Poly(Limonene Carbonate): a Bio-Based & Versatile High-Performance Thermoplastic
Total Page:16
File Type:pdf, Size:1020Kb
Poly(limonene carbonate): a bio-based & versatile high-performance thermoplastic Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. Nat.) an der Bayreuther Graduiertenschule für Mathematik und Naturwissenschaften (BayNAT) der Universität Bayreuth vorgelegt von Oliver Hauenstein aus Dortmund Bayreuth 2016 Die vorliegende Arbeit wurde in der Zeit von November 2012 bis Juni 2016 in Bayreuth am Lehrstuhl Makromolekulare Chemie II unter Betreuung von Herrn Professor Dr. Andreas Greiner angefertigt. Vollständiger Abdruck der von der Bayreuther Graduiertenschule für Mathematik und Naturwissenschaften (BayNAT) der Universität Bayreuth genehmigten Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.). Dissertation eingereicht am: 13.07.2016 Zulassung durch das Leitungsgremium: 26.07.2016 Wissenschaftliches Kolloquium: 01.02.2017 Amtierender Direktor: Prof. Dr. Stephan Kümmel Prüfungsausschuss: Prof. Dr. Andreas Greiner (Erstgutachter) Prof. Dr. Hans-Werner Schmidt (Zweitgutachter) Prof. Dr. Carlo Unverzagt. (Vorsitz) Prof. Dr. Jürgen Senker Drittgutachter: Prof. Dr. Volker Abetz Für meine Familie & Hui Contents Abbreviations & symbols ......................................................................................................................... i List of publications ................................................................................................................................... v Abstract ..................................................................................................................................................... vii Zusammenfassung .................................................................................................................................. xi 1 Introduction ...................................................................................................................................... 1 1.1 The versatile molecule CO2 .................................................................................................. 2 1.1.1 The greenhouse gas ....................................................................................................... 2 1.1.2 The C1 building block..................................................................................................... 4 1.1.3 The supercritical solvent .............................................................................................. 5 1.1.4 Carbon capture and storage technologies ............................................................ 6 1.2 Polymeric membranes for gas separation ................................................................... 16 1.2.1 Significance of membranes in industry ................................................................ 16 1.2.2 Fundamentals of membrane transport phenomena ...................................... 18 1.2.3 State-of-the-art polymers for gas separation ..................................................... 24 1.3 Polycarbonates ...................................................................................................................... 29 1.3.1 Aromatic polycarbonates .......................................................................................... 29 1.3.2 Aliphatic polycarbonates .......................................................................................... 31 1.3.3 The versatile molecule limonene ........................................................................... 40 1.3.4 Poly(limonene carbonate) ........................................................................................ 42 1.4 References ............................................................................................................................... 44 2 Overview of the thesis ................................................................................................................ 59 2.1 Outline ...................................................................................................................................... 60 2.2 Synthesis & properties of PLimC...................................................................................... 61 2.3 Applications of PLimC ......................................................................................................... 66 2.4 Modifications of PLimC ....................................................................................................... 72 2.5 Individual contribution to joint publications .............................................................. 77 Contents 3 Synthesis & properties of PLimC .............................................................................................. 79 3.1 Introduction ............................................................................................................................ 82 3.2 Results and discussion ........................................................................................................ 83 3.3 Conclusions ............................................................................................................................ 97 3.4 Experimental .......................................................................................................................... 98 3.5 References .............................................................................................................................100 3.6 Supplementary information ...........................................................................................103 4 Applications of PLimC ...............................................................................................................117 4.1 Introduction ..........................................................................................................................120 4.2 Results ....................................................................................................................................121 4.3 Outlook ..................................................................................................................................133 4.4 Methods .................................................................................................................................134 4.5 References .............................................................................................................................136 4.6 Supplementary information ...........................................................................................141 5 Modifications of PLimC .............................................................................................................151 5.1 Introduction ..........................................................................................................................154 5.2 Results ....................................................................................................................................155 5.3 Discussion .............................................................................................................................164 5.4 Methods .................................................................................................................................164 5.5 References .............................................................................................................................167 5.6 Supplementary information ...........................................................................................169 6 Conclusion & future prospects ...............................................................................................211 Acknowledgements ............................................................................................................................215 (Eidesstattliche) Versicherung und Erklärung ............................................................................217 Abbreviations & symbols Abbreviations [PPN]Cl bis(triphenylphosphine)iminium chloride APC aliphatic polycarbonate ATR attenuated total reflection bdi -diiminate BPA bisphenol A BPA-PC bisphenol A polycarbonate CAc cellulose acetate CCS carbon capture and storage CCU carbon capture and utilization CD compact disc CHO cyclohexene oxide DCM dichloromethane DEA diethanolamine DMC double metal cyanide DVD digital versatile disc EO ethylene oxide GC gas chromatography GC-MS gas chromatography-mass spectrometry GPU gas permeation unit HMW high molecular weight IEA international Energy Agency i-Pr iso-propyl moiety LO limonene oxide LWR long wave radiation MAc mercaptoacetic acid ME mercaptoethanol MEA monoethanolamine MeI iodomethane MeOH methanol MOF metal-organic framework mol% mole percent OAc acetate o-Ps ortho-positronium PA polyamide PALS positron annihilation lifetime spectroscopy PC polycarbonate i Abbreviations & symbols PCHC poly(cyclohexene carbonate) PEC poly(ethylene carbonate) PEG poly(ethylene glycol) PEI poly(ether imide) PHC poly(1-hexene carbonate) PHMG poly(hexamethylene guanidine) hydrochloride PI polyimide PIM polymer with intrinsic microporosity PLimC poly(limonene carbonate) PO propylene oxide ppb parts per billion PPC poly(propylene carbonate) ppm parts per million PPO poly(phenylene oxide) p-Ps para-positronium Ps positronium PSU polysulfone ROP ring-opening polymerization salan reduced salen salen -bis(salicylidene)ethylenediamine scCO2 supercritical carbon dioxide STP standard temperature and pressure SWR short wave radiation syngas synthesis gas t-Bu tert-butyl moiety TOX-PIM-1