Genetics: Published Articles Ahead of Print, published on July 26, 2010 as 10.1534/genetics.110.118778 Statistical Analysis of Nondisjunction Assays in Drosophila Yong Zeng1, Hua Li2, Nicole M. Schweppe2;3, R. Scott Hawley2;4, William D. Gilliland2;5 1Department of Mathematics and Statistics,University of Missouri at Kansas City, Kansas City, MO 2Stowers Institute for Medical Research, Kansas City, MO 3Kansas City University of Medicine and Biosciences, Kansas City, MO 4Department of Physiology, University of Kansas Medical Center, Kansas City, KS 5Department of Biological Sciences, DePaul University, Chicago, IL 1 Running Head: Nondisjunction rate Keywords: Nondisjunction rate, Confidence interval, Hypothesis testing, and Meiosis Corresponding author: William D. Gilliland Department of Biological Sciences DePaul University 2325 N. Clifton St Chicago, IL, USA Phone (773) 325-7464 Email:
[email protected] 2 Abstract Many advances in the understanding of meiosis have been made by measuring how often errors in chromosome segregation occur. This process of nondisjunction can be studied by counting experimental progeny, but direct measurement of nondisjunction rates is complicated by not all classes of nondisjunc- tional progeny being viable. For X chromosome nondisjunction in Drosophila female meiosis, all of the normal progeny survive, while nondisjunctional eggs produce viable progeny only if fertilized by sperm that carry the appropriate sex chromosome. The rate of nondisjunction has traditionally been estimated by assuming a binomial process and doubling the number of observed nondisjunctional progeny, to account for the inviable classes. However, the correct way to derive statistics (such as confidence intervals or hy- pothesis testing) by this approach is far from clear.