 24, 1962 M. Scott Carpenter 0:4:56 Landed 400 km beyond target. Vostok 3 Aug. 11, 1962 Andriyan G. Nikolayev 3:22:25 First dual mission (with Vostok 4). Vostok 4 Aug. 12, 1962 Pavel R. Popovich 2:22:59 Came within 6 km of Vostok 3. Mercury-Atlas 8 Oct. 3, 1962 Walter M. Schirra, Jr. 0:9:13 Landed 8 km from target. Mercury-Atlas 9 May 15, 1963 L. Gordon Cooper, Jr. 1:10:20 First U.S. flight exceeding 24 hrs. Vostok 5 June 14, 1963 Valery F. Bykovskiy 4:23:6 Second dual mission (withVostok 6). Vostok 6 June 16, 1963 Valentina V. Tereshkova 2:22:50 First woman in space; within 5 km of Vostok 5. Voskhod 1 Oct. 12, 1964 Vladimir M. Komarov 1:0:17 First three-person crew. Konstantin P. Feoktistov Boris G. Yegorov Voskhod 2 Mar. 18, 1965 Pavel I.
    [Show full text]
  • Bhuvan ISRO’S Geoportal
    bhuvan ISRO’s Geoportal www.bhuvan.nrsc.gov.in One-stop versatile Web based Earth Observation Know Bhuvan Data Products & Services What is it? dissemination for obtaining interoperable OGC web services Bhuvan (means Earth in Sanskrit) is a Geoportal of ISRO, to evince the Indian Earth Observation capabilities from the · Different supporting components like – interactive videos, Indian Remote Sensing (IRS) series of satellites. virtual tour, discussion forum, help documents are also available. It is an interactive versatile Earth-Browser which showcases multi-sensor, mutli-platform and multi- · Registration is optional in Bhuvan. However, some features temporal images with capabilities to overlay thematic require registration. Users can use the Central information, interpreted from such imagery as a vector Authentication Service of Bhuvan for creating an account Societal Applications layer, along with near real-time information from Automatic on Bhuvan towards single sign-on (SSO). Registered users Interactive 3D Environment Weather Stations (AWS), Potential Fishing Zone (PFZ) are having privilege to share and download the data, information, disaster support related information like forest collaborate with other Bhuvanites, discussions in Forum fire alerts, periodic agricultural drought assessment etc. etc. What can it do? A plug-in is to be downloaded and installed to access Bhuvan 3D (for first time use) Ranging from visualisation, Bhuvanites can also download IRS data products and consume thematic datasets as Why is it significant?
    [Show full text]