L6-Geospatial Technologies and Web Applications-Mr.Arulraj NRSC

Total Page:16

File Type:pdf, Size:1020Kb

L6-Geospatial Technologies and Web Applications-Mr.Arulraj NRSC GeoSpatial Technologies and Web Applications M. Arulraj Sci/Engr – SF Manager, Bhuvan Web Services Development [email protected] GIS Activities in Problem Solving Environment Empowering Human Take to Activities Action Plan Complex Data Modeling Analyze Interactive Mapping Integration Measure Observe Visualization Modeling . Application of this science is multi-disciplinary Major Components of GIS and Role of open source s/w Data Creations Vector, Raster & attribute Data organizations & Management Complete GIS Data query, processing, Solutions analysis and modeling Data presentations and visualizations OpenLayers Data sharing and disseminations Tools and technologies • Quantum GIS • Open Jump • SAGA, MapWindow GIS • OpenLayer API Desktop GIS • Mapfish, • Geoeditor, • GRASS Geoweb Remote • Geexplorer • OSIM 2.0 Sensing • SAGA • Geonetwork Catalogue Statistical Server • R Geo-spatial DomainGn Geo- GPS • Gpsbabel RDBMS • POSTGIS+ POSTGRESQL • Gpsdrive • TerrLib GIS s/w GIS Servers developme nt • GDAL/OGR • Osgeo MapServer • Geotool • Geoserver • OpenLayer API What is open source? Open source software is software where the source code is made available under a license that allows the modification, and re-distribution of the software at will. The distribution terms of open-source software must comply with the following criteria: Free redistribution; Source code; Derived works; Integrity of the author's source code; No discrimination against persons or groups; No discrimination against fields of endeavor; Distribution of license; License must not be specific to a product; License must not restrict other software; License must be technology-neutral. What is open source? 1. Free Redistribution The license shall not restrict any party from selling or giving away the software as a component of an aggregate software distribution containing programs from several different sources. The license shall not require a royalty or other fee for such sale. 2. Source Code The program must include source code, and must allow distribution in source code as well as compiled form. Where some form of a product is not distributed with source code, there must be a well-publicized means of obtaining the source code for no more than a reasonable reproduction cost preferably, downloading via the Internet without charge. 3. Derived Works The license must allow modifications and derived works, and must allow them to be distributed under the same terms as the license of the original software. 4. Integrity of The Author's Source Code The license may restrict source-code from being distributed in modified form only if the license allows the distribution of "patch files" with the source code for the purpose of modifying the program at build time. The license must explicitly permit distribution of software built from modified source code. The license may require derived works to carry a different name or version number from the original software. 5. No Discrimination Against Persons or Groups The license must not discriminate against any person or group of persons. What is open source? 6. No Discrimination Against Fields of Endeavor The license must not restrict anyone from making use of the program in a specific field of endeavor. For example, it may not restrict the program from being used in a business, or from being used for genetic research. 7. Distribution of License The rights attached to the program must apply to all to whom the program is redistributed without the need for execution of an additional license by those parties. 8. License Must Not Be Specific to a Product The rights attached to the program must not depend on the program's being part of a particular software distribution. If the program is extracted from that distribution and used or distributed within the terms of the program's license, all parties to whom the program is redistributed should have the same rights as those that are granted in conjunction with the original software distribution. 9. License Must Not Restrict Other Software The license must not place restrictions on other software that is distributed along with the licensed software. For example, the license must not insist that all other programs distributed on the same medium must be open-source software. 10. License Must Be Technology-Neutral No provision of the license may be predicated on any individual technology or style of interface. OGC – Open Geospatial Consortium • International Standards organisation working towards the development of publicly available interface standards. • Founded in 1994 • Four Operational Programs • Standards Programs • Interoperability Programs • Communication and Outreach Program • Compliance Program OGC – Open Geospatial Consortium • Standards Programs • Rules and guidelines, aimed at the optimum degree of interoperability • 46 OGC standards at present including WMS, WFS, WCS, GML, KML, City GML, Open LS etc. • Interoperability Programs • Capability – common set of business procedure, read and write same file format, using same protocols • 85 initiatives to speed up the development and usage of interoperability concepts • Communication and Outreach Program • Adoption, Implementation of OGC standards, Development and supporting regional and sectoral programmes. • Compliance Program • Free web testing facility to certificate and lively harmonisation of a lively group of developers. What is web service? A 'Web service' (also Web Service) is defined by the W3C as "a software system designed to support interoperable machine-to-machine interaction over a network". Web services allows us to build a highly distributed infrastructure. Each web services can be dedicated to a specific task. The web service concept defines the relationships between the three major actions in geo-spatial data access: Service providers who publish services; Service requestor who search and use services; The service registry that matches the request with the existing services. XML The Extensible Markup Language (XML) is a general-purpose specification for creating custom markup languages. It is classified as an extensible language because it allows its users to define their own elements. Its primary purpose is to facilitate the sharing of structured data across different information systems, particularly via the Internet, and it is used both to encode documents and to serialize data. It started as a simplified subset of the Standard Generalized Markup Language (SGML), and is designed to be relatively human-legible. By adding semantic constraints, application languages can be implemented in XML. These include XHTML, MathML, GraphML, Scalable Vector Graphics, MusicXML, and thousands of others. Moreover, XML is sometimes used as the specification language for such application languages. XML is recommended by the World Wide Web Consortium (W3C). It is a fee-free open standard. The recommendation specifies both the lexical grammar and the requirements for parsing. OGC Web Services (OWS) Initiatives • OGC has started a series of web-based interoperability initiatives since 1999. • The purpose of those initiatives is to develop a set of draft interoperability specifications for considering as official OGC specifications. – Web feature services specification (WFS) – Web coverage services specification (WCS) – Web map services specification (WMS) – Web registries services specification (WRS) Web Coverage Services (WCS) Specification • OGC Web Coverage Services Specification defines the interfaces between web-based clients and servers for accessing on-line multi- dimensional geospatial data in an interoperable way. – For raster(grid) data and multi-dimensional remote sensing imagery (e.g., multiple bands, time-series, etc) Get Capabilities Describe Coverage Get Coverage Web Feature Services (WFS) Specifications • OGC Web Feature Services Specification defines the interfaces between web-based clients and servers for accessing feature-based geosptial data (basic,Xlink,Transaction) – Vector data, such as road network, political boundary, cadastral data, river, coastal lines, etc. Get Capabilities Get GML object Describe Feature Type Transaction Get Feature LockFeature Web Map Services Specification • WMS, which filters and portrays spatial data to return static maps (rendered as pictures by the server). (Basic,Queryable) • It is one of the most widely implemented OGC specifications. Get capabilities Get map Get featureinfo Web Catalogue Services Specification (CSW) • Web Registries Services Specification defines the interfaces between web-based clients and servers for finding the required data or services from the registries. • Originally, the WRS was called Catalog Interoperability Specification (State-less). Geo-Information System- Simple Architecture External and Internal data Data Management Model Management Spatial model & Spatial & Major Components Attribute Non-spatial data Non-spatial model data • Database Server- Knowledge Database Management Management • Application server- Application software Object • Hardware data Dialog Management Attribute base query and report Spatial query and spatial output Spatial data Decision maker Information system Desktop GIS- General Architecture User GIS Applications GIS Data What is Web GIS ? The integration of GIS and Internet technologies is allowing GIS professionals to solve one of the most important problems inhibiting information utility: How to provide access to information and data without burdening end users with complicated and expensive software. Internet
Recommended publications
  • The Uch Enmek Example(Altai Republic,Siberia)
    Faculty of Environmental Sciences Institute for Cartography Master Thesis Concept and Implementation of a Contextualized Navigable 3D Landscape Model: The Uch Enmek Example(Altai Republic,Siberia). Mussab Mohamed Abuelhassan Abdalla Born on: 7th December 1983 in Khartoum Matriculation number: 4118733 Matriculation year: 2014 to achieve the academic degree Master of Science (M.Sc.) Supervisors Dr.Nikolas Prechtel Dr.Sander Münster Submitted on: 18th September 2017 Faculty of Environmental Sciences Institute for Cartography Task for the preparation of a Master Thesis Name: Mussab Mohamed Abuelhassan Abdalla Matriculation number: 4118733 Matriculation year: 2014 Title: Concept and Implementation of a Contextualized Navigable 3D Landscape Model: The Uch Enmek Example(Altai Republic,Siberia). Objectives of work Scope/Previous Results:Virtual Globes can attract and inform websites visitors on natural and cultural objects and sceneries.Geo-centered information transfer is suitable for majority of sites and artifacts. Virtual Globes have been tested with an involvement of TUD institutes: e.g. the GEPAM project (Weller,2013), and an archaeological excavation site in the Altai Mountains ("Uch enmek", c.f. Schmid 2012, Schubert 2014).Virtual Globes technology should be flexible in terms of the desired geo-data configuration. Research data should be controlled by the authors. Modes of linking geo-objects to different types of meta-information seems evenly important for a successful deployment. Motivation: For an archaeological conservation site ("Uch Enmek") effort has already been directed into data collection, model development and an initial web-based presentation.The present "Open Web Globe" technology is not developed any further, what calls for a migra- tion into a different web environment.
    [Show full text]
  • Development of a Web Mapping Application Using Open Source
    Centre National de l’énergie des sciences et techniques nucléaires (CNESTEN-Morocco) Implementation of information system to respond to a nuclear emergency affecting agriculture and food products - Case of Morocco Anis Zouagui1, A. Laissaoui1, M. Benmansour1, H. Hajji2, M. Zaryah1, H. Ghazlane1, F.Z. Cherkaoui3, M. Bounsir3, M.H. Lamarani3, T. El Khoukhi1, N. Amechmachi1, A. Benkdad1 1 Centre National de l’Énergie, des Sciences et des Techniques Nucléaires (CNESTEN), Morocco ; [email protected], 2 Institut Agronomique et Vétérinaire Hassan II (IAV), Morocco, 3 Office Régional de la Mise en Valeur Agricole du Gharb (ORMVAG), Morocco. INTERNATIONAL EXPERTS’ MEETING ON ASSESSMENT AND PROGNOSIS IN RESPONSE TO A NUCLEAR OR RADIOLOGICAL EMERGENCY (CN-256) IAEA Headquarters Vienna, Austria 20–24 April 2015 Context In nuclear disaster affecting agriculture, there is a need for rapid, reliable and practical tools and techniques to assess any release of radioactivity The research of hazards illustrates how geographic information is being integrated into solutions and the important role the Web now plays in communication and disseminating information to the public for mitigation, management, and recovery from a disaster. 2 Context Basically GIS is used to provide user with spatial information. In the case of the traditional GIS, these types of information are within the system or group of systems. Hence, this disadvantage of traditional GIS led to develop a solution of integrating GIS and Internet, which is called Web-GIS. 3 Project Goal CRP1.50.15: “ Response to Nuclear Emergency affecting Food and Agriculture” The specific objective of our contribution is to design a prototype of web based mapping application that should be able to: 1.
    [Show full text]
  • Drafting Committee for the 'Asia‐Pacific
    Drafting Committee for the ‘Asia‐Pacific Plan of Action for Space Applications for Sustainable Development (2018‐2030) Dr Rajeev Jaiswal EOS Programme Office Indian Space Research Organisation (ISRO) India Bangkok, Thailand 31 May ‐ 1 June 2018 India’s Current Space Assets Communication Satellites • 15 Operational (INSAT- 4A, 4B, 4CR and GSAT- 6, 7, 8, 9 (SAS), 10, 12, 14, 15, 16, 17, 18 & 19) • >300 Transponders in C, Ext C & Ku bands Remote sensing Satellites • Three in Geostationary orbit (Kalpana-1, INSAT 3D & 3DR) • 14 in Sun-synchronous orbit (RESOURCESAT- 2 & 2A; CARTOSAT-1/ 2 Series (5); RISAT-2; OCEANSAT 2; MEGHA-TROPIQUES; SARAL, SCATSAT-1) Navigation Satellites : 7 (IRNSS 1A - IG) & GAGAN Payloads in GSAT 8, 10 & 15 Space Science: MOM & ASTROSAT 1 Space Applications Mechanism in India Promoting Space Technology Applications & Tools For Governance and Development NATIONAL MEET “There should not be any space between common man and space technology” . 160 Projects across 58 Ministries . Web & Mobile Applications : 200+ . MoUs with stakeholders : 120+ . Capacity Building : 10,000+ . Space Technology Cells : 21 17 STATE MEETS Haryana, Bihar, Uttarakhand, Mizoram, Nagaland, Rajasthan, Punjab, Jharkhand, Meghalaya, Himachal 20 58 Pradesh, Kerala, Chhattisgarh, Assam, Madhya Ministries Ministries Pradesh, Tamil Nadu, Mizoram & Uttar Pradesh Space Applications Verticals SOCIO ECONOMIC SECURITY SUSTAINABLE DEVELOPMENT Food Impact Assessment Water Bio- Resources Conservation Energy Fragile & Coastal Ecosystem Health Climate Change Induced
    [Show full text]
  • Annual Report 2017 - 2018 Annual Report 2017 - 2018 Citizens’ Charter of Department of Space
    GSAT-17 Satellites Images icro M sat ries Satellit Se e -2 at s to r a C 0 SAT-1 4 G 9 -C V L S P III-D1 -Mk LV GS INS -1 C Asia Satell uth ite o (G S S A T - 09 9 LV-F ) GS ries Sat Se ellit t-2 e sa to 8 r -C3 a LV C PS Annual Report 2017 - 2018 Annual Report 2017 - 2018 Citizens’ Charter of Department Of Space Department Of Space (DOS) has the primary responsibility of promoting the development of space science, technology and applications towards achieving self-reliance and facilitating in all round development of the nation. With this basic objective, DOS has evolved the following programmes: • Indian National Satellite (INSAT) programme for telecommunication, television broadcasting, meteorology, developmental education, societal applications such as telemedicine, tele-education, tele-advisories and similar such services • Indian Remote Sensing (IRS) satellite programme for the management of natural resources and various developmental projects across the country using space based imagery • Indigenous capability for the design and development of satellite and associated technologies for communications, navigation, remote sensing and space sciences • Design and development of launch vehicles for access to space and orbiting INSAT / GSAT, IRS and IRNSS satellites and space science missions • Research and development in space sciences and technologies as well as application programmes for national development The Department Of Space is committed to: • Carrying out research and development in satellite and launch vehicle technology with a goal to achieve total self reliance • Provide national space infrastructure for telecommunications and broadcasting needs of the country • Provide satellite services required for weather forecasting, monitoring, etc.
    [Show full text]
  • Web Map Tile Services Tiny Tile Server Bachelor Thesis
    Web Map Tile Services Tiny Tile Server Bachelor Thesis Department of Computer Science University of Applied Science Rapperswil Spring Term 2013 Author: Carmen Campos Bordons Advisor: Prof. Stefan Keller, HSR Project Partner: Klokan Technologies, Baar External Co-Examiner: Claude Eisenhut, Burgdorf Internal Co-Examiner: Prof. Dr. Andreas Rinkel, HSR Abstract Tiny Tile Server is a Python server that permits the user to display local MBTiles maps on the internet. It extracts the data from the SQLite database where the map information is stored in tables containing all the tiles, UTFGrid and metadata. The tiles are the map images, smaller than the screen for better performance. The UTFGrid is some extra information related with points in the map that appears in an infobox when the user interact with these points. The metadata is the information about the map: name, description, bounds, legend, center, minzoom, maxzoom. Tiny Tile Server shows the tiles composing the map on a website and the UTFGrid data on top of the tiles. It can also be used to show the getCapabilities information from Web Map Tile Service in XML format extracted by the metadata table. Tiny Tile Server supports two protocols to access the tiles: direct access with XYZ tile request to tiles in a directory or to MBTiles database; or Web Map Tile Service from a MBTiles database. The server is a part in a website whose purpose is to show how it works and provide templates for the user who wants to employ it, so he will not need to have programming knowledge in order to use Tiny Tile Server, just to follow a simple installation tutorial.
    [Show full text]
  • Bhuvan ISRO’S Geoportal
    bhuvan ISRO’s Geoportal www.bhuvan.nrsc.gov.in One-stop versatile Web based Earth Observation Know Bhuvan Data Products & Services What is it? dissemination for obtaining interoperable OGC web services Bhuvan (means Earth in Sanskrit) is a Geoportal of ISRO, to evince the Indian Earth Observation capabilities from the · Different supporting components like – interactive videos, Indian Remote Sensing (IRS) series of satellites. virtual tour, discussion forum, help documents are also available. It is an interactive versatile Earth-Browser which showcases multi-sensor, mutli-platform and multi- · Registration is optional in Bhuvan. However, some features temporal images with capabilities to overlay thematic require registration. Users can use the Central information, interpreted from such imagery as a vector Authentication Service of Bhuvan for creating an account Societal Applications layer, along with near real-time information from Automatic on Bhuvan towards single sign-on (SSO). Registered users Interactive 3D Environment Weather Stations (AWS), Potential Fishing Zone (PFZ) are having privilege to share and download the data, information, disaster support related information like forest collaborate with other Bhuvanites, discussions in Forum fire alerts, periodic agricultural drought assessment etc. etc. What can it do? A plug-in is to be downloaded and installed to access Bhuvan 3D (for first time use) Ranging from visualisation, Bhuvanites can also download IRS data products and consume thematic datasets as Why is it significant?
    [Show full text]
  • Geographical Information System in Web Applica- Tion
    Zhipeng Jiang GEOGRAPHICAL INFORMATION SYSTEM IN WEB APPLICA- TION Developing Web Application to Serve Spatial Data to Users Thesis CENTRIA UNIVERSITY OF APPLIED SCIENCES Information Technology January 2020 ABSTRACT Centria University Date Author of Applied Sciences January 2020 Zhipeng Jiang Degree programme Information Technology Name of thesis GEOGRAPHICAL INFORMATION SYSTEM IN WEB APPLICATION. Developing Web Applica- tion to serve spatial data to users Instructor Pages Jari Isohanni 29 + 7 Supervisor Jari Isohanni This study is aimed to give a basic understanding of web GIS from a technological point of view. Also, how the approach is useable for other technologies. The technologies including JavaScript API for Google Maps and ArcGIS were tested with demonstration. Additionally, the open-sourced solu- tions are discussed with the self-hosted server, PostgreSQL database. And with Openlayers as the front-end JavaScript library to present the geospatial data. During the study, in the Google Maps API demonstration, the GeoJson data is made by geojson.io and attitude data of the spatial data is called with the API method, to create popup windows for each city area. Another layer that represents specific location for the school, park, and hospital at Kokkola area is marked out with Google Maps API marker and it is overlaid, on top of that city area layer. The same spatial data and its related attribute data are implemented once more with ArcGIS JavaScript API to find out what is the difference between these two technologies. The result is that the Google Maps JavaScript API does not need to have a popup template to have the popup functionality working, instead of popup template, in the Google Maps JavaScript API, the click event listener is created to handle the popup event.
    [Show full text]
  • INDIA JANUARY 2018 – June 2020
    SPACE RESEARCH IN INDIA JANUARY 2018 – June 2020 Presented to 43rd COSPAR Scientific Assembly, Sydney, Australia | Jan 28–Feb 4, 2021 SPACE RESEARCH IN INDIA January 2018 – June 2020 A Report of the Indian National Committee for Space Research (INCOSPAR) Indian National Science Academy (INSA) Indian Space Research Organization (ISRO) For the 43rd COSPAR Scientific Assembly 28 January – 4 Febuary 2021 Sydney, Australia INDIAN SPACE RESEARCH ORGANISATION BENGALURU 2 Compiled and Edited by Mohammad Hasan Space Science Program Office ISRO HQ, Bengalure Enquiries to: Space Science Programme Office ISRO Headquarters Antariksh Bhavan, New BEL Road Bengaluru 560 231. Karnataka, India E-mail: [email protected] Cover Page Images: Upper: Colour composite picture of face-on spiral galaxy M 74 - from UVIT onboard AstroSat. Here blue colour represent image in far ultraviolet and green colour represent image in near ultraviolet.The spiral arms show the young stars that are copious emitters of ultraviolet light. Lower: Sarabhai crater as imaged by Terrain Mapping Camera-2 (TMC-2)onboard Chandrayaan-2 Orbiter.TMC-2 provides images (0.4μm to 0.85μm) at 5m spatial resolution 3 INDEX 4 FOREWORD PREFACE With great pleasure I introduce the report on Space Research in India, prepared for the 43rd COSPAR Scientific Assembly, 28 January – 4 February 2021, Sydney, Australia, by the Indian National Committee for Space Research (INCOSPAR), Indian National Science Academy (INSA), and Indian Space Research Organization (ISRO). The report gives an overview of the important accomplishments, achievements and research activities conducted in India in several areas of near- Earth space, Sun, Planetary science, and Astrophysics for the duration of two and half years (Jan 2018 – June 2020).
    [Show full text]
  • Downloads (Specific Data Products) Through Bhuvan and Oceansat-2 Web Portals
    Annual Report 2015 - 2016 Citizens’ Charter Of Department Of Space Department of Space (DOS) has the primary responsibility of promoting the development of space science, technology and applications towards achieving self-reliance and facilitating in all round development of the nation. With this basic objective, DOS has evolved the following programmes: • Indian National Satellite (INSAT) programme for telecommunication, television broadcasting, meteorology, developmental education, societal applications such as telemedicine, tele-education, tele-advisories and similar such services • Indian Remote Sensing (IRS) satellite programme for management of natural resources and various developmental projects across the country using space based imagery • Indigenous capability for design and development of satellite and associated technologies for communications, navigation, remote sensing and space sciences • Design and development of launch vehicles for access to space and orbiting INSAT/GSAT, IRS and IRNSS satellites and space science missions • Research and development in space sciences and technologies as well as application programmes for national development The Department of Space is committed to: • Carrying out research and development in satellite and launch vehicle technology with a goal to achieve total self reliance • Provide national space infrastructure for telecommunications and broadcasting needs of the country • Provide satellite services required for weather forecasting, monitoring, etc. • Provide satellite imagery required
    [Show full text]
  • Indian Remote Sensing Satellites (IRS)
    Topic: Indian Remote Sensing Satellites (IRS) Course: Remote Sensing and GIS (CC-11) M.A. Geography (Sem.-3) By Dr. Md. Nazim Professor, Department of Geography Patna College, Patna University Lecture-5 Concept: India's remote sensing program was developed with the idea of applying space technologies for the benefit of human kind and the development of the country. The program involved the development of three principal capabilities. The first was to design, build and launch satellites to a sun synchronous orbit. The second was to establish and operate ground stations for spacecraft control, data transfer along with data processing and archival. The third was to use the data obtained for various applications on the ground. India demonstrated the ability of remote sensing for societal application by detecting coconut root-wilt disease from a helicopter mounted multispectral camera in 1970. This was followed by flying two experimental satellites, Bhaskara-1 in 1979 and Bhaskara-2 in 1981. These satellites carried optical and microwave payloads. India's remote sensing programme under the Indian Space Research Organization (ISRO) started off in 1988 with the IRS-1A, the first of the series of indigenous state-of-art operating remote sensing satellites, which was successfully launched into a polar sun-synchronous orbit on March 17, 1988 from the Soviet Cosmodrome at Baikonur. It has sensors like LISS-I which had a spatial resolution of 72.5 meters with a swath of 148 km on ground. LISS-II had two separate imaging sensors, LISS-II A and LISS-II B, with spatial resolution of 36.25 meters each and mounted on the spacecraft in such a way to provide a composite swath of 146.98 km on ground.
    [Show full text]
  • Comparison of Tile Server Design Approaches for 3-D Geo-Visualization
    COMPARISON OF TILE SERVER DESIGN APPROACHES FOR 3-D GEO-VISUALIZATION Tao Wanga, Jianhua Gongb aState Key Laboratory of Remote Sensing Science ,Institute of remote sensing applications chinese academy of sciences - [email protected] bState Key Laboratory of Remote Sensing Science ,Institute of remote sensing applications chinese academy of sciences - [email protected] Commission VI, WG VI/4 KEY WORDS: Tile server, Wms, Visualization ABSTRACT: In order to display large-scale maps on the Internet, it is necessary to divide the huge spatial data into small tiles. And servers are needed to support the display across network. There are two kinds of tile server. One is tile server, which organizes the pre-rendered tiles on the server. Another one is MapServer, which generates the display tile. In this article, different servers are compared in efficiency. The open source software world wind is used to analyze the capacity of the two kinds of servers, and experiment results show that tile server spent more time than Mapserver, and it is suggested the Mapserver may have been optimized. 1. INTRODUCTION After researching Google Earth Enterprise, which includes Google Earth Fusion, and MapCruncher for Virtual Earth, we’re When displaying large-scale maps on personal and mobile finding out that the ability to serve tiles on demand that are computers, it is necessary to divide the huge spatial data into rendered at the time of the request, and overlay these tiles on a small tiles. There are many important characteristics of the Virtual Earth or Google Maps base map is unique. Google Earth tileset file format.
    [Show full text]
  • Radiance and TOA Reflectance Products from IMS-1: Hyperspectral Imager
    (updated on 08-Feb-2013) Radiance and TOA Reflectance Products from IMS-1: Hyperspectral Imager FOR BHUVAN NOEDA S D A P S A NATIONAL REMOTE SENSING CENTRE Introduction IMS-1 previously referred to as TWSAT (Third World Satellite), is a low-cost microsatellite imaging mission of ISRO (Indian Space Research Organization). A launch of IMS-1 as a secondary payload on a PSLV vehicle (PSLV-C9) took place on April 28, 2008 from the SDSC-SHAR launch site (Sriharikota, India) of ISRO. The primary payload on this flight was CartoSat-2A (launch mass of 690 kg), an Indian military high-resolution panchromatic imaging satellite (based on CartoSat-2 of ISRO). IMS-1 is the first satellite in the micro satellite series envisaged to provide satellite platform within 100 kg class of payloads for earth images, space science, atmosphere, ocean studies etc. It carries two payloads viz., Four Band Multi Spectral CCD Camera (Mx) & Hyper Spectral Imager (HYSI). This document describes Radiance and TOA Reflectance Products realized using Hyperspectral Imager (HYSI) sensor. This is a value added product from HYSI, whose spectral bands are originally designed for atmospheric, land and ocean color retrieval applications. In this document, a brief processing scheme for realizing HYSI products at a spatial resolution of 500 meters (0.005 degree to be precise) is presented. Orbit Specifications of IMS-1: Orbit: Polar sun-synchronous Orbital Altitude: 632.141 km Semi Major Axis: 7010.28 km Eccentricity: 0.001 Inclination: 97.928 degree Local time: 09:30 AM (descending node) Orbits/day: 14 Repeat cycle: 325 orbits in 22 days Period: 97minutes Path to Path separation: 123.31 km at equator Payloads The Multi-spectral (MX) CCD camera is a 4- Band camera with ground resolution of 37 meters and swath of 151 Km enabling real time imaging and its data reception in near real time and data product generation by the users.
    [Show full text]