Received: 5 June 2019 Accepted: 15 October 2019 DOI: 10.1002/hyp.13618 RESEARCH ARTICLE Modelling inter-annual and spatial variability of ice cover in a temperate lake with complex morphology Irene Caramatti1 | Frank Peeters1 | David Hamilton2 | Hilmar Hofmann1 1University of Konstanz, Konstanz, Germany Abstract 2Australian Rivers Institute, Griffith University, Brisbane, Queensland, Australia The formation of ice cover on lakes alters heat and energy transfer with the water column. The fraction of surface area covered by ice and the timing of ice-on and ice- Correspondence Irene Caramatti, University of Konstanz, off therefore affects hydrodynamics and the seasonal development of stratification Konstanz, Germany. and related ecosystem processes. Multi-year model simulations of temperate lake Email:
[email protected] ecosystems that freeze partially or completely therefore require simulation of the for- Funding information mation and duration of ice cover. Here we present a multi-year hydrodynamic simula- Deutsche Forschungsgemeinschaft, Grant/ Award Number: 298726046/GRK2272/A4 tion of an alpine lake with complex morphology (Lower Lake Constance, LLC) using the three-dimensional (3D) model Aquatic Ecosystem Model (AEM3D) over a period of 9 years. LLC is subdivided into three basins (Gnadensee, Zeller See and Rheinsee) which differ in depth, morphological features, hydrodynamic conditions and ice cover phenology and thickness. Model results were validated with field observations and additional information on ice cover derived from a citizen science approach using information from social media. The model reproduced the occurrence of thin ice as well as its inter-annual variability and differentiated the frequency and extent of ice cover between the three sub-basins.