Global Challenges

Total Page:16

File Type:pdf, Size:1020Kb

Global Challenges 6–10 JANUARY 2020 | ORLANDO, FL DRIVING AEROSPACE SOLUTIONS FOR GLOBAL CHALLENGES What’s going on in Page 25 aiaa.org/scitech #aiaaSciTech From the forefront of innovation to the frontlines of the mission. No matter the mission, Lockheed Martin uses a proven approach: engineer with purpose, innovate with passion and define the future. We take time to understand our customer’s challenges and provide solutions that help them keep the world secure. Their mission defines our purpose. Learn more at lockheedmartin.com. © 2019 Lockheed Martin Corporation FG19-23960_002 AIAA sponsorship.indd 1 12/10/19 3:20 PM Live: n/a Trim: H: 8.5in W: 11in Job Number: FG18-23208_002 Bleed: .25 all around Designer: Kevin Gray Publication: AIAA Sponsorship Gutter: None Communicator: Ryan Alford Visual: Male and female in front of screens. Resolution: 300 DPI Due Date: 12/10/19 Country: USA Density: 300 Color Space: CMYK NETWORK NAME: SciTech ON-SITE Wi-Fi From the forefront of innovation › PASSWORD: 2020scitech to the frontlines of the mission. CONTENTS Technical Program Committee .................................................................4 Welcome ........................................................................................................5 Sponsors and Supporters ..........................................................................7 Forum Overview ...........................................................................................8 Pre-Forum Activities .................................................................................. 11 Student Welcome Day Activities ........................................................... 12 Plenary & Forum 360 Sessions ............................................................... 13 Rising Leaders in Aerospace ................................................................... 17 Special Programming ............................................................................... 18 Recognition and Lectures ........................................................................ 19 Networking Events ................................................................................... 23 Exposition Hall .......................................................................................... 24 the HUB ....................................................................................................... 25 Exposition Hall Floor Plan ...................................................................... 26 Exhibitors by Booth Number ..................................................................27 Exhibitors .................................................................................................... 28 General Information ..................................................................................37 Author and Session Chair Information ................................................ 39 Committee Meetings ...............................................................................40 Detailed Sessions ...................................................................................... 45 Author and Session Chair Index ...........................................................192 Venue Map ................................................................................................. 212 No matter the mission, Lockheed Martin uses a proven approach: engineer with purpose, innovate with passion and define the future. twitter.com/aiaa (#aiaaSciTech) flickr.com/aiaaevents We take time to understand our customer’s challenges and provide solutions that help them keep the world secure. Their mission defines our purpose. facebook.com/AIAAfan instagram.com/AIAAerospace Learn more at lockheedmartin.com. youtube.com/AIAATV livestream.com/AIAAvideo/scitech2020 linkedin.com/companies/aiaa Join the Q&A at aiaa.cnf.io American Institute of Aeronautics and Astronautics 12700 Sunrise Valley Drive, Suite 200, Reston, VA 20191-5807 703.264.7500 or 800.639.AIAA (2422) | Fax: 703.264.7657 [email protected] | aiaa.org The American Institute of Aeronautics and Astronautics (AIAA) is the world’s largest aerospace technical society. With nearly 30,000 individual members from 85 countries, and 95 corporate members, AIAA brings together industry, academia, and government to advance engineering and science in aviation, space, and defense. For more information, visit aiaa.org, or follow us on Twitter @AIAA. © 2019 Lockheed Martin Corporation aiaa.org/scitech 3 FG19-23960_002 AIAA sponsorship.indd 1 12/10/19 3:20 PM Live: n/a Trim: H: 8.5in W: 11in Job Number: FG18-23208_002 Bleed: .25 all around Designer: Kevin Gray Publication: AIAA Sponsorship Gutter: None Communicator: Ryan Alford Visual: Male and female in front of screens. Resolution: 300 DPI Due Date: 12/10/19 Country: USA Density: 300 Color Space: CMYK TECHNICAL PROGRAM COMMITTEE FORUM TECHNICAL CHAIRS GAS TURBINE ENGINES SMALL SATELLITES Brett Bednarcyk, NASA Glenn Research Gaurav Kumar, Convergent Science Inc. Jeremy Straub, North Dakota State University Center GREEN ENGINEERING SOCIETY AND AEROSPACE Haoxiang Luo, Vanderbilt University Tarek Abdel-Salam, East Carolina University TECHNOLOGY Mahyar Malekpour, NASA Langley Matthew Kuester, Virginia Polytechnic Research Center GROUND TESTING Institute and State University Wesley M. Cobb FORUM DEPUTY TECHNICAL CHAIRS SOFTWARE Paul Taylor, Gulfstream Aerospace GUIDANCE, NAVIGATION, AND CONTROL Jim Murphy, NASA Ames Research Center Corporation John M. Carson III, NASA Johnson Space Center Brian McGrath, Johns Hopkins University SPACE EXPLORATION Applied Physics Laboratory Surendra Sharma, NASA Ames Research HIGH-SPEED AIR-BREATHING Center Thomas Lombaerts, NASA Ames Research PROPULSION Center Bayindir H. Saracoglu, von Karman SPACE FLIGHT MECHANICS Institute for Fluid Dynamics TECHNICAL DISCIPLINE CHAIRS Jennifer Hudson, Western Michigan University ADAPTIVE STRUCTURES HISTORY Roeland De Breuker, Delft University of Richard Hallion SPACE OPERATIONS AND SUPPORT Technology Jillian Redfern, Southwest Research INFORMATION AND COMMAND Institute AEROACOUSTICS AND CONTROL SYSTEMS Jason Anderson, Naval Surface Warfare Jimmie McEver, Johns Hopkins University SPACECRAFT STRUCTURES Applied Physics Laboratory Center, Carderock Division Hazem Soliman, SOLIENG, Inc. INLETS, NOZZLES, AND PROPULSION AERODYNAMIC MEASUREMENT STRUCTURAL DYNAMICS SYSTEMS INTEGRATION TECHNOLOGY Eric L. Blades, ATA Engineering, Inc. Taka Sakaue, University of Notre Dame Darrell Crowe, Air Force Research Laboratory STRUCTURES INTELLIGENT SYSTEMS AEROSPACE EDUCATION Vipul Ranatunga, Air Force Research , Massachusetts Institute of Raymond P. LeBeau Jr., Saint Louis Julie A. Shah Laboratory University Technology SURVIVABILITY MATERIALS AIRCRAFT DESIGN William Schonberg, Missouri University of , NASA Glenn Research Center Imon Chakraborty, Auburn University Evan Pineda Science & Technology MESHING, VISUALIZATION, AND APPLIED AERODYNAMICS SYSTEMS ENGINEERING COMPUTATIONAL ENVIRONMENTS Jim Coder, University of Tennessee John C. Hsu, California State University, , Pointwise, Inc. Nick Wyman Long Beach ATMOSPHERIC AND SPACE ENVIRONMENTS MODELING AND SIMULATION TECHNOLOGIES TERRESTRIAL ENERGY , Air Force Research Dale C. Ferguson S.A. Sherif, University of Florida Laboratory James B. Pettengill, The Boeing Company THERMOPHYSICS ATMOSPHERIC FLIGHT MECHANICS MULTIDISCIPLINARY DESIGN OPTIMIZATION William Tsai, CSU Maritime Academy Zachary R. Putnam, University of Illinois at Urbana-Champaign Josh Deaton, Air Force Research Laboratory UNIQUE AND TRANSFORMATIONAL FLIGHT COMMUNICATIONS SYSTEMS NON-DETERMINISTIC APPROACHES Anthony Linn, A. B. Linn P.E. Daniel Raible, NASA Glenn Research Center Benjamin Smarslok, Air Force Research Laboratory UNMANNED SYSTEMS COMPUTER SYSTEMS PLASMADYNAMICS AND LASERS Michael Logan, NASA Langley Research Rick Tuggle, PeopleTec Chris Limbach, Texas A&M University Center DESIGN ENGINEERING PRESSURE GAIN COMBUSTION WIND ENERGY Kyle Benson, Raytheon Missile Systems Kareem Ahmed, University of Central Florida Eliot Quon, National Renewable Energy Laboratory DIGITAL AVIONICS PROPELLANTS AND COMBUSTION Maarten Uijt de Haag, Technical University Adam Steinberg, Georgia Institute of of Berlin Technology YOUNG PROFESSIONAL CHAIR DIGITAL ENGINEERING Tejas Girish Puranik, Georgia Institute of SENSOR SYSTEMS AND INFORMATION Technology Mat French, Rolls-Royce FUSION Kent R. Engebretson, Lockheed Martin FLUID DYNAMICS Corporation Albert Medina, Air Force Research Laboratory 4 aiaa.org/scitech WELCOME TO The 2020 AIAA SciTech Forum Executive Steering Committee welcomes you to Orlando! We have worked hard this past year curating exciting and thought-provoking content around the forum theme, Driving Aerospace Solutions for Global Challenges. We hope these industry leaders, topics, and discussions inspire you. Make it a great week! EXECUTIVE STEERING COMMITTEE 2020 AIAA SciTech Forum Michael Gazarik Laurette Lahey Michele Miller Scott Palo Ball Aerospace The Boeing Company Ball Aerospace University of Colorado Boulder (Forum General Chair) (Deputy Forum 360 Chair) Nelson Pedreiro Amy Pritchett Rickey Shyne Anthony Washburn Lockheed Martin Space Pennsylvania State University NASA Glenn Research Center NASA Langley Research Center (Forum 360 Chair) aiaa.org/scitech 5 DISCOVERING THE NEXT ADVENTURE. The human spirit is limitless. When we strive beyond the unknowns of today, we meet tomorrow with courage. Boeing is honored to salute those who look to the future and face it fiercely. 6 aiaa.org/scitech SPONSORS AND SUPPORTERS
Recommended publications
  • Autonomous Onboard Science Data Analysis for Comet Missions
    AUTONOMOUS ONBOARD SCIENCE DATA ANALYSIS FOR COMET MISSIONS David R. Thompson(1), Daniel Q. Tran(1), David McLaren(1), Steve A. Chien(1), Larry Bergman(1), Rebecca Castaño(1), Richard Doyle(1), Tara Estlin(1), Matthew Lenda(1), (1) Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr. Pasadena, CA 91109, USA Email: [email protected], all others [email protected] Figure 1. Plume detection by identifying the nucleus. Left: computational edge detection. Center: a convex hull of edge points. Right: bright areas outside the nucleus are plumes. Image credit: NASA/JPL/UMD. ABSTRACT active geologic processes including scarps and outflows [1]. Its surface undergoes continuous modification, Coming years will bring several comet rendezvous with visible change during the years between two missions. The Rosetta spacecraft arrives at Comet flybys. The EPOXI flyby of comet Hartley 2 shows 67P/Churyumov–Gerasimenko in 2014. Subsequent skyscraper-size spires, flat featureless plains that outgas rendezvous might include a mission such as the H O, regions of rough and mottled texture, bands of proposed Comet Hopper with multiple surface landings, 2 various shapes, and diverse surface albedo. Comets’ as well as Comet Nucleus Sample Return (CNSR) and active areas range from 10-90%, changing over time Coma Rendezvous and Sample Return (CRSR). These and distance to the sun. They manifest as both localized encounters will begin to shed light on a population that, jets and diffuse regions (Figure 1). Still more exotic, despite several previous flybys, remains mysterious and recently discovered “active asteroids” suggest that poorly understood.
    [Show full text]
  • Concorde Is a Museum Piece, but the Allure of Speed Could Spell Success
    CIVIL SUPERSONIC Concorde is a museum piece, but the allure Aerion continues to be the most enduring player, of speed could spell success for one or more and the company’s AS2 design now has three of these projects. engines (originally two), the involvement of Air- bus and an agreement (loose and non-exclusive, by Nigel Moll but signed) with GE Aviation to explore the supply Fourteen years have passed since British Airways of those engines. Spike Aerospace expects to fly a and Air France retired their 13 Concordes, and for subsonic scale model of the design for the S-512 the first time in the history of human flight, air trav- Mach 1.5 business jet this summer, to explore low- elers have had to settle for flying more slowly than speed handling, followed by a manned two-thirds- they used to. But now, more so than at any time scale supersonic demonstrator “one-and-a-half to since Concorde’s thunderous Olympus afterburn- two years from now.” Boom Technology is working ing turbojets fell silent, there are multiple indi- on a 55-seat Mach 2.2 airliner that it plans also to cations of a supersonic revival, and the activity offer as a private SSBJ. NASA and Lockheed Martin appears to be more advanced in the field of busi- are encouraged by their research into reducing the ness jets than in the airliner sector. severity of sonic booms on the surface of the planet. www.ainonline.com © 2017 AIN Publications. All Rights Reserved. For Reprints go to Shaping the boom create what is called an N-wave sonic boom: if The sonic boom produced by a supersonic air- you plot the pressure distribution that you mea- craft has long shaped regulations that prohibit sure on the ground, it looks like the letter N.
    [Show full text]
  • Replace This with the Actual Title Using All Caps
    RADAR POLARIZATION PROPERTIES AND LUNAR SECONDARY CRATERING A Dissertation Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Kassandra Martin-Wells January 2013 © 2013 Kassandra Martin-Wells RADAR POLARIZATION PROPERTIES AND LUNAR SECONDARY CRATERING Kassandra Martin-Wells, Ph. D. Cornell University 2013 Age dating of planetary surfaces relies on an accurate correlation between lunar crater size-frequency distributions and radiometric ages of samples returned from the Moon. For decades, it has been assumed that cratering records are dominated by “primary” impacts of interplanetary bolides [McEwen et al., 2005]. Unlike primary craters, secondary craters, which originate as ejecta from large primary events, occur in large clusters in both space and time. It was long believed that the majority of secondary craters formed at low velocities near their parent crater, resulting in a class of craters with morphologies which are easily distinguished from primary craters of a similar size [McEwen et al., 2005]. However, recent work by Bierhaus et al. (2005), McEwen et al. (2005) argues that cratering records in the Solar System may be strongly contaminated by hard-to-identify secondary craters. They advise caution when relying on counts at small diameters [McEwen et al., 2005; Bierhaus et al., 2005]. Despite the difficulties, something must be done to improve the accuracy of age dates derived from size-frequency distributions of small craters. In this thesis, a method of secondary crater identification based on radar circular polarization properties is presented. The radar polarization and photographic studies of lunar secondary craters in this thesis reveal that secondary cratering is a widespread phenomenon on the lunar surface.
    [Show full text]
  • Gnc 2021 Abstract Book
    GNC 2021 ABSTRACT BOOK Contents GNC Posters ................................................................................................................................................... 7 Poster 01: A Software Defined Radio Galileo and GPS SW receiver for real-time on-board Navigation for space missions ................................................................................................................................................. 7 Poster 02: JUICE Navigation camera design .................................................................................................... 9 Poster 03: PRESENTATION AND PERFORMANCES OF MULTI-CONSTELLATION GNSS ORBITAL NAVIGATION LIBRARY BOLERO ........................................................................................................................................... 10 Poster 05: EROSS Project - GNC architecture design for autonomous robotic On-Orbit Servicing .............. 12 Poster 06: Performance assessment of a multispectral sensor for relative navigation ............................... 14 Poster 07: Validation of Astrix 1090A IMU for interplanetary and landing missions ................................... 16 Poster 08: High Performance Control System Architecture with an Output Regulation Theory-based Controller and Two-Stage Optimal Observer for the Fine Pointing of Large Scientific Satellites ................. 18 Poster 09: Development of High-Precision GPSR Applicable to GEO and GTO-to-GEO Transfer ................. 20 Poster 10: P4COM: ESA Pointing Error Engineering
    [Show full text]
  • El Espanol Y El Japones
    神戸市外国語大学 学術情報リポジトリ El espanol y el japones タイトル(その他言語 イスパニア語と日本語 ) 著者 福嶌 教隆 journal or Monograph series in Foreign studies publication title number 53 page range 1-188 year 2014-03-01 URL http://id.nii.ac.jp/1085/00001678/ Creative Commons : 表示 - 非営利 - 改変禁止 http://creativecommons.org/licenses/by-nc-nd/3.0/deed.ja 1 NORITAKA FUKUSHIMA EL ESPAÑOL Y EL JAPONÉS Universidad de Estudios Extrranjeros de Kobe Kobe, Japón 2014 1 2 PUBLICACIÓN: marzo de 2014 TÍTULO: El español y el japonés (Tomo LIII de la Serie monográfica en Estudios Extranjeros) AUTOR: Noritaka FUKUSHIMA Publicado por el Instituto de Investigación de la Universidad de Estudios Extranjeros de Kobe. Gakuen-Higashi-machi 9-1, Nishi-ku, Kobe (651-2187), Japón. http://www.kobe-cufs.ac.jp/ ISSN: 1345-8604 2 Índice 3 ÍNDICE Índice ------------------------------------------------------------------------------------------ 3 Prólogo ---------------------------------------------------------------------------------------- 6 Primera parte. El modo y la modalidad ----------------------------------------------- 9 Capítulo 1 La órbita de los estudios contrastivos sobre la modalidad en español y japonés ----------------------------------------------------------------------- 10 1.1. Introducción ------------------------------------------------------------------------ 10 1.2. Estudios del “chinjutsu” y la modalidad del japonés -------------------------- 11 1.3. Estudios sobre la modalidad en español y a nivel universal ----------------- 14 1.4. Estudios contrastivos I. Aproximación directa ---------------------------------
    [Show full text]
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • Agile Science Operations David R
    Agile Science Operations David R. Thompson Machine Learning and Instrument Autonomy Jet Propulsion Laboratory, California Institute of Technology Engineering Resilient Space Systems Keck Institute Study, July 31 2012. A portion of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Copyright 2012 California Institute of Technology. All Rights Reserved; U. S. Government Support Acknowledged. Image: Hartley 2 (EPOXI), NASA/JPL/UMD Jet Propulsion Laboratory / California Institute of Technology / Solar System Exploration Directorate 1 Agenda Motivation: science at primitive bodies Critical Path Analysis and reaction time A survey of onboard science data analysis Case study – how could onboard data analysis impact missions? Image: Hartley 2 (EPOXI), NASA/JPL/UMD Jet Propulsion Laboratory / California Institute of Technology / Solar System Exploration Directorate 2 Primitive bodies Jet Propulsion Laboratory / California Institute of Technology / Solar System Exploration Directorate 3 Typical encounter (Lutetia 21, Rosetta) Jet Propulsion Laboratory / California Institute of Technology / Solar System Exploration Directorate 4 Primitive bodies: key measurements Reproduced from Castillo-Rogez, Pavone, Nesnas, Hoffman, “Expected Science Return of Spatially-Extended In-Situ Exploration at Small Solar System Bodies,” IEEE Aerospace 2012. Jet Propulsion Laboratory / California Institute of Technology / Solar System Exploration Directorate
    [Show full text]
  • Extraordinary Rocks from the Peak Ring of the Chicxulub Impact Crater: P-Wave Velocity, Density, and Porosity Measurements from IODP/ICDP Expedition 364 ∗ G.L
    Earth and Planetary Science Letters 495 (2018) 1–11 Contents lists available at ScienceDirect Earth and Planetary Science Letters www.elsevier.com/locate/epsl Extraordinary rocks from the peak ring of the Chicxulub impact crater: P-wave velocity, density, and porosity measurements from IODP/ICDP Expedition 364 ∗ G.L. Christeson a, , S.P.S. Gulick a,b, J.V. Morgan c, C. Gebhardt d, D.A. Kring e, E. Le Ber f, J. Lofi g, C. Nixon h, M. Poelchau i, A.S.P. Rae c, M. Rebolledo-Vieyra j, U. Riller k, D.R. Schmitt h,1, A. Wittmann l, T.J. Bralower m, E. Chenot n, P. Claeys o, C.S. Cockell p, M.J.L. Coolen q, L. Ferrière r, S. Green s, K. Goto t, H. Jones m, C.M. Lowery a, C. Mellett u, R. Ocampo-Torres v, L. Perez-Cruz w, A.E. Pickersgill x,y, C. Rasmussen z,2, H. Sato aa,3, J. Smit ab, S.M. Tikoo ac, N. Tomioka ad, J. Urrutia-Fucugauchi w, M.T. Whalen ae, L. Xiao af, K.E. Yamaguchi ag,ah a University of Texas Institute for Geophysics, Jackson School of Geosciences, Austin, USA b Department of Geological Sciences, Jackson School of Geosciences, Austin, USA c Department of Earth Science and Engineering, Imperial College, London, UK d Alfred Wegener Institute Helmholtz Centre of Polar and Marine Research, Bremerhaven, Germany e Lunar and Planetary Institute, Houston, USA f Department of Geology, University of Leicester, UK g Géosciences Montpellier, Université de Montpellier, France h Department of Physics, University of Alberta, Canada i Department of Geology, University of Freiburg, Germany j SM 312, Mza 7, Chipre 5, Resid.
    [Show full text]
  • Arxiv:2012.15102V2 [Hep-Ph] 13 May 2021 T > Tc
    Confinement of Fermions in Tachyon Matter at Finite Temperature Adamu Issifu,1, ∗ Julio C.M. Rocha,1, y and Francisco A. Brito1, 2, z 1Departamento de F´ısica, Universidade Federal da Para´ıba, Caixa Postal 5008, 58051-970 Jo~aoPessoa, Para´ıba, Brazil 2Departamento de F´ısica, Universidade Federal de Campina Grande Caixa Postal 10071, 58429-900 Campina Grande, Para´ıba, Brazil We study a phenomenological model that mimics the characteristics of QCD theory at finite temperature. The model involves fermions coupled with a modified Abelian gauge field in a tachyon matter. It reproduces some important QCD features such as, confinement, deconfinement, chiral symmetry and quark-gluon-plasma (QGP) phase transitions. The study may shed light on both light and heavy quark potentials and their string tensions. Flux-tube and Cornell potentials are developed depending on the regime under consideration. Other confining properties such as scalar glueball mass, gluon mass, glueball-meson mixing states, gluon and chiral condensates are exploited as well. The study is focused on two possible regimes, the ultraviolet (UV) and the infrared (IR) regimes. I. INTRODUCTION Confinement of heavy quark states QQ¯ is an important subject in both theoretical and experimental study of high temperature QCD matter and quark-gluon-plasma phase (QGP) [1]. The production of heavy quarkonia such as the fundamental state ofcc ¯ in the Relativistic Heavy Iron Collider (RHIC) [2] and the Large Hadron Collider (LHC) [3] provides basics for the study of QGP. Lattice QCD simulations of quarkonium at finite temperature indicates that J= may persists even at T = 1:5Tc [4] i.e.
    [Show full text]
  • Imagining Outer Space Also by Alexander C
    Imagining Outer Space Also by Alexander C. T. Geppert FLEETING CITIES Imperial Expositions in Fin-de-Siècle Europe Co-Edited EUROPEAN EGO-HISTORIES Historiography and the Self, 1970–2000 ORTE DES OKKULTEN ESPOSIZIONI IN EUROPA TRA OTTO E NOVECENTO Spazi, organizzazione, rappresentazioni ORTSGESPRÄCHE Raum und Kommunikation im 19. und 20. Jahrhundert NEW DANGEROUS LIAISONS Discourses on Europe and Love in the Twentieth Century WUNDER Poetik und Politik des Staunens im 20. Jahrhundert Imagining Outer Space European Astroculture in the Twentieth Century Edited by Alexander C. T. Geppert Emmy Noether Research Group Director Freie Universität Berlin Editorial matter, selection and introduction © Alexander C. T. Geppert 2012 Chapter 6 (by Michael J. Neufeld) © the Smithsonian Institution 2012 All remaining chapters © their respective authors 2012 All rights reserved. No reproduction, copy or transmission of this publication may be made without written permission. No portion of this publication may be reproduced, copied or transmitted save with written permission or in accordance with the provisions of the Copyright, Designs and Patents Act 1988, or under the terms of any licence permitting limited copying issued by the Copyright Licensing Agency, Saffron House, 6–10 Kirby Street, London EC1N 8TS. Any person who does any unauthorized act in relation to this publication may be liable to criminal prosecution and civil claims for damages. The authors have asserted their rights to be identified as the authors of this work in accordance with the Copyright, Designs and Patents Act 1988. First published 2012 by PALGRAVE MACMILLAN Palgrave Macmillan in the UK is an imprint of Macmillan Publishers Limited, registered in England, company number 785998, of Houndmills, Basingstoke, Hampshire RG21 6XS.
    [Show full text]
  • Selection of Processing Tomato Genotypes Resistant to Two Spotted Spider Mite
    Scientific communication VALADARES, RN; MELO, RA; SARINHO, IVF; OLIVEIRA, NS; ROCHA, FAT; SILVA, JW; MENEZES, D. 2018. Genetic diversity in accessions of melon belonging to momordica group. Horticultura Brasileira 36: 253258. DOI: http://dx.doi.org/10.1590/S0102-053620180218 Genetic diversity in accessions of melon belonging to momordica group Ricardo N Valadares1; Roberto A Melo1; Isabel VF Sarinho1; Natália S Oliveira2; Fernando AT Rocha1; José W Silva1; Dimas Menezes1 1Universidade Federal Rural de Pernambuco (UFRPE), Recife-PE, Brazil; [email protected] (corresponding author); [email protected]; [email protected]; [email protected]; [email protected]; dimasmenezes@ superig.com.b; 2Universidade Federal de Lavras (UFLA), Lavras-MG, Brazil; [email protected] ABSTRACT RESUMO The genetic divergence of melon genotypes belonging to Divergência genética em acessos de melão do grupo momordica group, collected in five Brazilian States, was estimated, momordica and the relative contribution of the morphological characters was A divergência genética de genótipos de melão do grupo determined for the genetic variability. The experimental design was momordica foi estimada, coletados em cinco estados brasileiros, randomized blocks, with four replicates. We evaluated 19 accessions e determinada a contribuição relativa dos caracteres morfológicos of melon, momordica group, two accessions of cantaloupensis group avaliados para a variabilidade genética. Foi adotado o delineamento and two commercial cultivars of inodorus group. These genotypes de blocos casualizados com quatro repetições. Nesse estudo, were characterized by 42 morphological descriptors. The data were foram utilizados 19 acessos de melão do grupo momordica, dois submitted to Tocher and UPGMA grouping methods using the genetic acessos do grupo cantaloupensis e duas cultivares comerciais do dissimilarity matrix, using Mahalanobis’ distance.
    [Show full text]
  • Aviation Week & Space Technology
    STARTS AFTER PAGE 34 Using AI To Boost How Emirates Is Extending ATM Efficiency Maintenance Intervals ™ $14.95 JANUARY 13-26, 2020 2020 THE YEAR OF SUSTAINABILITY RICH MEDIA EXCLUSIVE Digital Edition Copyright Notice The content contained in this digital edition (“Digital Material”), as well as its selection and arrangement, is owned by Informa. and its affiliated companies, licensors, and suppliers, and is protected by their respective copyright, trademark and other proprietary rights. Upon payment of the subscription price, if applicable, you are hereby authorized to view, download, copy, and print Digital Material solely for your own personal, non-commercial use, provided that by doing any of the foregoing, you acknowledge that (i) you do not and will not acquire any ownership rights of any kind in the Digital Material or any portion thereof, (ii) you must preserve all copyright and other proprietary notices included in any downloaded Digital Material, and (iii) you must comply in all respects with the use restrictions set forth below and in the Informa Privacy Policy and the Informa Terms of Use (the “Use Restrictions”), each of which is hereby incorporated by reference. Any use not in accordance with, and any failure to comply fully with, the Use Restrictions is expressly prohibited by law, and may result in severe civil and criminal penalties. Violators will be prosecuted to the maximum possible extent. You may not modify, publish, license, transmit (including by way of email, facsimile or other electronic means), transfer, sell, reproduce (including by copying or posting on any network computer), create derivative works from, display, store, or in any way exploit, broadcast, disseminate or distribute, in any format or media of any kind, any of the Digital Material, in whole or in part, without the express prior written consent of Informa.
    [Show full text]