The Anatomy and Clinical Implications of the Obturator Nerve and Its Branches
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Trans-Obturator Cable Fixation of Open Book Pelvic Injuries
www.nature.com/scientificreports OPEN Trans‑obturator cable fxation of open book pelvic injuries Martin C. Jordan 1*, Veronika Jäckle1, Sebastian Scheidt2, Fabian Gilbert3, Stefanie Hölscher‑Doht1, Süleyman Ergün4, Rainer H. Mefert1 & Timo M. Heintel1 Operative treatment of ruptured pubic symphysis by plating is often accompanied by complications. Trans‑obturator cable fxation might be a more reliable technique; however, have not yet been tested for stabilization of ruptured pubic symphysis. This study compares symphyseal trans‑obturator cable fxation versus plating through biomechanical testing and evaluates safety in a cadaver experiment. APC type II injuries were generated in synthetic pelvic models and subsequently separated into three diferent groups. The anterior pelvic ring was fxed using a four‑hole steel plate in Group A, a stainless steel cable in Group B, and a titan band in Group C. Biomechanical testing was conducted by a single‑ leg‑stance model using a material testing machine under physiological load levels. A cadaver study was carried out to analyze the trans‑obturator surgical approach. Peak‑to‑peak displacement, total displacement, plastic deformation and stifness revealed a tendency for higher stability for trans‑ obturator cable/band fxation but no statistical diference to plating was detected. The cadaver study revealed a safe zone for cable passage with sufcient distance to the obturator canal. Trans‑ obturator cable fxation has the potential to become an alternative for symphyseal fxation with less complications. Disruption of the pubic symphysis is commonly seen in pelvic ring injuries of trauma patients 1,2. Te disrup- tion of the anterior pelvic ring might occur in combination with a posterior pelvic ring impairment of variable severity. -
Study of Anatomical Pattern of Lumbar Plexus in Human (Cadaveric Study)
54 Az. J. Pharm Sci. Vol. 54, September, 2016. STUDY OF ANATOMICAL PATTERN OF LUMBAR PLEXUS IN HUMAN (CADAVERIC STUDY) BY Prof. Gamal S Desouki, prof. Maged S Alansary,dr Ahmed K Elbana and Mohammad H Mandor FROM Professor Anatomy and Embryology Faculty of Medicine - Al-Azhar University professor of anesthesia Faculty of Medicine - Al-Azhar University Anatomy and Embryology Faculty of Medicine - Al-Azhar University Department of Anatomy and Embryology Faculty of Medicine of Al-Azhar University, Cairo Abstract The lumbar plexus is situated within the substance of the posterior part of psoas major muscle. It is formed by the ventral rami of the frist three nerves and greater part of the fourth lumbar nerve with or without a contribution from the ventral ramus of last thoracic nerve. The pattern of formation of lumbar plexus is altered if the plexus is prefixed (if the third lumbar is the lowest nerve which enters the lumbar plexus) or postfixed (if there is contribution from the 5th lumbar nerve). The branches of the lumbar plexus may be injured during lumbar plexus block and certain surgical procedures, particularly in the lower abdominal region (appendectomy, inguinal hernia repair, iliac crest bone graft harvesting and gynecologic procedures through transverse incisions). Thus, a better knowledge of the regional anatomy and its variations is essential for preventing the lesions of the branches of the lumbar plexus. Key Words: Anatomical variations, Lumbar plexus. Introduction The lumbar plexus formed by the ventral rami of the upper three nerves and most of the fourth lumbar nerve with or without a contribution from the ventral ramous of last thoracic nerve. -
Lower Extremity Focal Neuropathies
LOWER EXTREMITY FOCAL NEUROPATHIES Lower Extremity Focal Neuropathies Arturo A. Leis, MD S.H. Subramony, MD Vettaikorumakankav Vedanarayanan, MD, MBBS Mark A. Ross, MD AANEM 59th Annual Meeting Orlando, Florida Copyright © September 2012 American Association of Neuromuscular & Electrodiagnostic Medicine 2621 Superior Drive NW Rochester, MN 55901 Printed by Johnson Printing Company, Inc. 1 Please be aware that some of the medical devices or pharmaceuticals discussed in this handout may not be cleared by the FDA or cleared by the FDA for the specific use described by the authors and are “off-label” (i.e., a use not described on the product’s label). “Off-label” devices or pharmaceuticals may be used if, in the judgment of the treating physician, such use is medically indicated to treat a patient’s condition. Information regarding the FDA clearance status of a particular device or pharmaceutical may be obtained by reading the product’s package labeling, by contacting a sales representative or legal counsel of the manufacturer of the device or pharmaceutical, or by contacting the FDA at 1-800-638-2041. 2 LOWER EXTREMITY FOCAL NEUROPATHIES Lower Extremity Focal Neuropathies Table of Contents Course Committees & Course Objectives 4 Faculty 5 Basic and Special Nerve Conduction Studies of the Lower Limbs 7 Arturo A. Leis, MD Common Peroneal Neuropathy and Foot Drop 19 S.H. Subramony, MD Mononeuropathies Affecting Tibial Nerve and its Branches 23 Vettaikorumakankav Vedanarayanan, MD, MBBS Femoral, Obturator, and Lateral Femoral Cutaneous Neuropathies 27 Mark A. Ross, MD CME Questions 33 No one involved in the planning of this CME activity had any relevant financial relationships to disclose. -
Neurotization of Femoral Nerve Using the Anterior Branch of the Obturator Nerve
ORIGINAL ARTICLE Eur. J. Anat. 21 (1): 129-133(2017) Neurotization of femoral nerve using the anterior branch of the obturator nerve Francisco Martínez-Martínez1, María Ll. Guerrero-Navarro2, Miguel Sáez- Soto1, José M. Moreno-Fernández1, Antonio García-López3 1Department of Orthopaedic Surgery, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia (Spain) 2Department of Plastic and Reconstructive Surgery, Hospital General Universitario Santa Lucía, Cartagena (Spain) 3Department of Orthopaedic Surgery, Hospital General Universitario de Alicante (Spain) SUMMARY INTRODUCTION Nerve transfer is nowadays a standard proce- Femoral nerve injuries are an infrequent patholo- dure for motor reinnervation. There is a vast num- gy but quite invalidating. These might be second- ber of articles in the literature which describe dif- ary to trauma or abdominal surgery. ferent techniques of neurotization performed after The aim of the surgical treatment is to achieve brachial plexus injuries. Although lower limb nerve muscle reinnervation through a nerve transfer or transfers have also been studied, the number of nerve graft in order to regain adequate gait. articles are much limited. The sacrifice of a donor Nerve transfer or neurotization is a surgical tech- nerve to reinnervate a disrupted one causes mor- nique which consists on sectioning a nerve or a bidity of whichever structures that healthy nerve fascicle of it and then anastomose it to a distal innervated before the transfer. New studies are stump of an injured nerve. The donor nerve will focused on isolating branches or fascicles of the necessarily lose its function in order to provide in- main donor trunk that can also be useful for rein- nervation to the receptor nerve (Narakas, 1984). -
Parts of the Body 1) Head – Caput, Capitus 2) Skull- Cranium Cephalic- Toward the Skull Caudal- Toward the Tail Rostral- Toward the Nose 3) Collum (Pl
BIO 3330 Advanced Human Cadaver Anatomy Instructor: Dr. Jeff Simpson Department of Biology Metropolitan State College of Denver 1 PARTS OF THE BODY 1) HEAD – CAPUT, CAPITUS 2) SKULL- CRANIUM CEPHALIC- TOWARD THE SKULL CAUDAL- TOWARD THE TAIL ROSTRAL- TOWARD THE NOSE 3) COLLUM (PL. COLLI), CERVIX 4) TRUNK- THORAX, CHEST 5) ABDOMEN- AREA BETWEEN THE DIAPHRAGM AND THE HIP BONES 6) PELVIS- AREA BETWEEN OS COXAS EXTREMITIES -UPPER 1) SHOULDER GIRDLE - SCAPULA, CLAVICLE 2) BRACHIUM - ARM 3) ANTEBRACHIUM -FOREARM 4) CUBITAL FOSSA 6) METACARPALS 7) PHALANGES 2 Lower Extremities Pelvis Os Coxae (2) Inominant Bones Sacrum Coccyx Terms of Position and Direction Anatomical Position Body Erect, head, eyes and toes facing forward. Limbs at side, palms facing forward Anterior-ventral Posterior-dorsal Superficial Deep Internal/external Vertical & horizontal- refer to the body in the standing position Lateral/ medial Superior/inferior Ipsilateral Contralateral Planes of the Body Median-cuts the body into left and right halves Sagittal- parallel to median Frontal (Coronal)- divides the body into front and back halves 3 Horizontal(transverse)- cuts the body into upper and lower portions Positions of the Body Proximal Distal Limbs Radial Ulnar Tibial Fibular Foot Dorsum Plantar Hallicus HAND Dorsum- back of hand Palmar (volar)- palm side Pollicus Index finger Middle finger Ring finger Pinky finger TERMS OF MOVEMENT 1) FLEXION: DECREASE ANGLE BETWEEN TWO BONES OF A JOINT 2) EXTENSION: INCREASE ANGLE BETWEEN TWO BONES OF A JOINT 3) ADDUCTION: TOWARDS MIDLINE -
A Cadaveric Study of Ultrasound-Guided Subpectineal Injectate Spread Around the Obturator Nerve and Its Hip Articular Branches
REGIONAL ANESTHESIA AND ACUTE PAIN Regional Anesthesia & Pain Medicine: first published as 10.1097/AAP.0000000000000587 on 1 May 2017. Downloaded from ORIGINAL ARTICLE A Cadaveric Study of Ultrasound-Guided Subpectineal Injectate Spread Around the Obturator Nerve and Its Hip Articular Branches Thomas D. Nielsen, MD,* Bernhard Moriggl, MD, PhD, FIACA,† Kjeld Søballe, MD, DMSc,‡ Jens A. Kolsen-Petersen, MD, PhD,* Jens Børglum, MD, PhD,§ and Thomas Fichtner Bendtsen, MD, PhD* such high-volume blocks the most appropriate nerve blocks for Background and Objectives: The femoral and obturator nerves are preoperative analgesia in patients with hip fracture, because both assumed to account for the primary nociceptive innervation of the hip joint the femoral and obturator nerves have been found to innervate capsule. The fascia iliaca compartment block and the so-called 3-in-1-block the hip joint capsule.5 have been used in patients with hip fracture based on a presumption that local Several authors have since questioned the reliability of the anesthetic spreads to anesthetize both the femoral and the obturator nerves. FICB and the 3-in-1-block to anesthetize the obturator nerve.6–10 Evidence demonstrates that this presumption is unfounded, and knowledge Recently, a study, using magnetic resonance imaging to visualize about the analgesic effect of obturator nerve blockade in hip fracture patients the spread of the injectate, refuted any spread of local anesthetic to presurgically is thus nonexistent. The objectives of this cadaveric study were the obturator nerve after either of the 2 nerve block techniques.11 to investigate the proximal spread of the injectate resulting from the admin- Consequently, knowledge of the analgesic effect of an obturator istration of an ultrasound-guided obturator nerve block and to evaluate the nerve block in preoperative patients with hip fracture is nonexis- spread around the obturator nerve branches to the hip joint capsule. -
The Dissemination of Pelvic Limb Nerves Originating from the Lumbosacral Plexus in the Porcupine (Hystrix Cristata)
Veterinarni Medicina, 54, 2009 (7): 333–339 Original Paper The dissemination of pelvic limb nerves originating from the lumbosacral plexus in the porcupine (Hystrix cristata) A. Aydin Faculty of Veterinary Medicine, Firat University, Elazig, Turkey ABSTRACT: In this study the nerves originating from the plexus lumbosacrales of porcupines (Hystrix cristata) were investigated. Four porcupines (two males and two females) were used. The plexus lumbosacrales of animals were appropriately dissected and dissemination of pelvic limb nerves originating from the plexus lumbosacrales was examined. The nerves originated from the plexus lumbosacrales of porcupines (Hystrix cristata): iliohypogastric nerve from T15, ilioinguinal nerve (on the left side of only one animal) genitofemoral and lateral femoral cutane- ous nerves from T15 and L1, the femoral and obturator nerves from T15, L1, L2 and L3. The femoral nerve divided into two as the common dorsal digital nerve I and II after it branched into motor and skin nerves. The cranial gluteal nerve originated from L3 and L4 in males and from only L3 in females. The caudal gluteal nerve and the caudal femoral cutaneous and sciatic nerves originated from the common root which was formed by the union of L3, L4 and S1 in one animal, and by the union of L3, L4, S1 and S2 in the three other animals. The sciatic nerve divided into the tibial and fibular nerve. The fibular nerve divided into two as the common dorsal digital nerve III and IV, and extended after branching in one direction to extensor muscles. The tibial nerve divided into the common palmares digital nerve I, II, III and IV, and extended after branching into the cutaneous surae caudales nerve and rami muscle distales. -
Obturator Hernia: Diagnosis and Treatment in the Modern Era
Original Article Singapore Med J 2009; 50(9) : 866 Obturator hernia: diagnosis and treatment in the modern era Mantoo S K, Mak K, Tan T J ABSTRACT Introduction: Obturator hernia is a rare variety of abdominal hernia that nonetheless is a significant cause of morbidity and mortality, especially in the elderly age group. This article aimed to review the diagnosis and management 2 of obturator hernia by describing the anatomy, - clinical presentation, predisposing factors, diagnostic modalities and management in the modern era. Fig. I Case 1. Axial CT image of the pelvis shows a left obtura - tor hernia. Methods: We managed six cases of obturator hernia between 2003 and 2006. Five out of six cases were diagnosed by a preoperative computed tomography (CT) and the sixth case was diagnosed by ultrasonography. All except one were managed by an exploratory laparotomy and repair of the hernia, and one was treated with laparoscopic repair. SI Results: Correct preoperative diagnosis was made in five out of five (100 percent) patients by clinical signs and CT of the abdomen and pelvis, and the sixth patient was operated on the basis of an ultrasonographical diagnosis and strong i A clinical suspicion. Fig. 2 Case 4. Intraoperative photograph shows the widened right obturator canal. Conclusion: We conclude that the rapid Department of evaluation by CT of the abdomen and pelvis Table I. Demographics of six patients with obturator Surgery, hernia. Alexandra and surgical intervention are possible, thereby Hospital, Patient characteristics Mean (range) 378 Alexandra reducing the morbidity and mortality of patients Road, with obturator hernia. An algorithm for the Singapore 159964 Age (years) 88.8 (76-96) management of obturator hernia is proposed. -
Cutaneous Branch of the Obturator Nerve Extending to the Medial Ankle and Foot: a Report of Two Cadaveric Cases
ARTICLE IN PRESS The Journal of Foot & Ankle Surgery 000 (2019) 1−6 Contents lists available at ScienceDirect The Journal of Foot & Ankle Surgery journal homepage: www.jfas.org Case Reports and Series Cutaneous Branch of the Obturator Nerve Extending to the Medial Ankle and Foot: A Report of Two Cadaveric Cases Brittany Staples, DPM1,2, Edward Ennedy, DO3,4, Tae Kim, DO3, Steven Nguyen, DO3,5, Andrew Shore, DO3,6, Thomas Vu, DO3,7, Jonathan Labovitz, DPM, FACFAS8, Mathew Wedel, PhD9 1 Student, Western University of Health Sciences College of Podiatric Medicine, Pomona, CA 2 Chief Surgical Resident, SSM Health DePaul Hospital, St. Louis, MO 3 Student, Western University of Health Sciences College of Osteopathic Medicine of the Pacific, Pomona, CA 4 Resident, Medical City Forth Worth and University of North Texas Health Science Center, Fort Worth, TX 5 Resident, Einstein Healthcare Network, Philadelphia, PA 6 Resident, University of Missouri School of Medicine, Kansas City, MO 7 Resident, Mercy Health, Muskegon, MI 8 Professor, Department of Podiatric Medicine, Surgery, and Biomechanics, and Associate Dean of Clinical Education and Graduate Placement, Western University of Health Sciences College of Podiatric Medicine, Pomona, CA 9 Associate Professor, Department of Anatomy, Western University of Health Sciences College of Osteopathic Medicine of the Pacific and College of Podiatric Medicine, Pomona, CA ARTICLE INFO ABSTRACT Level of Clinical Evidence: 4 The area of skin supplied by the cutaneous branch of the obturator nerve (CBO) is highly variable. Although most Key Words: introductory anatomy texts describe the CBO as innervating only a portion of the medial thigh, there are numer- anatomic variant ous reports in the literature of CBOs passing the knee to innervate the proximal, middle, or even distal leg. -
Surgicaltechniques
OBGM_0806_Hatch.final 7/21/06 11:06 AM Page 17 SURGICALTECHNIQUES THE RETROPERITONEAL SPACE Keeping vital structures out of harm’s way Knowledge of the retroperitoneal space is critical, to avoid unnecessary blood loss and injury of the ureter, bladder, bowel, and nerves he accomplished gynecologic sur- Kenneth D. Hatch, MD The “landmark” Professor, Department geon must know the anatomy of of Obstetrics and Gynecology, T the retroperitoneal space in order umbilical ligament Arizona Health Sciences Center Tucson, Ariz to avoid damage to normal structures, as® Dowden Health Media well as remove pathology. Many disease The umbilical ligament was the umbilical processes involve the pelvic peritoneum, artery in fetal life and courses along the uterosacral ligaments, rectosigmoidCopyrightFor or edgepersonal of the bladder use to theonly anterior abdom- ovarian pedicles, and require the surgeon inal wall up to the umbilicus. It is a useful to enter the retroperitoneal space to iden- guide into the perivesicle space. Lateral to it tify the ureters and blood vessels and are the iliac vessels, and medial is the blad- keep them out of harm’s way. The chal- der. It is also a good marker for finding the IN THIS ARTICLE lenges are complex: right spot to open the round ligament. • Badly distorted anatomy and the ante- ❙ Endometriosis may rior and posterior cul-de-sac necessi- imperil the ureter tate mobilization of the rectosigmoid Page 20 and bladder. • Intraligamentous fibroids require ❙ Preventing ureteral knowledge of the blood supply in the retroperitoneal space. Malignant disor- injury ders mandate that the lymph nodes be Page 23 dissected to determine extent of disease and as part of treatment. -
Anatomy of Pelvic Floor Dysfunction
Anatomy of Pelvic Floor Dysfunction Marlene M. Corton, MD KEYWORDS Pelvic floor Levator ani muscles Pelvic connective tissue Ureter Retropubic space Prevesical space NORMAL PELVIC ORGAN SUPPORT The main support of the uterus and vagina is provided by the interaction between the levator ani (LA) muscles (Fig. 1) and the connective tissue that attaches the cervix and vagina to the pelvic walls (Fig. 2).1 The relative contribution of the connective tissue and levator ani muscles to the normal support anatomy has been the subject of controversy for more than a century.2–5 Consequently, many inconsistencies in termi- nology are found in the literature describing pelvic floor muscles and connective tissue. The information presented in this article is based on a current review of the literature. LEVATOR ANI MUSCLE SUPPORT The LA muscles are the most important muscles in the pelvic floor and represent a crit- ical component of pelvic organ support (see Fig. 1). The normal levators maintain a constant state of contraction, thus providing an active floor that supports the weight of the abdominopelvic contents against the forces of intra-abdominal pressure.6 This action is thought to prevent constant or excessive strain on the pelvic ‘‘ligaments’’ and ‘‘fascia’’ (Fig. 3A). The normal resting contraction of the levators is maintained by the action of type I (slow twitch) fibers, which predominate in this muscle.7 This baseline activity of the levators keeps the urogenital hiatus (UGH) closed and draws the distal parts of the urethra, vagina, and rectum toward the pubic bones. Type II (fast twitch) muscle fibers allow for reflex muscle contraction elicited by sudden increases in abdominal pressure (Fig. -
ANATOMICAL VARIATIONS and DISTRIBUTIONS of OBTURATOR NERVE on ETHIOPIAN CADAVERS Berhanu KA, Taye M, Abraha M, Girma A
https://dx.doi.org/10.4314/aja.v9i1.1 ORIGINAL COMMUNICATION Anatomy Journal of Africa. 2020. Vol 9 (1): 1671 - 1677. ANATOMICAL VARIATIONS AND DISTRIBUTIONS OF OBTURATOR NERVE ON ETHIOPIAN CADAVERS Berhanu KA, Taye M, Abraha M, Girma A Correspondence to Berhanu Kindu Ashagrie Email: [email protected]; Tele: +251966751721; PO Box: 272 Debre Tabor University , North Central Ethiopia ABSTRACT Variations in anatomy of the obturator nerve are important to surgeons and anesthesiologists performing surgical procedures in the pelvic cavity, medial thigh and groin regions. They are also helpful for radiologists who interpret computerized imaging and anesthesiologists who perform local anesthesia. This study aimed to describe the anatomical variations and distribution of obturator nerve. The cadavers were examined bilaterally for origin to its final distribution and the variations and normal features of obturator nerve. Sixty-seven limbs sides (34 right and 33 left sides) were studied for variation in origin and distribution of obturator nerve. From which 88.1% arises from L2, L3 and L4 and; 11.9% from L3 and L4 spinal nerves. In 23.9%, 44.8% and 31.3% of specimens the bifurcation levels of obturator nerve were determined to be intrapelvic, within the obturator canal and extrapelvic, respectively. The anterior branch subdivided into two, three and four subdivisions in 9%, 65.7% and 25.4% of the specimens, respectively, while the posterior branch provided two subdivisions in 65.7% and three subdivisions in 34.3% of the specimens. Hip articular branch arose from common obturator nerve in 67.2% to provide sensory innervation to the hip joint.