1,1,1,2-Tetrafluoroethane (HFC-134A) (CAS No. 811-97-2) (Second Edition)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Problem Formulation of the Risk Evaluation for Perchloroethylene (Ethene, 1,1,2,2-Tetrachloro)
EPA Document# EPA-740-R1-7017 May 2018 DRAFTUnited States Office of Chemical Safety and Environmental Protection Agency Pollution Prevention Problem Formulation of the Risk Evaluation for Perchloroethylene (Ethene, 1,1,2,2-Tetrachloro) CASRN: 127-18-4 May 2018 TABLE OF CONTENTS ABBREVIATIONS ............................................................................................................................ 8 EXECUTIVE SUMMARY .............................................................................................................. 11 1 INTRODUCTION .................................................................................................................... 14 1.1 Regulatory History ..................................................................................................................... 16 1.2 Assessment History .................................................................................................................... 16 1.3 Data and Information Collection ................................................................................................ 18 1.4 Data Screening During Problem Formulation ............................................................................ 19 2 PROBLEM FORMULATION ................................................................................................. 20 2.1 Physical and Chemical Properties .............................................................................................. 20 2.2 Conditions of Use ...................................................................................................................... -
Safety Assessment of Polyfluorinated Polymers As Used in Cosmetics
Safety Assessment of Polyfluorinated Polymers as Used in Cosmetics Status: Tentative Report for Public Comment Release Date: June 13, 2018 Panel Date: September 24-25, 2018 All interested persons are provided 60 days from the above date to comment on this safety assessment and to identify additional published data that should be included or provide unpublished data which can be made public and included. Information may be submitted without identifying the source or the trade name of the cosmetic product containing the ingredient. All unpublished data submitted to CIR will be discussed in open meetings, will be available at the CIR office for review by any interested party and may be cited in a peer-reviewed scientific journal. Please submit data, comments, or requests to the CIR Executive Director, Dr. Bart Heldreth. The 2018 Cosmetic Ingredient Review Expert Panel members are: Chair, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Ronald A. Hill, Ph.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; James G. Marks, Jr., M.D.; Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The CIR Executive Director is Bart Heldreth, Ph.D. This report was prepared by Wilbur Johnson, Jr., M.S., Senior Scientific Analyst and Jinqiu Zhu, Ph.D., Toxicologist. © Cosmetic Ingredient Review 1620 L STREET, NW, SUITE 1200 ◊ WASHINGTON, DC 20036-4702 ◊ PH 202.331.0651 ◊ FAX 202.331.0088 ◊ [email protected] ABSTRACT: The Cosmetic Ingredient Review (CIR) Expert Panel (Panel) reviewed the safety of polyfluorinated polymers in cosmetic products, and most of these ingredients have the film former function in common. -
Toxicological Profile for Tetrachloroethylene
TETRACHLOROETHYLENE 263 6. POTENTIAL FOR HUMAN EXPOSURE 6.1 OVERVIEW Tetrachloroethylene has been identified in at least 949 of the 1,854 hazardous waste sites that have been proposed for inclusion on the EPA National Priorities List (NPL) (ATSDR 2017a). However, the number of sites evaluated for tetrachloroethylene is not known. The frequency of these sites can be seen in Figure 6-1. Of these sites, 943 are located within the United States, 3 are located in the Commonwealth of Puerto Rico (not shown), 1 is located in Guam (not shown), and 1 is located in the Virgin Islands (not shown). Tetrachloroethylene is a VOC that is widely distributed in the environment. It is released to the environment via industrial emissions and from building and consumer products. Releases are primarily to the atmosphere. However, the compound is also released to surface water and land in sewage sludges and in other liquid and solid waste, where its high vapor pressure and Henry's law constant usually result in its rapid volatilization to the atmosphere. Tetrachloroethylene has relatively low solubility in water and has medium-to-high mobility in soil; thus, its residence time in surface environments is not expected to be more than a few days. However, it persists in the atmosphere for several months and can last for decades in the groundwater. Background tetrachloroethylene levels in outdoor air are typically <1 μg/m3 (0.15 ppb) for most locations (EPA 2013h, 2018); however, indoor air at source dominant facilities (e.g., dry cleaners) has been shown to have levels >1 mg/m3 (Chiappini et al. -
1,1,1,2-Tetrafluoroethane
This report contains the collective views of an international group of experts and does not necessarily represent the decisions or the stated policy of the United Nations Environment Programme, the International Labour Organisation, or the World Health Organization. Concise International Chemical Assessment Document 11 1,1,1,2-Tetrafluoroethane First draft prepared by Mrs P. Barker and Mr R. Cary, Health and Safety Executive, Liverpool, United Kingdom, and Dr S. Dobson, Institute of Terrestrial Ecology, Huntingdon, United Kingdom Please not that the layout and pagination of this pdf file are not identical to the printed CICAD Published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organisation, and the World Health Organization, and produced within the framework of the Inter-Organization Programme for the Sound Management of Chemicals. World Health Organization Geneva, 1998 The International Programme on Chemical Safety (IPCS), established in 1980, is a joint venture of the United Nations Environment Programme (UNEP), the International Labour Organisation (ILO), and the World Health Organization (WHO). The overall objectives of the IPCS are to establish the scientific basis for assessment of the risk to human health and the environment from exposure to chemicals, through international peer review processes, as a prerequisite for the promotion of chemical safety, and to provide technical assistance in strengthening national capacities for the sound management of chemicals. The Inter-Organization -
Functionalization of Heterocycles: a Metal Catalyzed Approach Via
FUNCTIONALIZATION OF HETEROCYCLES: A METAL CATALYZED APPROACH VIA ALLYLATION AND C-H ACTIVATION A Dissertation Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science By Sandeepreddy Vemula In Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Department: Chemistry and Biochemistry October 2018 Fargo, North Dakota North Dakota State University Graduate School Title FUNCTIONALIZATION OF HETEROCYCLES: A METAL CATALYZED APPROACH VIA ALLYLATION AND C-H ACTIVATION By Sandeepreddy Vemula The Supervisory Committee certifies that this disquisition complies with North Dakota State University’s regulations and meets the accepted standards for the degree of DOCTOR OF PHILOSOPHY SUPERVISORY COMMITTEE: Prof. Gregory R. Cook Chair Prof. Mukund P. Sibi Prof. Pinjing Zhao Prof. Dean Webster Approved: November 16, 2018 Prof. Gregory R. Cook Date Department Chair ABSTRACT The central core of many biologically active natural products and pharmaceuticals contain N-heterocycles, the installation of simple/complex functional groups using C-H/N-H functionalization methodologies has the potential to dramatically increase the efficiency of synthesis with respect to resources, time and overall steps to key intermediate/products. Transition metal-catalyzed functionalization of N-heterocycles proved as a powerful tool for the construction of C-C and C-heteroatom bonds. The work in this dissertation describes the development of palladium catalyzed allylation, and the transition metal catalyzed C-H activation for selective functionalization of electron deficient N-heterocycles. Chapter 1 A thorough study highlighting the important developments made in transition metal catalyzed approaches for C-C and C-X bond forming reactions is discussed with a focus on allylation, directed indole C-2 substitution and vinylic C-H activation. -
Assessment of Portable HAZMAT Sensors for First Responders
The author(s) shown below used Federal funds provided by the U.S. Department of Justice and prepared the following final report: Document Title: Assessment of Portable HAZMAT Sensors for First Responders Author(s): Chad Huffman, Ph.D., Lars Ericson, Ph.D. Document No.: 246708 Date Received: May 2014 Award Number: 2010-IJ-CX-K024 This report has not been published by the U.S. Department of Justice. To provide better customer service, NCJRS has made this Federally- funded grant report available electronically. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice. Assessment of Portable HAZMAT Sensors for First Responders DOJ Office of Justice Programs National Institute of Justice Sensor, Surveillance, and Biometric Technologies (SSBT) Center of Excellence (CoE) March 1, 2012 Submitted by ManTech Advanced Systems International 1000 Technology Drive, Suite 3310 Fairmont, West Virginia 26554 Telephone: (304) 368-4120 Fax: (304) 366-8096 Dr. Chad Huffman, Senior Scientist Dr. Lars Ericson, Director UNCLASSIFIED This project was supported by Award No. 2010-IJ-CX-K024, awarded by the National Institute of Justice, Office of Justice Programs, U.S. Department of Justice. The opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect those of the Department of Justice. This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. -
1,2-DICHLOROETHANE 1. Exposure Data
1,2-DICHLOROETHANE Data were last reviewed in IARC (1979) and the compound was classified in IARC Monographs Supplement 7 (1987a). 1. Exposure Data 1.1 Chemical and physical data 1.1.1 Nomenclature Chem. Abstr. Serv. Reg. No.: 107-06-2 Chem. Abstr. Name: 1,2-Dichloroethane IUPAC Systematic Name: 1,2-Dichloroethane Synonym: Ethylene dichloride 1.1.2 Structural and molecular formulae and relative molecular mass Cl CH2 CH2 Cl C2H4Cl2 Relative molecular mass: 98.96 1.1.3 Chemical and physical properties of the pure substance (a) Description: Colourless liquid with a pleasant odour (Budavari, 1996) (b) Boiling-point: 83.5°C (Lide, 1995) (c) Melting-point: –35.5°C (Lide, 1995) (d) Solubility: Slightly soluble in water; miscible with ethanol, chloroform and diethyl ether (Lide, 1995; Budavari, 1996) (e) Vapour pressure: 8 kPa at 20°C (Verschueren, 1996) (f) Flash-point: 18°C, open cup (Budavari, 1996) (g) Conversion factor: mg/m3 = 4.0 × ppm 1.2 Production and use World production capacities in 1988 for 1,2-dichloroethane have been reported as follows (thousand tonnes): North America, 9445; western Europe, 9830; Japan, 3068; and other, 8351 (Snedecor, 1993). Production in the United States has been reported as follows (thousand tonnes): 1983, 5200; 1990, 6300; 1991, 6200; 1992, 6900; 1993, 8100 (United States National Library of Medicine, 1997). The total annual production in Canada in 1990 was estimated to be 922 thousand tonnes; more than 1000 thousand tonnes were produced in the United Kingdom in 1991 (WHO, 1995). –501– 502 IARC MONOGRAPHS VOLUME 71 1,2-Dichloroethane is used primarily in the production of vinyl chloride; 99% of total demand in Canada, 90% in Japan and 88% of total production in the United States are used for this purpose. -
United States Patent Office Faiented Vay 27, 1958 2 Substantially All of the Hydrogen Chioride Is Removed Therefrom
2,336,622 United States Patent Office Faiented Vay 27, 1958 2 substantially all of the hydrogen chioride is removed therefrom. With respect to the reactants usei in this process, the 2,336,622 phosgene car be preformed or it can be formed in situ PREPARATION OF CARBONY, FIUOR);E from carbon monoxide and chlorine which, as is weli Charles W. Tullock, Winnington, Dei., assig or its E. H. known, combine readily at elevated temperature to give iil Pont de Nemours and Conpany, Wii Saiigioia, Bei, phosgene. When this is done, the carbon monoxide is a corporation of Delaware preferably, though not necessarily, used in excess over the amount calculated to react with the chlorine. Simi No Drawing. Appication February 13, 1955 :) larly, the hydrogen fluoride can be used preformed, as the Seria No. 489,294 substantially anhydrous material, or if desired, it can be prepared in situ by employing approximately equivalent 10 Claims. (C. 260-544) amounts of a strong, substantially anhydrous acid such as sulfuric acid or hydrogen chloride and of an alkaline or This invention relates to a new process for preparing alkaline earth metal fluoride, such as Sodium or calcium fluorine-containing organic compounds. in particular, it fuoride. This embodiment is not preferred, however, be relates to a new process for preparing carbonyl fluoride. cause of the additional difficulties encountered in mixing It has recently been discovered that valuable fluorocar the reactants and in separating the reaction product from bons, including tetrafluoroethylene, can be synthesized in solid by-products. Another method of forming both very good yields by reacting carbonyl fluoride with car d phosgene and hydrogen fluoride in situ involves reacting bon at high temperatures, for exampie, by bringing car together formaldehyde, chlorine and a metal fluoride, bonyl fluoride in contact with the carbon electrodes of e.g., calcium fluoride. -
Miller-Stephenson Material Safety Data Sheet
miller-stephenson Material Safety Data Sheet 1. CHEMICAL PRODUCT/COMPANY IDENTIFICATION Name: MS-122XD Product Use: Release Agent or Dry Lubricant DPMS-Z0612A PTFE Release Agent/Dry Lubricant MANUFACTURER/DISTRIBUTOR: Emergency Phone Number: (800) 424-9300 Milier-Stephenson Chemical George Washington Highway Danbury, Conn. 06810 USA (203) 743-4447 Date Revised: May 2011 2. INGREDIENTS Material (s) CAS No. Approximate % 1,1,1,2-Tetrafluoroethane 811-97-2 80-90 2,3 Dihydroperfluoropentane (HFC-43-lOmee) 138495-42-8 9- 15 Poly-TFE, Omega-Hydro-Alpha-(Methylcyclohexyl)- 65530-85-0 1 -2 Poly-Tetrafluoroethylene 9002-84-0 <1 3. HAZARDS IDENTIFICATION Milky, white, liquid with a faint ethereal odor, packaged in an aerosol container. Potential Health Effects 1,1,1,2-Tetrafluoroethane INHALATION: Misuse or intentional inhalation abuse may cause death without warning symptoms, due to cardiac effects. Other symptoms may include, anaethetic effects, light-headedness, dizziness, confusion, incoordination, drowsiness, or unconsciousness, irregular heartbeat with a strange sensation in the chest, heart thumping, apprehension, feeling of fainting and weakness. Vapors are heavier than air and can cause suffocation by reducing oxygen available for breathing. SKIN: Contact with hquid or refrigerated gas can cause cold bums and frostbite. May cause skin irritation with discomfort, itching, redness or swelling. EYE: Contact with liquid or refrigerated gas can cause cold bums and frostbite. May cause eye irritation with tearing, redness and discomfort. MS-122XD Page 2 of 7 2,3 Dihydroperfluoropentane (HrC-43-lOmee) INHALATION: Gross overexposure by inhalation may cause suffocation if air is displaced by vapors and central nervous system stimulation with increased activity or sleeplessness, tremors or convulsions. -
Prepared by 3M
DRAFT ECOTOXICOLOGY AND ENVIRONMENTAL FATE TESTING OF SHORT CHAIN PERFLUOROALKYL COMPOUNDS RELATED TO 3M CHEMISTRIES XXX XX, 2008 Prepared by 3M Page 1 CONFIDENTIAL - SUBJECT TO A PROTECTIVE ORDER ENTERED IN 3M MN01537089 HENNEPIN COUNTY DISTRICT COURT, NO. 27-CV-10-28862 2231.0001 DRAFT TABLE OF CONTENTS Page Introduction (describes propose, goals, document organization .... ) 3 1) Degradation modes 4-27 Basic degradation pathways, Conversion routes from polymer to monomer & degradants or residual intermediates to degradants) 2) Degradants & Intermediates - Phys. Chem properties and test data by section & chapter i) Fluorinated Sulfonic acids and derivatives a) PFBS (PBSK) 28-42 b) PFBSI 43-44 ii) Fluorinated Carboxylates a) TFA 46-55 b) PFPA 56-59 c) PFBA (APFB) 60-65 d) MeFBSAA (MeFBSE Acid, M370) 66-68 iii) Fluorinated Non-ionics a) MeFBSE 70-74 b) MeFBSA 75-80 c) FBSE 81-84 d) FBSA 85-88 e) HxFBSA 89-91 iv) Fluorinated Inerts & volatiles a) PBSF 94-97 b) NFB, C4 hydride, CF3CF2CF2CF2-H 98-99 3) Assessments X Glossary 100-102 References/Endnotes 105- Page 2 CONFIDENTIAL - SUBJECT TO A PROTECTIVE ORDER ENTERED IN 3M MN01537090 HENNEPIN COUNTY DISTRICT COURT, NO. 27-CV-10-28862 2231.0002 DRAFT Introduction to Environmental White Papers on Perfluoroalkyl acids related to 3M chemistries Perfluorochemicals have been commonplace in chemical industry over 50 years but until recently there has been little information on environmental fate and effects avialble in open literature. The following chapters summarize the findings of"list specific C4 intermediates PFBS, PFBSI, PFBA, PFPA, MeFBSAA, TFA, MeFBSE, FBSA, HxFBSA, FBSE, PBSF, NFB " As background, 3M announced on May 16, 2000 the voluntary manufacturing phase out of perfluorooctanyl chemicals which included perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), and PFOS-related chemistries. -
Perfluorooctanoic Acid (PFOA)
PERFLUOROOCTANOIC ACID 1. Exposure Data 1.1.2 Structural and molecular formulae, and relative molecular mass: straight-chain 1.1 Identification of the agent isomer 1.1.1 Nomenclature F FFF F F F O F Chem. Abstr. Serv. Reg. No.: 335-67-1 OH Chem. Abstr. Serv. Name: Perfluorooctanoic FFF F F F F acid Molecular formula: C8HF15O2 IUPAC Name: 2,2,3,3,4,4,5,5,6,6,7,7,8,8,8- Relative molecular mass: 414 pentadecafluorooctanoic acid Synonyms: PFOA; pentadecafluoro-1-octan - 1.1.3 Chemical and physical properties of the oic acid; pentadecafluoro-n-octanoic acid; pure substance: straight-chain isomer pentadecaflurooctanoic acid; perfluoro- caprylic acid; perfluoroctanoic acid; From HSDB (2014), unless otherwise perfluoroheptanecarboxylic acid; APFO; indicated ammonium perfluorooctanoate Description: White to off-white powder Isomers and Salts: There are 39 possible struc- Boiling point: 192.4 °C tural isomers of pentadecafluorooctanoic acid (1 with chain length 8, 5 with chain Melting point: 54.3 °C length 7, 13 with chain length 6, 16 with chain Density: 1.792 g/cm3 at 20 °C length 5, and 4 with chain length 4). These Solubility: 9.5 g/L in water at 25 °C isomers can also exist as the ammonium, Vapour pressure: 0.0023 kPa at 20 °C (extrap- sodium, or potassium salt (Nielsen, 2012). olated); 0.127 kPa at 59.25 °C (measured) Fig. 1.1 presents the few isomers and salts (ATSDR, 2009); 0.070 kPa at 25 °C that have Chemical Abstracts Service (CAS) Stability: When heated to decomposition it references. -
DECOMPOSITION PRODUCTS of FLUOROCARBON POLYMERS
criteria for a recommended standard . occupational exposure to DECOMPOSITION PRODUCTS of FLUOROCARBON POLYMERS U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE criteria for a recommended standard... OCCUPATIONAL EXPOSURE TO DECOMPOSITION PRODUCTS of FLUOROCARBON POLYMERS U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service Center for Disease Control National Institute for Occupational Safety and Health September 1977 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 DHEW (NIOSH) Publication No. 77-193 PREFACE The Occupational Safety and Health Act of 1970 emphasizes the need for standards to protect the health and safety of workers exposed to an ever-increasing number of potential hazards at their workplace. The National Institute for Occupational Safety and Health has projected a formal system of research, with priorities determined on the basis of specified indices, to provide relevant data from which valid criteria for effective standards can be derived. Recommended standards for occupational exposure, which are the result of this work, are based on the health effects of exposure. The Secretary of Labor will weigh these recommendations along with other considerations such as feasibility and means of implementation in developing regulatory standards. It is intended to present successive reports as research and epidemiologic studies are completed and as sampling and analytical methods are developed. Criteria and standards will be reviewed periodically to ensure continuing protection of the worker. I am pleased to acknowledge the contributions to this report on the decomposition products of fluorocarbon polymers by members of the NIOSH staff and the valuable constructive comments by the Review Consultants on the Decomposition Products of Fluorocarbon Polymers and by Robert B.