Teflon™ FEP Fluoropolymer Resins

Total Page:16

File Type:pdf, Size:1020Kb

Teflon™ FEP Fluoropolymer Resins Teflon™ FEP Fluoropolymer Resins Product and Properties Handbook Teflon™ FEP Fluoropolymer Resins Table of Contents Introduction . 3 Commercially Available Products . 3 Specifications . 3 General Properties of Teflon™ FEP . 3 Typical Properties of Teflon™ FEP . 3 Mechanical Properties . 3 Tensile Properties . 4 Flexural Modulus . 4 Compressive Stress . 5 Creep and Cold Flow . 5 Apparent Modulus of Elasticity . 5 Stress Relaxation . 5 Poisson’s Ratio . 9 Fatigue Resistance . 9 Impact Resistance . 9 Hardness . 10 Friction . 10 Thermal Properties . 10 Electrical Properties . 11. Chemical Resistance . 11 Absorption . 11 Permeability . 11 Weathering . 11 Cryogenic Service . .11 Mildew Resistance . 13 FDA Compliance . 13 Optical Properties . 13 Fabrication Techniques . 13 Forming and Fabrication . 14 Choose Correct Working Speeds . 14 Properly Shape and Use Tools . 14 Rules for Dimensioning and Finishing . 15 Closer Tolerances . 15 Measuring Tolerances . 15 Surface Finishes . 15 Safety Precautions . 15 2 Teflon™ FEP Fluoropolymer Resins Introduction Specifications Teflon™ FEP (fluorinated ethylene propylene) is The ASTM material specification covering Teflon™ FEP chemically a copolymer of hexafluoropropylene fluoropolymer resin is D2116. Teflon™ FEP fluoropolymer and tetrafluoroethylene. It differs from PTFE resin is also called out in various industrial and military (polytetrafluoroethylene) resins, in that it is melt- specifications for tubing, molded parts, and film, as well as processible using conventional injection molding and numerous wire and cable applications. screw extrusion techniques. Teflon™ PFA is a resin very ™ similar to Teflon™ FEP in use, but Teflon™ PFA can be used General Properties of Teflon FEP at even higher temperatures. Teflon™ FEP can be described as a fluoropolymer resin having most of the excellent physical, chemical, and Teflon™ FEP fluoropolymer resin can be made into articles electrical properties of Teflon™ PTFE fluoropolymer resin, having a combination of mechanical, chemical, electrical, but with the ability to be processed using conventional temperature, and friction-resisting properties unmatched thermoplastics processing equipment. The upper by articles made of any other material. continuous use temperature is 205 °C (401 °F). Teflon™ The design and engineering data presented in this FEP fluoropolymer resin is satisfactorily used in cryogenic publication are intended to assist end users in service at temperatures well below that of liquid nitrogen. determining where and how Teflon™ FEP fluoropolymer It is normally inert to liquid oxygen (LOX) when the surfaces resin may best be used. As with other products, it is are free of any contamination, pigmentation, or fillers. recommended that design engineers work closely with an Resistance to chemicals is excellent as is weathering experienced fabricator because the method of fabrication resistance. may markedly affect not only production costs, but also This combination of properties and processibility make the properties of the finished article. Teflon™ FEP fluoropolymer resin the preferred product in All properties presented in this handbook should be applications, such as valve and pump linings, pipe liners, considered typical values and are not to be used for release applications, or similar uses, where resistance specification purposes. to chemicals at elevated temperatures is essential or serviceability at extremely low temperatures is desired. Commercially Available Products Teflon™ FEP fluoropolymer resin is available in pellet form Typical Properties of Teflon™ FEP for general-purpose molding and extrusion. The highest A list of typical properties of Teflon™ FEP fluoropolymer molecular weight (lowest melt flow number) resins are resin is shown in Table 1. These data are of a general nature used when the highest level of stress crack resistance and should not be used for specifications. Because the is required and where processing rates are of secondary principal difference among the grades is molecular weight, importance. Lower molecular weight (higher melt flow only those properties affected by molecular weight show number) FEP resins are designed for high speed melt significant differences (e.g., toughness and stress crack extrusion onto fine wire. resistance). Minor differences in tensile and compressive Standard colors are available as concentrates from properties are sometimes seen due to variations in commercial producers for incorporation by the processor. processing conditions. Electrical properties and resistance to chemicals are generally the same for all grades. Other product grades are also available for special processing needs. They include powder and dispersion Mechanical Properties forms for coating applications and special resins for wire Fabricated shapes of Teflon™ FEP fluoropolymer resins insulation. are tough, flexible in thin sections, and fairly rigid in thick Teflon™ FEP film is also available in a wide range of sections. With increasing temperature, rigidity (as measured thicknesses for electrical, chemical, and release by flexural modulus) decreases significantly up to the applications. These include untreated as well as one or maximum continuous-use temperature of 205 °C (401 °F). both sides treated for improved cementability. Surfaces of fabricated parts have a very low coefficient of friction, although slightly higher than that of Teflon™ PTFE. Very little sticks to Teflon™ FEP, but the surfaces can be specially treated to accept conventional industrial adhesives. 3 Teflon™ FEP Fluoropolymer Resins Table 1. Typical Properties of Teflon™ FEP Fluoropolymer Resins Property Test Method1 Unit Typical Properties Melt Flow Rate (MFR at 372 °C [702 °F]/5.0 kg) ISO 12086 D2116 g/10 min 3–30 Specific Gravity ISO 1183 D792 — 2.15 Tensile Strength, 23 °C (73 °F) ISO 12086 D638 MPa (psi) 20–34 Ultimate Elongation, 23 °C (73 °F) ISO 12086 D638 % 325 Flexural Modulus, 23 °C (73 °F) ISO 178 D790 MPa (psi) 550–655 (80,000–95,000) MIT Folding Endurance (0.20 mm, 8 mil film) — D21762 Cycles 5,000–1x106 Hardness, Shore Durometer ISO 868 D2240 — D-55 Dielectric Constant, 1 MHz IEC 250 D150 — 2.03 Dielectric Constant, 1 GHz IEC 250 D2520 — 2.03 Dissipation Factor, 1 MHz IEC 250 D150 — 0.00061 Dissipation Factor, 1 GHz IEC 250 D2520 — 0.00094 Dielectric Strength, 0.25 mm film IEC 60243 D149 kV/mm 78 Melting Point — D4591 °C (°F) 260 (500) Service Temperature (20,000 hr) ISO 2578 — °C (°F) 205 (401) Limiting Oxygen Index ISO 4589 D2863 % >95 Flammability Classification3,4 — UL 94 — 94 V-0 Weather Resistance “Weather-O-Meter” (2,000 hr) No Effect Solvent Resistance D543 Excellent Chemical Resistance — — — Excellent Water Absorption, 24 hr D570 % 0.01 1ASTM Method, unless otherwise specified 2Historical standard 3These results are based on laboratory tests, under controlled conditions, and do not reflect performance under actual fire conditions. 4Current rating is a typical theoretical value. Tensile Properties test conditions affect test results, so these variables Teflon™ FEP fluoropolymer resin is an engineering material must be kept constant when making comparisons. whose performance in any particular application may be The effects of temperature on tensile strength and predicted by calculation in the same manner as for other ultimate elongation are summarized in Figures 6 and 7. engineering materials. From the data presented in this Of more practical importance is yield strength. With handbook, values can be selected which, with appropriate Teflon™ FEP fluoropolymer resin, elastic response safety factors, will allow standard engineering formulas to begins to deviate from linearity at strains of only a few be used in designing parts. percent. This is referred to as yield strength. The effect Stress/strain curves for temperatures in the usual design of temperature on yield strength for Teflon™ FEP 100 X is range for Teflon™ FEP 100 X (Figure 1) show that yield shown in Table 2. occurs at relatively low deformations. Elastic response begins to deviate from linearity at strains of only a few Flexural Modulus percent, as with most plastics. Therefore, when designing Flexural modulus is a measure of stiffness and among the ™ with Teflon FEP, it is often best to work with acceptable properties included in Table 1. Teflon™ FEP fluoropolymer strain and determine the corresponding stress. Typical resin retains flexibility to very low temperatures and stress/strain curves that show ultimate tensile strengths is useful at cryogenic temperatures. The effect of at –52 °C (–62 °F), 23 °C (73 °F), 100 °C (212 °F), and temperature on flexural modulus is shown in Figure 8. 200 °C (392 °F) for Teflon™ FEP 100 X are given in Figures 2, 3, 4, and 5. Test specimen preparation, geometry, and 4 Teflon™ FEP Fluoropolymer Resins Compressive Stress load, the higher the apparent modulus and allowable Stress/strain curves for compression are similar to those stress. Apparent modulus is most easily explained with an for tension at low values of strain. Typical compression example. curves for Teflon™ FEP 100 X at three temperatures at As long as the stress level is below the elastic limit of low levels of strain are shown in Figure 9. the material, modulus of elasticity E is obtained from the equation above. For a compressive stress of 1,000 psi, Creep and Cold Flow Figure 9 gives a strain of 0.015 inch per inch for Teflon™ A plastic material subjected to continuous load FEP 100 X at 23 °C (73 °F). Then, experiences a continued deformation with time that
Recommended publications
  • Safety Assessment of Polyfluorinated Polymers As Used in Cosmetics
    Safety Assessment of Polyfluorinated Polymers as Used in Cosmetics Status: Tentative Report for Public Comment Release Date: June 13, 2018 Panel Date: September 24-25, 2018 All interested persons are provided 60 days from the above date to comment on this safety assessment and to identify additional published data that should be included or provide unpublished data which can be made public and included. Information may be submitted without identifying the source or the trade name of the cosmetic product containing the ingredient. All unpublished data submitted to CIR will be discussed in open meetings, will be available at the CIR office for review by any interested party and may be cited in a peer-reviewed scientific journal. Please submit data, comments, or requests to the CIR Executive Director, Dr. Bart Heldreth. The 2018 Cosmetic Ingredient Review Expert Panel members are: Chair, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Ronald A. Hill, Ph.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; James G. Marks, Jr., M.D.; Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The CIR Executive Director is Bart Heldreth, Ph.D. This report was prepared by Wilbur Johnson, Jr., M.S., Senior Scientific Analyst and Jinqiu Zhu, Ph.D., Toxicologist. © Cosmetic Ingredient Review 1620 L STREET, NW, SUITE 1200 ◊ WASHINGTON, DC 20036-4702 ◊ PH 202.331.0651 ◊ FAX 202.331.0088 ◊ [email protected] ABSTRACT: The Cosmetic Ingredient Review (CIR) Expert Panel (Panel) reviewed the safety of polyfluorinated polymers in cosmetic products, and most of these ingredients have the film former function in common.
    [Show full text]
  • Miller-Stephenson Material Safety Data Sheet
    miller-stephenson Material Safety Data Sheet 1. CHEMICAL PRODUCT/COMPANY IDENTIFICATION Name: MS-122XD Product Use: Release Agent or Dry Lubricant DPMS-Z0612A PTFE Release Agent/Dry Lubricant MANUFACTURER/DISTRIBUTOR: Emergency Phone Number: (800) 424-9300 Milier-Stephenson Chemical George Washington Highway Danbury, Conn. 06810 USA (203) 743-4447 Date Revised: May 2011 2. INGREDIENTS Material (s) CAS No. Approximate % 1,1,1,2-Tetrafluoroethane 811-97-2 80-90 2,3 Dihydroperfluoropentane (HFC-43-lOmee) 138495-42-8 9- 15 Poly-TFE, Omega-Hydro-Alpha-(Methylcyclohexyl)- 65530-85-0 1 -2 Poly-Tetrafluoroethylene 9002-84-0 <1 3. HAZARDS IDENTIFICATION Milky, white, liquid with a faint ethereal odor, packaged in an aerosol container. Potential Health Effects 1,1,1,2-Tetrafluoroethane INHALATION: Misuse or intentional inhalation abuse may cause death without warning symptoms, due to cardiac effects. Other symptoms may include, anaethetic effects, light-headedness, dizziness, confusion, incoordination, drowsiness, or unconsciousness, irregular heartbeat with a strange sensation in the chest, heart thumping, apprehension, feeling of fainting and weakness. Vapors are heavier than air and can cause suffocation by reducing oxygen available for breathing. SKIN: Contact with hquid or refrigerated gas can cause cold bums and frostbite. May cause skin irritation with discomfort, itching, redness or swelling. EYE: Contact with liquid or refrigerated gas can cause cold bums and frostbite. May cause eye irritation with tearing, redness and discomfort. MS-122XD Page 2 of 7 2,3 Dihydroperfluoropentane (HrC-43-lOmee) INHALATION: Gross overexposure by inhalation may cause suffocation if air is displaced by vapors and central nervous system stimulation with increased activity or sleeplessness, tremors or convulsions.
    [Show full text]
  • Perfluorooctanoic Acid (PFOA)
    PERFLUOROOCTANOIC ACID 1. Exposure Data 1.1.2 Structural and molecular formulae, and relative molecular mass: straight-chain 1.1 Identification of the agent isomer 1.1.1 Nomenclature F FFF F F F O F Chem. Abstr. Serv. Reg. No.: 335-67-1 OH Chem. Abstr. Serv. Name: Perfluorooctanoic FFF F F F F acid Molecular formula: C8HF15O2 IUPAC Name: 2,2,3,3,4,4,5,5,6,6,7,7,8,8,8- Relative molecular mass: 414 pentadecafluorooctanoic acid Synonyms: PFOA; pentadecafluoro-1-octan - 1.1.3 Chemical and physical properties of the oic acid; pentadecafluoro-n-octanoic acid; pure substance: straight-chain isomer pentadecaflurooctanoic acid; perfluoro- caprylic acid; perfluoroctanoic acid; From HSDB (2014), unless otherwise perfluoroheptanecarboxylic acid; APFO; indicated ammonium perfluorooctanoate Description: White to off-white powder Isomers and Salts: There are 39 possible struc- Boiling point: 192.4 °C tural isomers of pentadecafluorooctanoic acid (1 with chain length 8, 5 with chain Melting point: 54.3 °C length 7, 13 with chain length 6, 16 with chain Density: 1.792 g/cm3 at 20 °C length 5, and 4 with chain length 4). These Solubility: 9.5 g/L in water at 25 °C isomers can also exist as the ammonium, Vapour pressure: 0.0023 kPa at 20 °C (extrap- sodium, or potassium salt (Nielsen, 2012). olated); 0.127 kPa at 59.25 °C (measured) Fig. 1.1 presents the few isomers and salts (ATSDR, 2009); 0.070 kPa at 25 °C that have Chemical Abstracts Service (CAS) Stability: When heated to decomposition it references.
    [Show full text]
  • DECOMPOSITION PRODUCTS of FLUOROCARBON POLYMERS
    criteria for a recommended standard . occupational exposure to DECOMPOSITION PRODUCTS of FLUOROCARBON POLYMERS U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE criteria for a recommended standard... OCCUPATIONAL EXPOSURE TO DECOMPOSITION PRODUCTS of FLUOROCARBON POLYMERS U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service Center for Disease Control National Institute for Occupational Safety and Health September 1977 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 DHEW (NIOSH) Publication No. 77-193 PREFACE The Occupational Safety and Health Act of 1970 emphasizes the need for standards to protect the health and safety of workers exposed to an ever-increasing number of potential hazards at their workplace. The National Institute for Occupational Safety and Health has projected a formal system of research, with priorities determined on the basis of specified indices, to provide relevant data from which valid criteria for effective standards can be derived. Recommended standards for occupational exposure, which are the result of this work, are based on the health effects of exposure. The Secretary of Labor will weigh these recommendations along with other considerations such as feasibility and means of implementation in developing regulatory standards. It is intended to present successive reports as research and epidemiologic studies are completed and as sampling and analytical methods are developed. Criteria and standards will be reviewed periodically to ensure continuing protection of the worker. I am pleased to acknowledge the contributions to this report on the decomposition products of fluorocarbon polymers by members of the NIOSH staff and the valuable constructive comments by the Review Consultants on the Decomposition Products of Fluorocarbon Polymers and by Robert B.
    [Show full text]
  • PTFE and PFA Similarities and Differences White Paper PTFE and PFA Similarities and Differences
    White Paper PTFE and PFA Similarities and Differences White Paper PTFE and PFA Similarities and Differences Introduction The purpose of this document is to define and compare two of the most used fluoropolymers, PTFE and PFA, in industry globally and clarify the differences between them. Defining PTFE and PFA Polytetrafluoroethylene (PTFE) is a synthetic fluoropolymer of tetrafluoroethylene that has numerous applications. The most widely known PTFE formulation is sold under the brand name of Teflon®. PTFE was discovered by DuPont Co. in 1938. Perfluoroalkoxy alkanes (PFA) is a copolymer of hexafluoropropylene and perfluoroethers. It was developed after the discovery of PTFE by the same producer (DuPont Co.). One commonly known PFA formulation is Teflon PFA. PFA has very similar properties to PTFE, though the biggest difference between PTFE and PFA is that PFA is melt-processed. This is accomplished through conventional injection molding as well as screw extrusion techniques. Area of use PTFE is popularly used as a non-stick coating for pans and many modern items of cookware. PTFE is often used in containers and pipes for handling reactive and corrosive chemicals. This is because it has non-reactive properties. Another practical application of PTFE is as a lubricant. Used in this way, PTFE helps to reduce friction within machinery, minimize the “wear and tear,” and improve energy consumption. PFA is generally used for plastic lab equipment because of its extreme resistance to chemical attack, optical transparency, and overall flexibility. PFA is also often used as tubing for handling critical or highly corrosive processes. Other applications for PFA are as sheet linings for chemical equipment.
    [Show full text]
  • Tetrafluoroethylene
    TETRAFLUOROETHYLENE Tetrafluoroethylene was reviewed previously by the Working Group in 1979, 1987, and 1998 (IARC, 1979, 1987, 1999). New data have since become available, and these have been incor- porated, and taken into consideration in the present evaluation. 1. Exposure Data 1.1.3 Chemical and physical properties of the pure substance 1.1 Identification of the agent From IFA (2014), unless otherwise indicated 1.1.1 Nomenclature Description: Colourless gas, odourless or sometimes described as having a faint Chem. Abstr. Serv. Reg. No.: 116-14-3 sweetish odour; extremely flammable Chem. Abstr. Serv. Name: Tetrafluoroethylene Boiling point: −75.63 °C IUPAC Systematic Name: Melting point: −131.15 °C (HSDB, 2014) 1,1,2,2-Tetrafluoroethene Density: 4216 kg/m3 at 15 °C at 1 bar Synonyms: Perfluoroethylene, Perfluoroethene, Solubility: Slightly soluble in water, 159 mg/L Ethylene tetrafluoro-, tetrafluoroethene at 25 °C (HSDB, 2014) Vapour pressure: 2947 kPa and 20 °C 1.1.2 Structural and molecular formulae, and Stability: Decomposes into fluorine and fluo- relative molecular mass rine compounds when heated (HSDB, 2014) Reactivity: A terpene inhibitor (limonene) is F F generally added to the monomer to prevent CC spontaneous polymerization. F F Risk of explosion in contact with air or in the absence of air at elevated temperatures and/or Molecular formula: C2F4 pressures (> 600 °C and 100 kPa). The stabilized Relative molecular mass: 100.01 monomer is flammable in air if ignited (flamma- bility limits: lower, 11%; upper, 60%) producing soot and carbon tetrafluoride Babenko( et al., 1993; HSDB, 2014). Incompatible with polymerization catalysts and peroxides.
    [Show full text]
  • Freon™ 123 PUSH Bulletin
    Freon™ 123 Refrigerant (R-123) Properties, Uses, Storage, and Handling Freon™ 123 Refrigerant Table of Contents Shipping, Storage, and Handling ......................................16 Shipping Containers in the United States ..............................16 Introduction ...........................................................................3 Bulk Storage Systems ..........................................................................16 Background .......................................................................................................... 3 Storage, Handling, and Use Recommendations .................16 Freon™ 123—An Environmentally Acceptable Prohibited Uses ...................................................................................16 Alternative ....................................................................................................... 3 Personal Protective Equipment ................................................17 Uses .......................................................................................3 Storage ......................................................................................................17 Refrigerant ...................................................................................................... 4 Handling ....................................................................................................17 Heat-Transfer Fluid ....................................................................................4 Charging, Maintenance, and Sampling .................................18
    [Show full text]
  • Thermal Degradation of Tetrafluoroethylene and Hydrofluoroethylene Polymers in a Vacuum!
    Journal of Research 01 the National Bureau of Standards Vol. 51, No.6, December 1953 Research Paper 2461 Thermal Degradation of Tetrafluoroethylene and Hydrofluoroethylene Polymers in a Vacuum! S. L. Madorsky, v. E. Hart, S. Straus, and V. A. Sedlak * Te fl on and tetrafluoroethylene photopolymers, on py rolysis in a vacuum at 423.5 0 to 513.00 C, yield almost J 00 perce nt of monomer. The rate of formation of monomer at a n.,· given temperat ure fo llows a first-order react ion and is independent of t he method of prepara­ tion of poly mer or its initial average molecular weight. The activation energy was deter­ mined by a pressure method and a weigh t method, and a value of 80.5 kcal was found b.'· both methods. A prelimina ry heating of Teflo n in air at 400 0 to 470 0 C did not change appreciably its rate of degradation into monomer when it was subse quently heated in a yacuum. Polyvinyl fluoride, 1,I-polyvin y li dene fluoride, and polytrifluoroethylene were pyrolyzed in t he range 372 0 to 5000 C. The volatiles consisted in all cases of HF and a wax-like material consisting of chain fragments of low volatility. Polyvinyl fluoride and polytrifl uoroethylene degrade to co mplete volatilization, whereas 1,1-poly vinyli dene fluoride becomes stabilized at about 70-percent loss of we ig ht. The rate-of-volat ilization curves indi­ cate a fi l'st-order reaction for polyvinyl fluo ri de, a zero-order reaction fo r t rifluoroethylene, alld an undeterm in ed order for 1,1-polyvinyli dene fluoride.
    [Show full text]
  • Perfluoroalkylated Acids and Related Compounds (PFAS) in the Swedish Environment
    Perfluoroalkylated acids and related compounds (PFAS) in the Swedish environment Chemistry Sources Exposure Ulf Järnberg Katrin Holmström Department of Applied Environmental Science, ITM Stockholm University Bert van Bavel Anna Kärrman Man Technology and Science, MTM Örebro University I Preface This report summarizes the results of several investigations conducted in Sweden during the years 2002-2005 concerning perfluoroalkylated substances (PFAS). The projects were mainly funded by the Swedish Environmental Protection Agency (S- EPA) within the environmental monitoring programs but for this compilation results from other investigations have also been included to provide a more complete overview of the present situation regarding the use of and pollution status for PFAS in Sweden. These investigations were funded by the Swedish Rescue Services Agency, the Regional County of Västra Götaland, Svenskt Vatten (VA-forsk grant nr.23:101 ) and the Nordic Council. This report also contains a compilation of literature data and information gathered from representatives of Swedish companies, authorities, and organisations. Patent information has been included and referenced in order to provide a more general picture of highly fluorinated organic compounds. It should be stressed however, that patent descriptions relate to the potential use and do not necessarily reflect the actual use. A list of information sources is given at the end of the report. The beginning of the report provides an outline of fluorinated organic compounds in general and is intended to provide a basis for the following detailed descriptions of the perfluoroalkyl substances (PFAS) that where selected by the S-EPA and Swedish Chemicals Inspectorate (KemI) for initial screening in the Swedish urban environment.
    [Show full text]
  • 1,1,1,2-Tetrafluoroethane (HFC-134A) (CAS No. 811-97-2) (Second Edition)
    1,1,1,2-Tetrafluoroethane (HFC-134a) (CAS No. 811-97-2) (Second Edition) JACC No. 50 ISSN-0773-6339-50 Brussels, January 2006 1,1,1,2-Tetrafluoroethane (HFC-134a) (CAS No. 811-97-2) (Second Edition) ECETOC JACC REPORT No. 50 © Copyright – ECETOC AISBL European Centre for Ecotoxicology and Toxicology of Chemicals 4 Avenue E. Van Nieuwenhuyse (Bte 6), B-1160 Brussels, Belgium. All rights reserved. No part of this publication may be reproduced, copied, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the copyright holder. Applications to reproduce, store, copy or translate should be made to the Secretary General. ECETOC welcomes such applications. Reference to the document, its title and summary may be copied or abstracted in data retrieval systems without subsequent reference. The content of this document has been prepared and reviewed by experts on behalf of ECETOC with all possible care and from the available scientific information. It is provided for information only. ECETOC cannot accept any responsibility or liability and does not provide a warranty for any use or interpretation of the material contained in the publication. ECETOC JACC No. 50 1,1,1,2-Tetrafluoroethane (HFC-134a) (CAS No. 811-97-2) (Second Edition) 1,1,1,2-Tetrafluoroethane (HFC-134a) (CAS No. 811-97-2) CONTENTS EXECUTIVE SUMMARY 1 THE ECETOC SCHEME FOR THE JOINT ASSESSMENT OF COMMODITY CHEMICALS 3 1. SUMMARY AND CONCLUSIONS 4 2. IDENTITY, PHYSICAL AND CHEMICAL PROPERTIES, ANALYTICAL METHODS 6 2.1 Identity 6 2.2 EU classification and labelling 6 2.3 Physical and chemical properties 6 2.4 Conversion factors 8 2.5 Analytical methods 8 3.
    [Show full text]
  • United States Patent (19) 11) Patent Number: 4,705,904 Bonfield Et Al
    United States Patent (19) 11) Patent Number: 4,705,904 Bonfield et al. 45) Date of Patent: Nov. 10, 1987 54 VAPOR PHASE SYNTHESIS OF which comprises contacting in the vapor phase in a HEXAFLUOROSOBUTYLENE catalyst zone, B, of a reactor hexafluoropropylene oxide 75 Inventors: John H. Bonfield, Basking Ridge; with a fluorinated catalyst such as fluorinated silica Harry E. Ulmer, Morristown, both of alumina at a temperature of about 400-600 C. for a N.J. residence time sufficient to form a vapor stream com prising hexafluoroacetone which is thereafter directly 73) Assignee: Allied Corporation, Morris contacted in a heating zone of the reactor with a vapor Township, Morris County, N.J. stream comprising a keytone-generating compound 21 Appl. No.: 820,896 such as acetic anhydride at a temperature of about 500-700' C. for a residence time sufficient to form a 22 Filed: Jan. 17, 1986 stream comprising hexafluoroisobutylene, substantially free of perfluoroisobutylene and recovering the hexa Related U.S. Application Data fluoroisobutylene product is disclosed. A direct one 63 Continuation of Ser. No. 580,083, Feb. 14, 1984, aban reactor vapor phase synthesis of hexafluoroisobutylene doned. which comprises (a) contacting, in the vapor phase, 51) Int, Cl. .............................................. CO7C 17/26 hexafluoropropene with less than a stoichiometric 52 U.S. C. ..................................... 570/142; 570/153 amount of oxygen required to convert substantially all 58 Field of Search .................. 580/83; 570/153, 142; the hexafluoroisopropene into hexafluoropropylene 568/399, 407, 400, 384; 549/523 oxide in the presence of a fluorinated catalyst such as (56) References Cited fluorinated silica-alumina at a temperature of about 400-600 C.
    [Show full text]
  • Catalytic Synthesis of Perfluorolyethers
    J. Cent. South Univ. (2013) 20: 629-633 DOI: 10.1007/s11771­013­1528­5 Catalytic synthesis of perfluorolyethers YANG Wei­jun(阳卫军) 1, FANG Chao(方超) 1, ZHOU Ji­cang(周济苍) 2, GUO Can­cheng(郭灿城) 1, WAN Wei(万伟) 2 1. College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China; 2. Hunan Non­ferrous Fluorine Chemistry Corporation, Changsha 410063, China © Central South University Press and Springer­Verlag Berlin Heidelberg 2013 Abstract: Perfluorolyether is characterized by highly chemical inertness, oxidative stability, anticorrosion as well as radiation resistance. It can be used as lubricant especially in harsh environmental conditions. In this work, hexafluoropylene oxide was catalytically polymerized at low temperature using the methods of anionic polymerization, and perfluorolyethers were obtained with number­average degree of polymerization more than 15. CsF and RbF were used as catalysts and their catalytic activities were investigated. Experimental results show that perfluorolyethers with number­average molar masses up to 3 000 g/mol could be obtained using the two kinds of catalysts, respectively. As compared to CsF, the number­average degree of polymerization is higher and the relative molecular mass distribution interval is narrower when RbF is used as catalyst. The effect of factors such as impurities’ content, reaction temperature and reaction time on the number­average degree of polymerization was also investigated. It is found that low impurities’ content and low temperature are beneficial to the generation of high number­average degree of perfluorolyethers. The optimization reaction time is 24 h, and further increase of reaction time does not significantly affect the average relative molecular mass.
    [Show full text]