The Nerves of the Adductor Canal and the Innervation of the Knee: An
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bilateral Anomalous Muscle in the Popliteal Fossa & Its Clinical
International Journal of Anatomy and Research, Int J Anat Res 2014, Vol 2(4):614-16. ISSN 2321- 4287 Case Report DOI: 10.16965/ijar.2014.501 BILATERAL ANOMALOUS MUSCLE IN THE POPLITEAL FOSSA & ITS CLINICAL SIGNIFICANCE Sowmya S *, Meenakshi Parthasarathi, Sharmada KL, Sujana M. Department of anatomy, Bangalore Medical College & Research Institute, Bangalore, India. ABSTRACT Muscle variation may occur due to genetic or developmental causes. Some variations may compromise the vascular, muscular or nervous system in the region. Bilateral muscle variation in popliteal fossa is very rare. In present study an instance of bilateral muscle variation in popliteal fossa, arising from different muscles like gastrocnemius and from biceps femoris is recorded. There is no report of such variations. These observations are rare of its kind because of bilateral asymmetrical presence and difference in the origins in different legs. This is the first report as for the literatures available. Clinical and functional importance of such variation is discussed with the morphological aspects of this anomalous muscle. KEY WORDS: Popliteal fossa, Gastrocnemius, Biceps femoris, Popliteal Artery Entrapment Syndrome. Address for Correspondence: Dr.Sowmya S, Assistant Professor, Department of Anatomy, Bangalore Medical College & Research Institute, Bangalore-560002, India. Mobile: +919482476545. E-Mail: [email protected] Access this Article online Quick Response code Web site: International Journal of Anatomy and Research ISSN 2321-4287 www.ijmhr.org/ijar.htm Received: 08 Sep 2014 Peer Review: 08 Sep 2014 Published (O):31 Oct 2014 DOI: 10.16965/ijar.2014.501 Accepted: 22 Sep 2014 Published (P):31 Dec 2014 INTRODUCTION Insertion of muscle slips from biceps femoris into gastrocnemius and into tendocalcaneus have The popliteal fossa is a rhomboidal region been reported [3]. -
Vastus Medialis: a Reappraisal of VMO and VML
J. Phys. Ther. Sci. 24: 475–479, 2012 Vastus Medialis: a Reappraisal of VMO and VML EMILY J SKINNER1), PHILIP J ADDS1) 1) Division of Biomedical Sciences (Anatomy), St. George’s, University of London: Cranmer Terrace, London SW17 0RE, U.K. TEL: +44 208-7255208, E-mail: [email protected] Abstract. [Purpose] The morphology and innervation pattern of the vastus medialis (VM) were investigated to determine if there was an anatomical distinction between the oblique (VMO) and longus (VML) parts. [Subjects and Methods] Forty lower limbs were dissected. The innervation pattern was observed in 39 specimens. Muscle length and fibre angles of 14 specimens were recorded. [Results] In 22 specimens there was a distinct separation between the VML and VMO (change in fibre angle, fibrofascial plane, vasculature or nerve branch). The mean fibre angle of VMO was 52°, and the mean VML fibre angle was 5° (relative to the shaft of the femur). Ten limbs (25.6%) had separate innervation to the VML. The separation between VMO and VML was found to be more proximal than expected, with the VMO on average accounting for 70% of the VM, in contrast to the much more distal point of separation reported elsewhere, leading us to raise the possibility that VML and vastus intermedius may have been misidentified in some previous studies. [Conclusions] In conclusion the VML/VMO division (when present) is much more proximal than has been previously reported, and there is no consistent pattern of innervation to the two parts of the muscle. Key words: Fibre angle, Vastus medialis, VML, VMO (This article was submitted Nov. -
The Square Flap Technique for Burn Contractures: Clinical Experience and Analysis of Length Gain
Annals of Burns and Fire Disasters - vol. XXXI - n. 4 - December 2018 THE SQUARE FLAP TECHNIQUE FOR BURN CONTRACTURES: CLINICAL EXPERIENCE AND ANALYSIS OF LENGTH GAIN DOUBLE LAMBEAU RHOMBOÏDE POUR BRIDE SÉQUELLAIRE DE BRÛ- LURE: EXPÉRIENCE PRATIQUE ET ANALYSE DE LA LONGUEUR GAGNÉE Hifny M.A. Department of Plastic Surgery, Faculty of Medicine, Qena University Hospital, South Valley University, Egypt SUMMARY. Post-burn contractures, affecting the joints especially, are demanding problems. Many surgical techniques have been designated for burn contracture release. The aim of this study is to investigate the efficiency of the square flap technique to release a post-burn scar contracture, and assess the post-operative length gain that can be achieved by simple mathematical calculation. In this study, sixteen patients with linear contracture bands were treated with the square flap tech- nique. The anatomical distribution of the contractures was: axilla, cubital fossa, flank, perineum and popliteal fossa. Scar maturity ranged from 4 months - 9 years. Square flap width and contracture band length before and immediately after surgery were recorded by simple mathematical calculation. Flap complication was assessed. Patient satisfaction was also assessed during the follow-up period. All square flaps were effective in lengthening the contracture bands. The length of the contracture that was released ranged from 2 to 6 cm. The gain in length provided with this technique ranged from 212 to 350%, average 247%, and adequate contracture release was achieved in all cases postoperatively. All square flaps healed uneventfully except for one (6%), which demonstrated limited epidermolysis that healed by secondary intention. The fol- low-up interval ranged from 6 months to 1.5 years. -
Intramuscular Neural Distribution of the Sartorius Muscles: Treating Spasticity with Botulinum Neurotoxin
Intramuscular Neural Distribution of the Sartorius Muscles: Treating Spasticity With Botulinum Neurotoxin Kyu-Ho Yi Yonsei University Ji-Hyun Lee Yonsei University Kyle Seo Modelo Clinic Hee-Jin Kim ( [email protected] ) Yonsei University Research Article Keywords: botulinum neurotoxin, spasticity, sartorius muscle, Sihler’s staining Posted Date: January 6th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-129928/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/14 Abstract This study aimed to detect the idyllic locations for botulinum neurotoxin injection by analyzing the intramuscular neural distributions of the sartorius muscles. A altered Sihler’s staining was conducted on sartorius muscles (15 specimens). The nerve entry points and intramuscular arborization areas were measured as a percentage of the total distance from the most prominent point of the anterior superior iliac spine (0%) to the medial femoral epicondyle (100%). Intramuscular neural distribution were densely detected at 20–40% and 60–80% for the sartorius muscles. The result suggests that the treatment of sartorius muscle spasticity requires botulinum neurotoxin injections in particular locations. These locations, corresponding to the locations of maximum arborization, are suggested as the most safest and effective points for botulinum neurotoxin injection. Introduction Spasticity is a main contributor to functional loss in patients with impaired central nervous system, such as in stroke, cerebral palsy, multiple sclerosis, traumatic brain injury, spinal cord injury, and others 1. Sartorius muscle, as a hip and knee exor, is one of the commonly involved muscles, and long-lasting spasticity of the muscle results in abnormalities secondary to muscle hyperactivity, affecting lower levels of functions, such as impairment of gait. -
Popliteal Fossa
POPLITEAL FOSSA Dr Kaweri Dande Resident Department Of Anatomy King George’s Medical University, UP, Lucknow DISCLAIMER: • The presentation includes images which are either hand drawn or have been taken from google images or books. • They are being used in the presentation only for educational purpose. • The author of the presentation claims no personal ownership over images taken • from books or google images. • However, the hand drawn images are the creation of the author of the presentation Learning objectives • By the end of this teaching session all the students must be able to correctly:- • Describe and demonstrate the location of the popliteal fossa • Enumerate the boundaries, roof and floor of the popliteal fossa • Enumerate the contents of the popliteal fossa • Describe the relations of the popliteal fossa • Draw a labelled diagram of the popliteal fossa • Describe the applied anatomy of the popliteal fossa Preface • Important transition area • Between thigh and leg • Passes structure between two Location • Diamond shaped space • Behind knee joint • Formed between muscles • Posterior compartment of thigh and leg Outline of right popliteal fossa Boundaries • Superolaterally: biceps femoris • Superomedially: semitendinosus, semimembranosus supplemented: gracilis, sartorius, adductor magnus • Inferolaterally: lateral head of gastrocnemius, Plantaris • Inferomedially: medial head of gastrocnemius Floor Above downwards • Popliteal surface of femur • Capsule of knee joint • Oblique popliteal ligament • Popliteal fascia • Popliteal muscle -
Compiled for Lower Limb
Updated: December, 9th, 2020 MSI ANATOMY LAB: STRUCTURE LIST Lower Extremity Lower Extremity Osteology Hip bone Tibia • Greater sciatic notch • Medial condyle • Lesser sciatic notch • Lateral condyle • Obturator foramen • Tibial plateau • Acetabulum o Medial tibial plateau o Lunate surface o Lateral tibial plateau o Acetabular notch o Intercondylar eminence • Ischiopubic ramus o Anterior intercondylar area o Posterior intercondylar area Pubic bone (pubis) • Pectineal line • Tibial tuberosity • Pubic tubercle • Medial malleolus • Body • Superior pubic ramus Patella • Inferior pubic ramus Fibula Ischium • Head • Body • Neck • Ramus • Lateral malleolus • Ischial tuberosity • Ischial spine Foot • Calcaneus Ilium o Calcaneal tuberosity • Iliac fossa o Sustentaculum tali (talar shelf) • Anterior superior iliac spine • Anterior inferior iliac spine • Talus o Head • Posterior superior iliac spine o Neck • Posterior inferior iliac spine • Arcuate line • Navicular • Iliac crest • Cuboid • Body • Cuneiforms: medial, intermediate, and lateral Femur • Metatarsals 1-5 • Greater trochanter • Phalanges 1-5 • Lesser trochanter o Proximal • Head o Middle • Neck o Distal • Linea aspera • L • Lateral condyle • L • Intercondylar fossa (notch) • L • Medial condyle • L • Lateral epicondyle • L • Medial epicondyle • L • Adductor tubercle • L • L • L • L • 1 Updated: December, 9th, 2020 Lab 3: Anterior and Medial Thigh Anterior Thigh Medial thigh General Structures Muscles • Fascia lata • Adductor longus m. • Anterior compartment • Adductor brevis m. • Medial compartment • Adductor magnus m. • Great saphenous vein o Adductor hiatus • Femoral sheath o Compartments and contents • Pectineus m. o Femoral canal and ring • Gracilis m. Muscles & Associated Tendons Nerves • Tensor fasciae lata • Obturator nerve • Iliotibial tract (band) • Femoral triangle: Boundaries Vessels o Inguinal ligament • Obturator artery o Sartorius m. • Femoral artery o Adductor longus m. -
Muscle Activation and Kinematic Analysis During the Inclined Leg Press Exercise in Young Females
International Journal of Environmental Research and Public Health Article Muscle Activation and Kinematic Analysis during the Inclined Leg Press Exercise in Young Females Isabel Martín-Fuentes 1 , José M. Oliva-Lozano 1 and José M. Muyor 1,2,* 1 Health Research Centre, University of Almería, 04120 Almería, Spain; [email protected] (I.M.-F.); [email protected] (J.M.O.-L.) 2 Laboratory of Kinesiology, Biomechanics and Ergonomics (KIBIOMER Lab.), Research Central Services, University of Almería, 04120 Almería, Spain * Correspondence: [email protected]; Tel.: +34-950214429 Received: 24 October 2020; Accepted: 20 November 2020; Published: 23 November 2020 Abstract: Knee joint muscle activation imbalances, especially weakness in the vastus medialis oblique, are related to patellofemoral pain within the female population. The available literature presents the leg press as an exercise which potentially targets vastus medialis oblique activation, thus reducing imbalances in the quadriceps muscles. The main aim of the present study was to compare thigh muscle activation and kinematic parameters under different conditions during the inclined leg press exercise in a young female population. A cross-sectional study was conducted on 10 young, trained females. Muscle activation of the vastus medialis oblique, vastus lateralis, rectus femoris and gluteus medialis was analyzed under five different inclined leg press conditions, modifying the feet rotation (0–45◦ external rotation) and the stance width (100–150% hip width) on the footplate. All the conditions were performed at two different movement velocities: controlled velocity (2” eccentric–2” concentric) and maximal intended velocity. Mean propulsive velocity, maximum velocity and maximum power were also assessed. The results show that both controlled velocity conditions and maximal intended velocity conditions elicited a similar muscle activation pattern with greater activation during the concentric phase (p < 0.001, ηp2 = 0.96). -
Study of Anatomical Pattern of Lumbar Plexus in Human (Cadaveric Study)
54 Az. J. Pharm Sci. Vol. 54, September, 2016. STUDY OF ANATOMICAL PATTERN OF LUMBAR PLEXUS IN HUMAN (CADAVERIC STUDY) BY Prof. Gamal S Desouki, prof. Maged S Alansary,dr Ahmed K Elbana and Mohammad H Mandor FROM Professor Anatomy and Embryology Faculty of Medicine - Al-Azhar University professor of anesthesia Faculty of Medicine - Al-Azhar University Anatomy and Embryology Faculty of Medicine - Al-Azhar University Department of Anatomy and Embryology Faculty of Medicine of Al-Azhar University, Cairo Abstract The lumbar plexus is situated within the substance of the posterior part of psoas major muscle. It is formed by the ventral rami of the frist three nerves and greater part of the fourth lumbar nerve with or without a contribution from the ventral ramus of last thoracic nerve. The pattern of formation of lumbar plexus is altered if the plexus is prefixed (if the third lumbar is the lowest nerve which enters the lumbar plexus) or postfixed (if there is contribution from the 5th lumbar nerve). The branches of the lumbar plexus may be injured during lumbar plexus block and certain surgical procedures, particularly in the lower abdominal region (appendectomy, inguinal hernia repair, iliac crest bone graft harvesting and gynecologic procedures through transverse incisions). Thus, a better knowledge of the regional anatomy and its variations is essential for preventing the lesions of the branches of the lumbar plexus. Key Words: Anatomical variations, Lumbar plexus. Introduction The lumbar plexus formed by the ventral rami of the upper three nerves and most of the fourth lumbar nerve with or without a contribution from the ventral ramous of last thoracic nerve. -
The Role of and Relationship Between Hamstring and Quadriceps Muscle Myofascial Trigger Points in Patients with Patellofemoral Pain Syndrome
The role of and relationship between Hamstring and Quadriceps muscle myofascial trigger points in patients with patellofemoral pain syndrome. By Karen Louise Frandsen Smith A mini-dissertation submitted in partial compliance with the requirements for the Master’s Degree in Technology: Chiropractic at the Durban University of Technology I, Karen Louise Frandsen Smith, declare that this dissertation is representative of my own work in both conception and execution (except where acknowledgements indicate to the contrary). _______________________ ________________ Karen Louise Frandsen Smith Date Approved for Submission _______________________ ________________ Dr Brian Kruger (supervisor) Date M. Tech. Chiro., C.C.S.P. Dedication I dedicate this work to everyone who loves me and have supported me throughout these years of studying and all the difficult times. It is thanks to you that I have reached my dream. Dad, you would be so proud. i Acknowledgements Thank you to the DUT staff, patients, and supervisor, Dr Brian Kruger for making this happen. Thanks to my class mates for making the years fly by, and creating lifelong memories. This dissertation would not have been completed without supportive, generous and helpful people. Special thanks to you, Dr Danella Lubbe for motivating me and thank you so much Dr Charmaine Korporaal for “picking me up” and helping me finish. Endless gratitude goes to you Damon, Cherine, Mom and Viggo. You are / were all my anchors in the storm, and without your belief in me, I would be nowhere. ii Abstract Purpose: Patellofemoral Pain Syndrome is a common condition in all age groups, with a multi- factorial etiology. -
Neurotization of Femoral Nerve Using the Anterior Branch of the Obturator Nerve
ORIGINAL ARTICLE Eur. J. Anat. 21 (1): 129-133(2017) Neurotization of femoral nerve using the anterior branch of the obturator nerve Francisco Martínez-Martínez1, María Ll. Guerrero-Navarro2, Miguel Sáez- Soto1, José M. Moreno-Fernández1, Antonio García-López3 1Department of Orthopaedic Surgery, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia (Spain) 2Department of Plastic and Reconstructive Surgery, Hospital General Universitario Santa Lucía, Cartagena (Spain) 3Department of Orthopaedic Surgery, Hospital General Universitario de Alicante (Spain) SUMMARY INTRODUCTION Nerve transfer is nowadays a standard proce- Femoral nerve injuries are an infrequent patholo- dure for motor reinnervation. There is a vast num- gy but quite invalidating. These might be second- ber of articles in the literature which describe dif- ary to trauma or abdominal surgery. ferent techniques of neurotization performed after The aim of the surgical treatment is to achieve brachial plexus injuries. Although lower limb nerve muscle reinnervation through a nerve transfer or transfers have also been studied, the number of nerve graft in order to regain adequate gait. articles are much limited. The sacrifice of a donor Nerve transfer or neurotization is a surgical tech- nerve to reinnervate a disrupted one causes mor- nique which consists on sectioning a nerve or a bidity of whichever structures that healthy nerve fascicle of it and then anastomose it to a distal innervated before the transfer. New studies are stump of an injured nerve. The donor nerve will focused on isolating branches or fascicles of the necessarily lose its function in order to provide in- main donor trunk that can also be useful for rein- nervation to the receptor nerve (Narakas, 1984). -
DEPARTMENT of ANATOMY IGMC SHIMLA Competency Based Under
DEPARTMENT OF ANATOMY IGMC SHIMLA Competency Based Under Graduate Curriculum - 2019 Number COMPETENCY Objective The student should be able to At the end of the session student should know AN1.1 Demonstrate normal anatomical position, various a) Define and demonstrate various positions and planes planes, relation, comparison, laterality & b) Anatomical terms used for lower trunk, limbs, joint movement in our body movements, bony features, blood vessels, nerves, fascia, muscles and clinical anatomy AN1.2 Describe composition of bone and bone marrow a) Various classifications of bones b) Structure of bone AN2.1 Describe parts, blood and nerve supply of a long bone a) Parts of young bone b) Types of epiphysis c) Blood supply of bone d) Nerve supply of bone AN2.2 Enumerate laws of ossification a) Development and ossification of bones with laws of ossification b) Medico legal and anthropological aspects of bones AN2.3 Enumerate special features of a sesamoid bone a) Enumerate various sesamoid bones with their features and functions AN2.4 Describe various types of cartilage with its structure & a) Differences between bones and cartilage distribution in body b) Characteristics features of cartilage c) Types of cartilage and their distribution in body AN2.5 Describe various joints with subtypes and examples a) Various classification of joints b) Features and different types of fibrous joints with examples c) Features of primary and secondary cartilaginous joints d) Different types of synovial joints e) Structure and function of typical synovial -
Quadriceps and Hamstrings Coactivation in Exercises Used in Prevention And
bioRxiv preprint doi: https://doi.org/10.1101/574210; this version posted March 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Quadriceps and hamstrings coactivation in exercises used in prevention and 2 rehabilitation of hamstring strain injury in young soccer players 3 Gonzalo Torres1¶; David Chorro1¶; Archit Navandar2¶; Javier Rueda1¶; Luís 4 Fernández3¶; Enrique Navarro1*¶ 5 6 1Faculty of Sport Sciences, Universidad Politécnica de Madrid, Madrid, Madrid, Spain. 7 2Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Madrid, Spain. 8 3Medical Services of Atlético de Madrid, Club Atlético de Madrid, Madrid, Madrid, 9 Spain. 10 11 12 *Corresponding author 13 E-mail: [email protected] (EN) 14 15 ¶These authors contributed equally to this work. 16 17 18 19 20 21 22 23 24 bioRxiv preprint doi: https://doi.org/10.1101/574210; this version posted March 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 25 Abstract 26 This study aimed to study the co-activation of hamstring-quadriceps muscles 27 during submaximal strength exercises without the use of maximum voluntary isometric 28 contraction testing and compare (i) the inter-limb differences in muscle activation, (ii) the 29 intra-muscular group activation pattern, and (iii) the activation during different phases of 30 the exercise.